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Abstract

Due to the success of large-scale visual-
language pretraining (VLP) models and the
widespread use of image-text retrieval in indus-
try areas, it is now critically necessary to reduce
the model size and streamline their mobile-
device deployment. Single- and dual-stream
model structures are commonly used in image-
text retrieval with the goal of closing the seman-
tic gap between textual and visual modalities.
While single-stream models use deep feature
fusion to achieve more accurate cross-model
alignment, dual-stream models are better at of-
fline indexing and fast inference. We propose a
Multi-teacher Cross-modality Alignment Dis-
tillation (MCAD) technique to integrate the
advantages of single- and dual-stream models.
By incorporating the fused single-stream fea-
tures into the image and text features of the
dual-stream model, we formulate new modi-
fied teacher similarity distributions and features.
Then, we conduct both distribution and feature
distillation to boost the capability of the student
dual-stream model, achieving high retrieval per-
formance without increasing inference com-
plexity. Extensive experiments demonstrate the
remarkable performance and high efficiency
of MCAD on image-text retrieval tasks. Fur-
thermore, we implement a lightweight CLIP
model on Snapdragon/Dimensity chips with
only ∼100M running memory and ∼8.0ms
search latency, achieving the mobile-device ap-
plication of VLP models.

1 Introduction

Image-text mutual retrieval is a fundamental prob-
lem of multimodal learning, whose primary objec-
tive is to bridge the semantic gap between visual
and textual modalities, enabling accurate match
of image (text) based on the given text (image).
However, aligning and matching visual and textual
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information is non-trivial due to the differences
in their representations and structures. In recent
years, the rapid growth of large-scale paired vision-
language datasets (Schuhmann et al., 2021, 2022)
has paved the way for the development of power-
ful models that can bridge the gap between visual
and textual information. These models, known as
vision-language pretraining (VLP) models, have
shown remarkable capabilities in understanding
both vision and language (Radford et al., 2021; Jia
et al., 2021; Li et al., 2021).

Typically, the dual-stream architecture, e.g.,
CLIP (Radford et al., 2021), ALIGN (Jia et al.,
2021), facilitates autonomous processing of individ-
ual modalities through segregated streams, exhibit-
ing inferior retrieval performance due to the lack
of effective cross-modal feature fusion. Neverthe-
less, the disentanglement of image and text encoder
enable fast retrieval speed. On the contrary, single-
stream models integrate information from multiple
modalities during encoding through a deep interac-
tion module, e.g., transformer block (Vaswani et al.,
2017), commonly leading to superior retrieval per-
formance but sacrificing flexibility and resulting in
extremely low retrieval speed. Thus, despite their
size hindering deployment in lightweight scenarios
like mobile devices, dual-stream models remain the
preferred choice in industrial applications.

In recent years, several works endeavor to trans-
fer knowledge of large models into small models
through distillation technology (Fang et al., 2021a;
Wang et al., 2022a; Rao et al., 2023; Ren and Zhu,
2022; Wang et al., 2022b; Miech et al., 2021; Lei
et al., 2022; Wu et al., 2023; Vasu et al., 2023).
But they just consider soft-label, feature, or atten-
tion map distillation from one teacher or homo-
geneous teachers. The strategy of homogeneous,
multi-teacher distillation has not yet been explored.
Among these works, a critical question is how to
distill the knowledge of the single-stream mod-
els into efficient dual-stream models. Although
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DIDE (Wang et al., 2022b) proposes to employ
cross-modal attention distillation to transfer the
knowledge of the ViLT (Kim et al., 2021) teacher to
a CLIP student, this is not a universal method since
other single-stream structures, e.g., ALBEF (Li
et al., 2021) cannot discriminate explicit image and
text features after cross-attention fusion so that the
image-text attention maps are unavailable. Another
work LoopITR (Lei et al., 2022) considers only
employ the single-stream output scores of top k
hard examples chosen by the dual-stream model to
enhance the dual-stream model itself, which cannot
excite the whole ability of the single-stream model.
So the integration of single-stream and dual-stream
teachers is a non-trivial challenge. In this paper,
we are motivated to propose a Multi-teacher Cross-
modal Alignment Distillation (MCAD) method to
make full use of the information fusion ability of
the single-stream model and the large-scale par-
allel training advantage of the dual-stream model.
Specifically, after extracting features through the
frozen single- and dual-stream teacher models, we
apply different learnable projection layers to align
image or text features from different latent spaces,
as shown in Fig. 2. Finally, we employ similar-
ity distribution and feature distillation based on the
newly-formulated fused features to boost the perfor-
mance of the dual-stream student model, as shown
in Fig. 1. In summary, our main contributions are
as follows:

• We propose a single- and dual-stream multi-
teacher distillation algorithm to enhance the
cross-modal retrieval ability of a light-weight
CLIP-like dual-stream model.

• Comprehensive experiments on different
datasets and networks demonstrate that our
method is a model-agnostic general frame-
work that can achieve superior performance
both in zero-shot and fine-tuning settings.

• By using MobileViTv2 (Mehta and Rastegari,
2022) and TinyBERT (Jiao et al., 2020) as the
image and text encoder, respectively, we com-
press a 400M large CLIP model onto Snap-
dragon/Dimensity chips, achieving merely
25.9M model size, ∼100M running memory,
and ∼8.0ms retrieval latency.

2 Related Work

2.1 Image-Text Retrieval with VLP
Image-text retrieval (ITR) has attracted increasing
attention in recent years. In recent years, cross-

modal pre-training has been extensively studied
and applied to ITR (Liu et al., 2019; Lu et al., 2019;
Chen et al., 2020; Wang et al., 2022c). The model
structure can be roughly classified into two cat-
egories: single-stream and dual-stream. Single-
stream models jointly encode images and text
through a deep interaction module and output a
fused feature. Early algorithms (Lu et al., 2019)
employ object detectors (Girshick, 2015; Ren et al.,
2015) to extract image features, which usually ig-
nore important background information. Then,
ViLT (Kim et al., 2021; Diao et al., 2021) unifies
image and text extractor as Transformer (Vaswani
et al., 2017) to make full use of all information. The
models, however, depend on a cross-modal Trans-
former encoder to fuse visual and textual signals
at the same time across layers, which necessitates
a large compute budget and slows down inference
speed. Even though some trade-off approaches,
e.g., ALBEF (Li et al., 2021), employ separate im-
age and text encoders prior to hard example fusion,
their top k re-ranking strategy is still far from being
implemented in real time.

On the contrary, the dual-stream model mainly
focuses on learning how to align visual and tex-
tual features obtained from independent encoders.
Since only a light-weight interaction module (usu-
ally a MLP or dot product) is applied to image and
text features, dual-stream structure allows for con-
trastive learning on billions of examples, including
CLIP (Radford et al., 2021) and ALIGN (Jia et al.,
2021). Thanks to the shadow interaction module,
all visual or textual features can be pre-calculated
and stored offline, leading to a fast retrieval speed.
Nevertheless, due to a lack of deep cross-model
fusion, the visual-language understanding ability
of dual-stream models is inferior to that of single-
stream models, resulting in lower retrieval accuracy.
Hence, we are inspired to transfer the advantages of
single- and dual-stream models into a compressed,
lightweight model through our proposed innovative
distillation technique.

2.2 Knowledge Distillation for VLP
Knowledge Distillation (Hinton et al., 2015) is a
method of transferring knowledge from a teacher
model to a student model, which can effectively im-
prove the performance of the student model (Lan
et al., 2020; Yalniz et al., 2019; Touvron et al.,
2021; Fang et al., 2021b). In the multimodal distil-
lation area, a group of approaches considers trans-
ferring knowledge from large models into small
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models with the same architecture, either both
single-stream models (Fang et al., 2021a; Wang
et al., 2022a; Rao et al., 2023) or dual-stream mod-
els (Ren and Zhu, 2022; Wu et al., 2023) by using
logit, feature, or attention map distillation. Distil-
lVLM and EfficientVLM (Wang et al., 2022a) pro-
pose attention map distillation and hidden feature
distillation for object-detection-based and ALBEF-
like (Li et al., 2021) single-stream VLP model com-
pression, respectively. TinyCLIP (Wu et al., 2023)
trains lightweight CLIP models via cross-modal
affinity mimicking (similarity distribution distilla-
tion) and weight inheritance.

Another group of methods employ single-stream
models to improve performance of dual-stream
models (Wang et al., 2022b; Miech et al., 2021;
Lei et al., 2022). DIDE (Wang et al., 2022b) ap-
plies cross-model attention distillation to transfer
knowledge of a single-stream ViLT (Kim et al.,
2021) teacher model into a CLIP-like dual-stream
student model. LoopITR (Lei et al., 2022) pro-
poses a mutual-loop enhancement strategy to distill
dual-stream models by top hard samples of single-
stream models. Thinking fast and slow (Miech
et al., 2021) improves dual-stream model perfor-
mance by single-stream model via logit distillation.

As multi-teacher distillation (Yang et al., 2020;
Gou et al., 2021; Zhao et al., 2022; Zhang et al.,
2023) has been generally regarded as an effective
approach to improving student models, Mobile-
CLIP (Vasu et al., 2023) proposes to employ ensem-
ble of K CLIP models as a strong teacher. To the
best of our knowledge, our MCAD is the first work
that uses heterogeneous multi-teachers to distill the
advantages of single- and dual-stream models into
a lightweight student VLP model.

3 Method

3.1 Preliminary
We first define the general form for calculating
the similarity distribution matrix and the KL diver-
gence loss, then we will introduce the distribution
matrices shown in Fig. 1.

The general form to calculate the image-text sim-
ilarity distribution matrix can be denoted as:

FD(I, T, τ) = softmax[(IT⊤)/τ ], (1)

where softmax(·) represents the softmax function
that operates in the last dimension, I, T denote
the normalized image and text representations, re-
spectively, with shape [n, d], where n is the batch

Figure 1: An overview of our MCAD framework.
(IT , TT ) and (IS , TS) represent the (image, text) fea-
ture pair output by teachers and the student, respectively.
D∗

i2t represents the similarity distribution of image-to-
text, while D∗

t2i denotes that of text-to-image. DS
∗ in-

dicates the distribution matrix produced by the student,
while DT

∗ depicts that derived from the aggregated teach-
ers. Additionally, DFAI

∗ denotes the softmax output
after cross-feature alignment between the student’s im-
age feature and the teachers’ text feature, while DFAT

∗
represents the corresponding operation after aligning
the student’s text feature to the teachers’ image feature.

size and d is the output dimension, and τ is a tem-
perature parameter. Moreover, the row-wise KL
divergence between two distribution matrices D
and D̂ can be denoted as:

FKL(D, D̂) =
∑

l

KL(Dl||D̂l), (2)

where l indicates the row index.
Fig. 1 shows an overview of the MCAD frame-

work, which combines single- and dual-stream
models at the token level. Given n image-text pair
inputs in a batch, {(ij , tj)}n1 , we will get image rep-
resentations IT ∈ Rn×d and text representations
T T ∈ Rn×d after feeding the output of multiple
teachers to the integration module, which will be
detailedly discussed in Sec. 3.3. Moreover, the
student’s image encoder and text encoder output
the image representation IS ∈ Rn×d and text rep-
resentation TS ∈ Rn×d, respectively. After that,
several distribution matrices shown in Fig. 1 can
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be expressed as:

DS
i2t = FD(I

S , TS , τS),

DT
i2t = FD(I

T , T T , τT ),

DFAI
i2t = FD(I

S , T T , (τT + τS)/2),

DFAT
i2t = FD(I

T , TS , (τT + τS)/2),

(3)

where DS
i2t denotes the similarity distribution of

image-to-text output by student, while that of text-
to-image simply involves swapping the input posi-
tions, i.e., DS

t2i = FD(T
S , IS , τS). The detailed

description of D∗
∗ can be found in the caption of

Fig. 1.

3.2 Multi-teacher Cross-modal Alignment
Distillation

Dual-stream target. Assuming a collection of n
image-text pairs {(ij , tj)}n1 in a batch, the text and
image features of the dual-stream teacher model
are denoted as IDS ∈ Rn×d and TDS ∈ Rn×d,
respectively, and the target similarity distribution
matrix can be expressed as:

DDS
i2t = FD(I

DS , TDS , τDS),

DDS
t2i = FD(T

DS , IDS , τDS),
(4)

where τDS denotes the temperature of the dual-
stream model.

Single-stream target. Besides the straightfor-
ward format of dual-stream target distributions, we
also need to calculate the single-stream target. Sub-
sequently, the indices of the top k similarity scores
are first computed based on Eq. (4), which can be
represented as:

Pi2t = topK_indices(DDS
i2t ),

Pt2i = topK_indices(DDS
t2i ),

(5)

where Pi2t denotes the indices of each image and
the top k texts that are similar to it, while Pt2i

represents the indices of each text and its k most
similar images. Then, we recalculate the scores
of the top k image-text pairs by the single-stream
model, e.g., ALBEF (Li et al., 2021). We assume
that the score matrices output by the single-stream
model are DSS

i2t ∈ Rn×n, DSS
t2i ∈ Rn×n, which are

calculated as:

(DSS
i2t )l,m = fSS(il, tm), (l,m) ∈ Pi2t,

(DSS
t2i )l,m = fSS(im, tl), (l,m) ∈ Pt2i.

(6)

In general, a single-stream model will usually out-
put a similarity score for the current image-text

pair. It should be noted that in matrix DSS
i2t and

DSS
t2i , only DSS

i2t [Pi2t] ∈ Rn×k, DSS
t2i [Pt2i] ∈ Rn×k

are computed, and we only care about this part.
Loss function. The objective of this paper is

to introduce the MCAD technique for effectively
merging single- and dual-stream models. The ulti-
mate goal is to enable effective knowledge transfer
from multiple teachers to the student network. We
adopt a dual-stream architecture for the student net-
work, which results in improved retrieval speed for
image-text tasks. In doing so, the proposed method
can be more conveniently deployed on mobile de-
vices. In this study, the uniform loss function is
denoted as:

Ltotal = LT DD + LT FD, (7)

where LT DD denotes the loss function of target
distribution distillation (TDD), and LT FD denotes
the target feature distillation (TFD).

First, the LT DD of multi-teachers can be ex-
pressed as:

LT DD : LMT = fMT (D
S
i2t, D

S
t2i)

+ fMT (D
T
i2t, D

T
t2i),

(8)

where fMT is a loss function that measures the KL
divergence between the output and the target dis-
tribution, including dual-stream and single-stream
targets as mentioned before. Importantly, the sec-
ond term brings the output similarity distribution of
the integration module (discussed in Sec. 3.3) close
to the target distribution, which can be viewed as a
regularization of the integration module. Second,
the LT FD of multi-teachers is denoted as:

LT FD : LMT_FA = fMT (D
FAI
i2t , DFAI

t2i )

+ fMT (D
FAT
i2t , DFAT

t2i ),
(9)

where the two terms bring the representation of the
student output close to the fused feature.

Finally, the core loss function fMT is defined as:

fMT (D
∗
i2t, D

∗
t2i) = FKL(D

∗
i2t, D

DS
i2t )

+FKL((D
∗
t2i, D

DS
t2i )

+FKL(σ(D
∗
i2t[Pi2t]), σ(D

SS
i2t [Pi2t]))

+FKL(σ(D
∗
t2i[Pt2i]), σ(D

SS
t2i [Pt2i])),

(10)

where ∗∈{S, T, FAI, FAT} and σ(·) is a normal-
ization method. When given a matrix D∗ ∈ Rn×k,
the normalization method can be expressed as:

σ(D∗
l,m) =

D∗
l,m∑k

v=1D
∗
l,v

,

l ∈ [1, .., n],m ∈ [1, ..., k]

(11)
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Here, we don’t directly align the student output
with the integrated-teacher output. Instead, we
align the output of the student and the integrated
teacher with the dual- and single-stream teacher
simultaneously, as Eq. (8)–(10) show. Since the in-
tegrated teacher also contains learnable parameters
(will be introduced in Sec. 3.3), we regard the dual-
and single-stream as pivots to align the student and
the integrated teacher.

3.3 Multi-teacher Integration

To better utilize the features of multi-models, we
propose a framework to integrate the output of dif-
ferent models, which is shown in Fig. 2. When
giving an image-text pair (il, tm), l,m ∈ [1, ..., n],
suppose that IDS

l , TDS
m represent the “CLS” to-

ken output by dual-stream’s image encoder and
text encoder, respectively, and HSS

m−l represents the
“CLS” token output by the single-stream model.
The “CLS” token outputs by multiple teachers are
first projected into other vectors by a different func-
tion, g∗. Especially, although the single-stream
model has only one “CLS” token, it still has to be
projected to different spaces using two different
functions, i.e., g1, g2. And in this study, the g1, g2
function can be denoted as follows:

g1/2(·)=





fP (H
SS
m−l), if (l,m)∈Pi2t

or (m, l)∈Pt2i

0, if (l,m) /∈Pi2t

and (m, l) /∈Pt2i,

(12)

where fP represents a projection layer. Moreover,
g1 and g2 play the role of a gate. Because we
fuse single- and dual-stream models to adjust the
distribution of the top k, all we need to do is to fuse
two teachers’ features only on the top k.

Finally, the output of the text representation T T
m

and image representation ITl can be expressed as:

T T
m = norm(g3(T

DS−T
m ) + α · g1(HSS

m−l))

ITl = norm(g4(I
DS−I
l ) + α · g2(HSS

m−l)),
(13)

where α is a learnable parameter, and norm repre-
sents the ℓ2 normalization operator.

4 Experiments

4.1 Datasets

We utilize existing image-text pair datasets to ver-
ify our method, including MSCOCO (Lin et al.,
2014), Conceptual Captions (CC) (Sharma et al.,

Figure 2: Details of the integration module

2018), SBU captions (Ordonez et al., 2011), and
Flickr30K (Plummer et al., 2015). To test the zero-
shot capability of our method, we only combine
CC and SUB as training datasets, while in fine-
tuning experiments, we use all four data datasets
during training. For validation and testing, we uti-
lize the standard split (Karpathy and Fei-Fei, 2015)
of COCO and Flickr. More details of the datasets
and training hyper-parameters are presented in Ap-
pendix A and B, respectively.

4.2 Baselines and Components
In this paper, as shown in Eq. (7), we propose a
general loss function by dividing it into two parts:
target distribution distillation (LT DD) and target
feature distillation (LT FD) losses. We consider the
first component to be the process of allowing the
student’s image-text similarity output to approxi-
mate a desired distribution. In terms of the sec-
ond component, we can align the student’s feature
with the teacher’s feature by following different
constraints. Several prior works can be viewed
as special cases of the general form proposed in
Eq. (7). For the target distribution distillation, the
categories can be summarized as follows:

Ground truth. Given n image-text pairs
{(il, tl)}n1 , the student model outputs two matrix
DS

i2t ∈ Rn×n, DS
t2i ∈ Rn×n, and the ground truth

can be denoted as DGT , which is an identity matrix.
Then, the loss function using the ground truth as
the target distribution can be expressed as:

LTDD : LGT = FKL(D
S
i2t, D

GT )

+ FKL(D
S
t2i, D

GT )
(14)

Moreover, LGT is also called a hard target in the
study (Hinton et al., 2015). This can be viewed as
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a baseline for training dual-stream models without
teacher distillation.

Dual-stream distribution distillation. In this
form, CLIP is often used as the dual-stream teacher,
and the distribution of CLIP output is denoted as
DDS

i2t , D
DS
t2i . Then, a uniform loss function for dual-

stream distillation is introduced as follows:

LTDD : LCLIP = fDS(D
S
i2t, D

S
t2i)

= FKL(D
S
i2t, D

DS
i2t ) + FKL(D

S
t2i, D

DS
t2i ).

(15)

This loss has been widely used in pioneering stud-
ies, including Leaner and Faster (Ren and Zhu,
2022) which combin LGT and LCLIP as LT DD
and TinyCLIP (Wu et al., 2023) which solely uses
LCLIP as the distillation loss. We reimplement
these works based on our model structures and
datasets for fair comparisons.

Single-stream distribution distillation. Simi-
larly, ALBEF (Li et al., 2021) is also widely em-
ployed as the single-stream teacher. Then we con-
struct the distribution of the ALBEF output by
Eq. (6). Due to the limitation of computing re-
sources, we only calculate the top k text similarities
that are most similar to each image. Similarly, each
text is treated in the same way. It should be noted
that the information of top k is provided by a dual-
stream model, i.e., CLIP. Then, the loss function
using only the single-stream model, i.e., ALBEF,
can be denoted as follows:

LTDD : LALBEF =

FKL(σ(D
S
i2t[Pi2t]), σ(D

SS
i2t [Pi2t]))

+FKL(σ(D
S
t2i[Pt2i]), σ(D

SS
t2i [Pt2i])).

(16)

In LoopITR (Lei et al., 2022) and Thinking Fast
and Slow (Miech et al., 2021), the authors employ
LALBEF + LGT as LT DD and we also implement
them as comparison methods.

Dual-stream feature distillation. In terms of
target feature distillation, the dual-stream model
outputs the image representation IDS and text pre-
sentations TDS separately. Then, we can align
the student’s feature with the teacher’s feature by
constructing the following equation:

DFAI′
i2t = FD(I

S , TDS , (τDS + τS)/2)

DFAI′
t2i = FD(T

DS , IS , (τDS + τS)/2)

DFAT ′
i2t = FD(I

DS , TS , (τDS + τS)/2)

DFAT ′
t2i = FD(T

S , IDS , (τDS + τS)/2)

LTFD :LCLIP_FA=fDS(D
FAI′
i2t , DFAI′

t2i )

+fDS(D
FAT ′
i2t , DFAT ′

t2i )

(17)

where LCLIP_FA indicates that we align the stu-
dent features with the dual-stream teacher features,
i.e., CLIP, and fDS is defined in Eq. (15).

Multi-teacher distillation. Our motivation for
integrating the multi-teachers’ output distributions
is to gain a better distribution to distill the student
model. Since single-stream models tend to per-
form better than dual-stream models, we argue that
single-stream models can better distinguish diffi-
cult samples that cannot be discriminated against
by dual-stream models. So, the final loss for mea-
suring the distribution gap between student and
multi-teacher is expressed as Eq. (8). Furthermore,
to align the student output features with the multi-
teacher fused features, the loss function for feature
alignment is expressed as Eq. (9).

4.3 Zero-shot Experiments and Ablations
For the student’s image and text encoder, we uti-
lize MobileViTv2 (Mehta and Rastegari, 2022) and
TinyBERT (Jiao et al., 2020), with 11.19 M and
14.71 M parameters, respectively. We also em-
ploy CLIP (ViT-L/14) and ALBEF as the teacher
models, containing approximately 427.62M and
419.12M parameters, respectively. In order to eval-
uate the generalizability of the student model, we
train it on both the CC3M and SBU datasets and
subsequently assess its performance on the COCO
and Flickr30k testsets. Moreover, the default value
of k is 11. All zero-shot results for comparisons
with the aforementioned baselines and ablation
studies are obtained using the checkpoint associ-
ated with the highest validation performance and
presented in Table 1.

As mentioned in Sec. 4.2, we propose a uni-
form loss paradigm for image-text retrieval dis-
tillation approaches. For fair comparisons, we
reimplement several baseline methods based on
the same model structures and datasets. Specifi-
cally, for TinyCLIP (Wu et al., 2023), we adopt its
affinity mimicking loss (equivalent to LCLIP ) and
uniformly manual inheritance for the TinyBERT
text encoder. For Leaner and Faster (Ren and Zhu,
2022), we adopt its LCLIP+LGT loss while elimi-
nating the LHN item since it’s orthogonal to distil-
lation approaches. For LoopITR (Lei et al., 2022),
we employ its LALBEF +LGT as the loss func-
tion. In addition, we also conduct comprehensive
ablation studies based on our loss components, as
illustrated in Table 1.

Several observations can be drawn from the
statistics. 1) Compared to training without teach-
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Table 1: Zero-shot comparisons and ablations on MSCOCO and Flickr30K testsets of the student model that uses the
mobileViTv2 and TinyBERT as backbones. * indicates that we reimplement the comparable approaches based on our model
structures and datasets. # denotes the value of ALBEF are copied from the original paper.

methods
Loss Flickr30K MSCOCO

Ltotal = LT DD + LT FD Image Retrieval Text Retrieval Image Retrieval Text Retrieval
LT DD LT FD R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP LGT 85.2 97.5 99.1 64.9 87.2 92.1 56.3 79.4 86.7 36.7 61.4 71.5
ALBEF # loss of ALBEF 94.1 99.5 99.7 82.8 96.3 98.1 - - - - - -
no teachers LGT - 43.5 70.5 78.9 31.0 58.1 69.2 21.9 44.4 56.9 16.4 37.0 58.6
(Lei et al., 2022)* LALBEF + LGT - 54.3 81.1 88.2 40.5 70.2 79.3 30.5 56.5 67.2 21.5 45.6 57.5
(Ren and Zhu, 2022)* LCLIP + LGT - 56.2 80.2 87.9 40.5 67.8 77.2 29.7 55.9 67.5 20.7 43.4 55.0
(Wu et al., 2023)* LCLIP - 60.1 82.4 89.2 41.3 69.2 78.5 31.9 58.1 67.9 21.1 44.3 56.0

Ablations of ours

LCLIP - 61.3 84.6 90.9 43.6 71.0 80.5 33.8 59.8 70.8 21.8 45.2 57.1
LALBEF - 39.7 69.2 77.8 29.9 58.0 69.6 22.5 46.9 60.1 15.5 36.4 48.2
LMT - 63.5 85.9 91.7 47.9 76.7 84.3 37.6 63.3 74.6 25.7 51.2 62.8
- LCLIP_FA 60.5 83.8 89.5 41.9 69.9 79.3 32.6 57.7 68.7 21.1 43.6 55.2
- LMT_FA 61.3 85.0 90.9 46.0 74.7 83.6 37.1 63.4 73.6 25.4 50.3 62.1
LCLIP LCLIP_FA 64.3 87.0 92.2 46.2 74.3 82.7 35.7 62.4 72.6 23.5 46.9 58.7
LCLIP LMT_FA 65.2 87.3 92.5 50.3 77.6 85.1 37.2 64.0 73.9 26.0 51.9 62.9
LMT LCLIP_FA 66.0 88.1 92.7 51.1 78.3 85.7 37.7 64.4 74.6 26.6 52.1 63.3

Ours LMT LMT_FA 66.6 87.4 92.7 52.1 78.9 86.6 38.6 65.0 75.2 27.3 52.7 64.0

Table 2: Finetuing ablations on MSCOCO and Flickr30K testsets of the student model that uses the MobileViTv2 and TinyBERT
as backbones. # denotes the value of ALBEF are copied from the original paper.

methods
Loss Flickr30K MSCOCO

Ltotal = LT DD + LT FD Image Retrieval Text Retrieval Image Retrieval Text Retrieval
LT DD LT FD R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP LGT - 95.3 99.7 100.0 84.0 97.0 98.7 74.2 92.3 96.0 57.3 81.8 88.7
ALBEF # loss of ALBEF 95.9 99.8 100.0 85.6 97.5 98.9 77.6 94.3 97.2 60.7 84.3 90.5

Ablations of ours
- LCLIP_FA 75.5 92.7 96.9 59.1 85.3 91.4 48.8 75.4 84.3 36.5 65.8 76.8
LCLIP - 78.7 93.6 96.8 61.6 86.6 92.0 54.4 79.7 88.1 39.0 68.0 78.8
LCLIP LCLIP_FA 79.2 94.3 97.4 62.8 87.3 92.6 54.0 79.9 87.8 39.3 68.1 78.8

Ours LMT LMT_FA 80.2 95.9 97.8 64.1 88.4 93.4 55.0 80.4 88.2 40.2 69.2 79.5

ers (LGT ), the CLIP target distribution distillation
(LCLIP ) can bring more effective information, but
the result will not be further improved when com-
bining them together (LCLIP +LGT ). This indi-
cates that the ground truth (usually very noisy) is
not a good distribution when distilling the student
model. 2) When we solely use the distribution of
top k output by ALBEF (LALBEF ), it does not
work very well, revealing that we also need to take
into account distributions of more negative sam-
ples. When we use both the distribution of ALBEF
output and the ground truth (LALBEF+LGT ), the
results are much better than using the ground truth
alone, which shows that it is necessary to readjust
the distribution of top k. 3) When you combine the
distribution of multi-teachers (LMA), it is more ef-
fective than any single teacher. 4) Moreover, when
distillation on both feature and output distribution
of CLIP (LCLIP+LCLIP_FA), it works better than
distillation using only the similarity distribution
(LCLIP ), which demonstrates that aligning the stu-
dent’s features to the teacher’s features improves
student performance. 5) Furthermore, the best re-
sults are achieved when using a multi-teacher distri-
bution and aligning the student features to the fused

multi-teacher features (LMA+LMA_FA). This is a
good proof of the effectiveness of our multi-teacher
cross-modal alignment distillation framework since
both target distribution distillation and target fea-
ture distillation are important.

To further illustrate the impact of different distil-
lation methods, we select several text-to-image re-
trieval results (Flickr30k testset) for three different
methods, i.e. LCLIP , LCLIP+LCLIP_FA,LMA+
LMA_FA as described in Table 1, and those vi-
sualization results are shown in Figure 3. We
can observe that our MCAD (LMA+LMA_FA)
achieves more accurate matching results for fine-
grained attribute words, such as action ("swim-
ming"), color ("red, yellow, and purple" ) and num-
ber ("three"). Since CLIP is not good at discrimi-
nating between such subtle differences because of
its shallow image-text interaction module, which
has been mentioned in many pinoneer work (Doveh
et al., 2023), we believe that such improvement is
distilled from the single-stream teacher (ALBEF).

4.4 Finetuning Experiments

To further verify the finetuning performance of
our approach, we first finetune the teacher mod-
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Table 3: Zero-shot performance on MSCOCO and Flickr30K testsets by employing MobileViTv3 and ALBERT as image and
text encoder, respectively.

Ltotal = LT DD+LT FD
Flickr30K MSCOCO

Image Retrieval Text Retrieval Image Retrieval Text Retrieval
LT DD LT FD R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
LCLIP LCLIP_FA 62.0 86.2 91.8 45.7 73.9 82.4 35.7 62.0 72.7 23.4 48.1 59.9
LMT LMT_FA 64.8 88.0 93.9 49.6 77.5 85.8 35.9 63.3 74.5 26.0 51.6 63.4

Table 4: The student model’s performance is assessed with various hyper-parameters k through zero-shot evaluations on
MSCOCO and Flickr30K testsets by using mobileViTv2 and TinyBERT as image and text encoder, respectively.

LT DD: LMA

Flickr30K MSCOCO
Image Retrieval Text Retrieval Image Retrieval Text Retrieval

LT FD: LMA_FA R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
k = 5 64.3 87.5 92.6 50.8 78.1 85.9 38.8 65.0 74.8 26.6 52.0 63.5
k = 11 66.6 87.4 92.7 52.1 78.9 86.6 38.6 65.0 75.2 27.3 52.7 64.0
k = 17 63.3 86.9 93.0 50.6 78.6 86.0 37.5 64.6 75.1 26.6 52.1 63.5

Table 5: Scan speed, retrieval speed and running memory of different models based on 100,000 candidate images. * indicates
that ALBEF selects the top 128 candidates for the fusion module calculation.

Model image encoder text encoder fusion module param. # scan time retrie. time running mem. platform

CLIP VIT-L/14 12-layer transformer dot product 427.62M 11.0ms 32.5ms ∼2GB V100 GPU
ALBEF VIT-B/16 6-layer transformer 6-layer transformer 419.12M 7.6ms 1945ms* ∼3GB V100 GPU

ours mobileVitV2-1.5 TinyBERT dot product 25.9 M
3.8ms 14.1ms ∼150MB V100 GPU
24.5ms 8.5ms 93MB Snapdragon 8 Gen3
24.8ms 7.5ms 107MB Dimensity 9300

els and then perform different distillation strate-
gies on the MSCOCO and Flickr30K training
datasets. All results are shown in Table 2, which
maintains the same conclusion as before. We
achieve the best results when combining multi-
teacher distribution distillation (LMT ) and fea-
ture distillation (LMT_FA), surpassing dual-stream
distribution distillation (LCLIP ), feature distilla-
tion (LCLIP_FA) and combining them together
(LCLIP + LCLIP_FA).

4.5 Backbone and Hyper-parameter Selection

Since our method is a network-agnostic framework,
we replace the image encoder and text encoder with
MobileViTv3 (Wadekar and Chaurasia, 2022) and
ALBERT (Lan et al., 2020), with 5.5M and 12.2M
parameters, respectively, to validate its generality.
All zero-shot results are shown in Table 3. The
statistics show that our approach still outperforms
LCLIP + LCLIP_FA, revealing that our proposed
method is general to different dual-stream models.

Further, we conduct several experiments on the
selection of k, with results shown in Table 4, which
illustrates the impact of the hyper-parameter k on
the distillation effect. Specifically, a lower R@1
score for the Flickr30k data is observed when k is
set to 5 due to the diminished information received
from ALBEF. Conversely, when k is increased to
17, the distribution of information from ALBEF

becomes smoother, impeding the student model’s
ability to learn more accurate information. Notably,
this aforesaid effect is most pronounced in the R@1
scores. Therefore, it is essential to select an appro-
priate value of k to enhance the performance of
the student model. Finally, we choose an optimal
k = 11 for all experiments.

4.6 Mobile-device Application
Table 5 tests the performance of the lightweight
model deployed on Snapdragon 8 Gen3 and MTK
Dimensity 9300 chips, which uses TinyBERT
as the text encoder and mobileViTv2 as the im-
age encoder that builds an offline index using
100,000 candidate images. We successfully achieve
∼24.6ms/image scan speed, ∼8.0ms/query real-
time retrieval speed, and ∼100MB running mem-
ory. Thanks to the deep optimization on the chip
side, the retrieval speed even surpasses that on the
V100 GPU, greatly advancing the mobile-device
application of VLP models.

5 Conclusion and Liminations

In this study, we propose a multi-teacher cross-
modal alignment distillation (MCAD) framework
which helps better integrate heterogeneous teach-
ers. The proposed MCAD involves the integration
of the teachers’ output features and similarity dis-
tributions. Moreover, MCAD uses the integrated
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Figure 3: Retrieval results obtained using different distillation methods

distributions to distill the student model and align
the student’s features to the fused teachers’ fea-
tures. Our proposed MCAD is demonstrated to be
a model-agnostic general framework, capable of
achieving superior performance on both zero-shot
and fine-tuning settings and a lightweight model
has been successfully deployed on mobile devices,
achieving real-time retrieval speed.

In this research, due to computational resource
constraints, we only conduct a few experiments
and simply determine the hyper-parameter k = 11
for all experiments. But it may be dynamic for dif-
ferent datesets and networks. Another limitation is
that using MLP as the projection layers in Eq. (12)
my not be optimal and more intricate designs need
to be investigated in the future.
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Table 6: statistic of the dataset. ⊺ represents the datasets
only used in the fine-tuning stage.

Datasets CC SUB COCO Flickr

train 1.90M 0.85 M 0.56M⊺ 0.15M⊺

val - - 25k 5k
test - - 25k 5k

A Dataset Statistics

Some of the images are no longer accessible on the
internet, and the CC dataset we collect for training
is not quite complete. Table 6 shows the statistics
of the datasets. ⊺ in Table 6 denotes the data we
only used for the fine-tuning stage.

B Train Details

In this study, the AdamW (Loshchilov and Hut-
ter, 2019) optimization technique with lr = 1e−
3, β1 = 0.9, β2 = 0.999 is employed for all exper-
iments, except for the test on ALBERT+ Mobile-
Vitv3 backbone, where the default learning rate is
adjusted to 1e-4. To facilitate the training process
and enhance the performance, warm-up with co-
sine decay is applied, while the apex framework is
utilized to accelerate the training. Notably, no data
augmentation methods are utilized in the teacher
models, while the student model only employs
"RandomResizedCrop". Moreover, to ensure suffi-
cient training, each experiment is trained for 100
epochs. It is important to mention that the value of
the hyperparameter k is set to 11, unless otherwise
specified in this paper.

In terms of teacher models, we adopt CLIP ViT-
L/14 as the dual-stream teacher1 and ALBEF2 as
the single-stream teacher. For the projection lay-
ers {g1, g2, g3, g4}, we simply employ two-layer
MLPs.

C Loss Explanation

We choose a special form of normalization term in
Eq. (11). We can view it as an L1 normalization.
Here we want to explain why we choose such nor-
malization formulation instead of commonly used
softmax. Given that single-stream models similar
to ALBEF typically output a score for an image-
text pair, to ensure that the scores of different sam-
ple pairs maintain their relative magnitude after

1https://huggingface.co/openai/
clip-vit-large-patch14

2https://github.com/salesforce/ALBEF
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normalization, we employed this specific normal-
ization approach. Take an example for clearer clar-
ification. Assume that the top 3 output scores are
0.8, 0.4, 0.2 (the probability of two-classification
after ALBEF must be between 0 and 1), after the
L1 normalization, the outputs are { 0.8

0.8+0.4+0.2} =
{0.571, 0.286, 0.143}. The relative ratio is still
4 : 2 : 1. But if we choose softmax normal-
ization, the output becomes {0.451, 0.302, 0.247},
which is much smoother and lacking in differentia-
tion. Actually, we have indeed tried to apply soft-
max normalization during our experiments, but we
found that simply using a softmax would cause AL-
BEF’s score distribution to become smoother and
result in inferior performance, while incorporating
a temperature-scaled softmax function would intro-
duce additional hyper-parameters. So we finally
chose the L1 normalization method.
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