
Findings of the Association for Computational Linguistics: NAACL 2024, pages 1400–1416
June 16-21, 2024 ©2024 Association for Computational Linguistics

SimSCOOD: Systematic Analysis of Out-of-Distribution Generalization in
Fine-tuned Source Code Models

Hossein Hajipour1, Ning Yu2, Cristian-Alexandru Staicu1, Mario Fritz1

1 CISPA Helmholtz Center for Information Security
2 Netflix Eyeline Studios

1{hossein.hajipour, staicu, fritz}@cispa.de
2ningyu.hust@gmail.com

Abstract

Large code datasets have become increasingly
accessible for pre-training source code models.
However, for the fine-tuning phase, obtaining
representative training data that fully covers the
code distribution for specific downstream tasks
remains challenging due to the task-specific na-
ture and limited labeling resources. These lead
to out-of-distribution (OOD) generalization is-
sues with unexpected model inference behav-
iors that have not been systematically studied
yet. In this paper, we contribute the first sys-
tematic approach that simulates various OOD
scenarios along different dimensions of source
code data properties and study the fine-tuned
model behaviors in such scenarios. We inves-
tigate the behaviors of models under different
fine-tuning methodologies, including full fine-
tuning and Low-Rank Adaptation (LoRA) fine-
tuning methods. Our comprehensive analysis,
conducted on four state-of-the-art pretrained
models and applied to two code generation
tasks, exposes multiple failure modes attributed
to OOD generalization issues.

1 Introduction

There has been increasing success in applying
Large Language Models (LLMs) to various source
code understanding and generation tasks. LLMs for
codes such as GraphCodeBERT (Guo et al., 2021),
CodeT5+ (Wang et al., 2023), CodeGen (Nijkamp
et al., 2023), and Code Llama (Rozière et al., 2023)
are pretrained using large-scale code datasets, and
serve as universal initialization for a variety of
downstream tasks. These tasks include code sum-
marization (Alon et al., 2019; LeClair et al., 2020),
text-to-code (Iyer et al., 2018), and program repair
(Tufano et al., 2018; Hajipour et al., 2021).

The emerging abilities of LLMs, such as in-
context learning, demonstrate their potential to
handle a wide range of tasks (Wei et al., 2022;
Brown et al., 2020). However, it has been shown
that not all tasks can be effectively addressed by

Figure 1: Our approach simulates out-of-distribution
(OOD) scenarios and analyzes the corresponding be-
haviors of models. (I) Original source code distribu-
tion along a certain dimension. (II) OOD simulation
by masking out a sub-region of the distribution. (III)
Model fine-tuning. (IV) Evaluation on OOD data.

relying only on the pretrained LLMs (Anil et al.,
2022). To adapt pretrained models for specific
tasks, they can be fine-tuned with specific datasets.
This fine-tuning process can involve optimizing all
parameters or adopting a parameter-efficient ap-
proach (Houlsby et al., 2019; Hu et al., 2022), such
as Low-Rank Adaptation (LoRA)(Hu et al., 2022).
Despite having access to the large code datasets to
pre-train these models, it remains challenging in
practice to fully cover the code distribution, specif-
ically in fine-tuning datasets, where the availability
of labeled data is limited. Furthermore, Kumar
et al. (2022) show that, in the image classification
tasks, fine-tuning the parameters of the pretrained
models can distort the pretrained features.

Therefore, it is unclear how the fine-tuned code
generation models generalize to scenarios not seen
or are rare in the fine-tuning distribution (Shen
et al., 2021). For example, there is a lack of exist-
ing studies to uncover how these models general-
ize to programs with specific language elements
or semantics not seen in fine-tuning datasets. A
common way to study model behaviors in OOD
scenarios is to collect testing datasets in the comple-
mentary domains of the fine-tuning dataset domain
(Shen et al., 2021). However, because the under-
lying distribution of programs is intractable, it is

1400

barely feasible to justify whether two raw datasets
share a domain or not. Not to mention the substan-
tial costs of constituting a variety of OOD datasets.

Simulating various OOD scenarios by masking
out sub-regions of training data distribution is an
alternative way to systematically study the model
behaviors (Schott et al., 2022; Wiles et al., 2022).
There are several distribution dimensions based on
data properties. In the source code domain, we can
have access to the structural information to model
the source code distribution based on the length,
syntax, and semantics of programs. For example,
in terms of the syntax dimension, we can mask out
all the data with uniray expressions or specific API
to create a syntax-based OOD scenario.

In this work, we propose a systematic ap-
proach to analyzing the behaviors of fine-tuned
source code models in various OOD and few-data
regime scenarios. We achieve this by harnessing
the token size, syntax information, and contextual
embeddings of programs to simulate the OOD sce-
narios in terms of length, syntax, and semantics
dimensions, as illustrated in Figure 1. By utilizing
these data dimensions and control over the data,
we can systematically examine the performance of
fine-tuned models in OOD scenarios and investi-
gate their generalization capabilities.

To summarize, the main contributions of this
paper are as follows: 1. Our work pioneers in
investigating the behaviors of the fine-tuned source
code models in OOD scenarios. 2. We propose a
systematic approach to simulate various OOD sce-
narios by masking out sub-regions of source code
distribution along the length, syntax, and semantics
dimensions. The code and data are available
at https://github.com/hajipour/SimSCOOD.
3. We find that the performance of the fine-tuned
models can significantly deteriorate in various
OOD scenarios despite the model encountering
similar examples during the pre-training phase.
In particular, in syntax and length-based OOD
scenarios, the drop can be as substantial as 90%.
4. Our systematic analysis shows that, while
full fine-tuning and LoRA fine-tuning perform
comparably on in-distribution code data, LoRA
fine-tuning demonstrates significantly better
performance on OOD data. 5. Our analysis of
data/model properties provides insights into model
fine-tuning and shapes future datasets/research
to focus on OOD of code models, which has the
potential to enhance generalization accuracy across
various code generation tasks.

2 Related Work

LLMs for Codes. With the availability of large-
scale code datasets (Kocetkov et al., 2022), there
is a growing interest in employing LLMs to de-
velop a pre-training model for source code under-
standing and generation. CodeBERT extends the
RoBERTa-based model (Liu et al., 2019) to under-
stand and generate source codes. Guo et al. (2021)
extend CodeBERT by using a semantic-aware ob-
jective function. CodeT5 and CodeT5+ (Wang
et al., 2021, 2023) are developed based on encoder-
decoder architecture, making them versatile mod-
els for addressing a wide range of code generation
tasks. Svyatkovskiy et al. (2020) employ GPT-
based (Radford et al., 2019), which uses decoder-
only architecture, for the code completion task.
CodeGen (Nijkamp et al., 2023), StarCoder (Li
et al., 2023), and Code Llama (Rozière et al., 2023)
employ decoder-only architecture to pre-train code
generation models. While these models show re-
markable results by following natural language in-
structions, it has been demonstrated that LLMs still
have difficulty in understanding the codes (Austin
et al., 2021; Li et al., 2022), specifically in domain-
specific tasks (Anil et al., 2022). In our work, we
focus on generation tasks to spot weak and strong
points of the fine-tuned LLMs in generating rare
and unseen programs.

Out-of-Distribution Analysis in Natural Lan-
guages and Programming Languages. Despite
the importance of OOD analysis and detection in
production (Shen et al., 2021), there are surpris-
ingly much fewer efforts to investigate OOD be-
haviors of NLP and PL approaches (Arora et al.,
2021). Hendrycks et al. (2020); Kong et al. (2020)
study the behavior of pretrained LLMs in OOD sce-
narios. These works mainly focus on NLP-related
classification tasks. Even though they show pre-
trained models have higher robustness in OOD sce-
narios, the provided results indicate that there is
still room for improvement. Bui and Yu (2021) pro-
pose an energy-bounded-based approach to detect
OOD data in source code classification tasks. Their
approach defines OOD scenarios by masking out
data belonging to the specific class(es) (Bui and
Yu, 2021) and does not cover the code generation
tasks.

Fine-tuning LLMs. LLMs have demonstrated
impressive capabilities in handling various tasks
using zero-shot and few-shot learning ap-

1401

https://github.com/hajipour/SimSCOOD

proaches (Brown et al., 2020; Kojima et al., 2022).
However, not all tasks can be effectively handled
by relying on pretrained LLMs (Anil et al., 2022;
Scialom et al., 2022). For such tasks, we can em-
ploy fine-tuning techniques with the datasets for
the targeted downstream tasks. Furthermore, recent
works indicate that fine-tuning LLMs with instruc-
tions can enhance their capabilities (Ouyang et al.,
2022; Xu et al., 2024; Dai et al., 2023). Despite
the effectiveness of the fine-tuning procedure, Ku-
mar et al. (2022) shows that fine-tuning the models
can distort the pretraining features and adversely
impact the OOD generalization performance in im-
age classification tasks. In this work, for the first
time, we systematically investigate the behavior
of the fine-tuned source code models by carefully
designing various OOD scenarios.

3 SimSCOOD: Simulation of Source
Code Out-of-Distribution Scenarios

In this work, we propose a systematic approach
to investigate the fine-tuned code model behaviors
on OOD data by simulating the OOD scenarios
in multiple dimensions. Our simulation strategy
allows us to construct measurable OOD scenarios
without the additional costs of accessing another
dataset. More importantly, by simulating the OOD
scenarios, we have control over different properties
of OOD scenarios. We achieve this by masking out
specific sub-regions of data distribution.

These OOD scenarios span over three data di-
mensions, including length, syntax, and seman-
tics. These dimensions cover different aspects of
the programs. In length-based OOD scenarios, we
can study the length-generalization ability of the
fine-tuned models. For example, can the models
produce longer codes with high quality, and how
well can the models interpolate over distribution
gaps? Syntax-based scenarios enable us to study
the models by masking out specific language ele-
ments. More interestingly, using syntax-based sce-
narios, we can analyze to what extent each model
can generate unseen language elements. Using
semantic-based scenarios, we can investigate how
the models behave if we mask out the data with
specific functionalities. Benefiting from these sce-
narios, we can also implicitly quantify how well the
models compose different code language elements
to achieve unseen or rare functionality.

Modeling the Distribution of Source Code.
Here, we experiment with different pretrained

models and probe their behaviors in each sce-
nario. We achieve this using our new approach
that systematically constructs various scenarios to
challenge the OOD performance of each model.
As a result, the distribution of source code can
be characterized using the aforementioned di-
mensions that we call properties in the follow-
ing. We model the joint distribution of the
source code as q(p1, ..., pn) where each pi is a
specific property of the source code in distribu-
tion q. Given this distribution we can sample
a dataset D = {x1, . . . , xN |xi ∼ q(p1, ..., pn)}.
To create each OOD scenario we need to sam-
ple a new dataset D̂ = {x1, . . . , xN |xi ∼
q̂(p1, ..., pn)} where q̂(pf , ..., pk) = 0, meaning
the samples with properties pf , ..., pk are masked
out. Note that we just formulated OOD scenar-
ios with categorical properties, whereas it also
holds for continuous properties by p(a < pi <
b) with a < b and a, b ∈ R.

To sample dataset D̂, we get inspiration from
the rejection sampling technique (Casella et al.,
2004). Here, q̂(p1, ..., pn) is our target distribu-
tion and we consider q(p1, ..., pn) as our proposal
distribution. We reject or accept the sample data
x ∼ q(p1, ..., pn) using the following step function,

f(x) =

{
1 if P(x) /∈ P̃
0 if P(x) ∈ P̃

(1)

Where P(x) returns the properties of data x,
and P̃ are the properties that we do not want
the sampled data x to contain. Using the re-
jection sampling technique with a hard-decision
function (Equation 1) we can construct dataset
D̂ = {x1, . . . , xN |x ∼ q̂(p1, ..., pn)} with ac-
cepted samples, and also have access to dataset
D̃ = {x1, . . . , xN |x ∼ q̃(p1, ..., pn)} which are
all of the rejected samples. To examine model be-
haviors in each OOD scenario, we fine-tune models
using D̂ data and test them on the test set of D̃. Fig-
ure 2 depicts an overview of the different scenarios.
In the following, we provide the details of how we
simulate each OOD scenario (subsection 4.1).

3.1 Length-based OOD Scenarios

To simulate length-based scenarios, we use the his-
togram of program token sizes to represent the
distribution of a given dataset. See Figure 2 left as
an example. To create each OOD scenario, accord-
ing to the rejection sampling technique, we draw
samples from the distribution and reject only the

1402

Figure 2: Overview of different out-of-distribution scenarios. Part of the data that needs to be masked out from the
training distribution is highlighted by the red rectangles.

samples in the histogram’s specified sub-region.
As an example, in one of the OOD scenarios,

we can consider token sizes between 120 and
135 as OOD testing data. Then D̂ = {x ∼
q̂(p1, ..., pn)} where q̂(120 < pi < 135) = 0
is the accepted data in the rejection sampling tech-
nique. Experimenting with the length-based OOD
scenarios enables us to analyze how fine-tuned
source code models generalize to interpolate and
extrapolate over distribution gaps.

3.2 Syntax-based OOD Scenarios

Each programming language has its own grammar,
which is a set of rules to define valid program state-
ments. Using the grammar, we can parse each
program into an abstract syntax tree (Guo et al.,
2021) and have access to all of the elements used
in the program. For example, we can identify all the
programs with conditional or specific APIs in the
given dataset. In this work, we leverage the gram-
matical information of the programming language
to create syntax-based OOD scenarios. We use
the histogram of language elements to model the
syntax distribution of a given source code dataset.
Figure 2 middle shows an example of how we con-
struct a syntax-based OOD scenario by masking
out specific language elements. To create an OOD
scenario, using the rejection sampling technique,
we sample testing data D̃ that contain certain lan-
guage elements (e.g., yield), namely, P̃ = {yield}.
We then fine-tune our model using D̂ which is the
set of data that does not contain yield, and test
the model using D̃. In order to set up systematic
syntax-based OOD scenarios, we can replace yield
in P̃ with other language elements and APIs. Us-
ing syntax-based scenarios, in addition to analyzing
model behaviors in such OOD scenarios, we can
also explore if various fine-tuned LLMs can gener-
ate unseen language elements. For example, we can
investigate if the pretrained models can generate

specific elements not seen during fine-tuning.

3.3 Semantic-based OOD Scenarios

The programs’ semantics is another dimension to
model the distribution of source code data. How-
ever, it is not clear how we can model the semantics
of the programs, especially in the cases where we
do not have input-output examples or any meta-
data. It has been shown that a pretrained model can
be used to cluster the data based on their seman-
tics (Aharoni and Goldberg, 2020). Furthermore,
recent studies conducted by Troshin and Chirkova
(2022) and Ahmed et al. (2023) have demonstrated
that pretrained code models represent program se-
mantics within the continuous space. They accom-
plished this by probing the pretrained models and
conducting experiments involving the manipula-
tion of code fragments. Following the success of
unsupervised domain clustering and the model’s
abilities to understand the semantics of programs,
we propose to utilize the pretrained source code
model to cluster programs within the continuous
space. We employ the state-of-the-art CodeT5+
encoder (Wang et al., 2023) in our study to map a
dataset of programs to a set of continuous represen-
tation vectors. We then cluster the vectors to group
programs with similar semantics. As a result, we
can create semantic-based OOD scenarios via the
rejection sampling procedure to reject all samples
that belong to a specific cluster and accept the rest
as D̂. Like other scenarios, we can use D̂ as fine-
tuning data and D̃ as test data. Our semantic-based
OOD scenarios provide an approximated proxy of
real-world OOD scenarios to investigate the OOD
generalization capabilities of the fine-tuned mod-
els. Furthermore, these OOD scenarios allow us
to analyze the model’s abilities to deal with un-
seen or rare program functionalities. We provide
implementation details in subsection 4.2.

1403

4 Experiments

In this section, we first articulate the experiment
setups, including the pretrained models, down-
stream tasks, and the OOD data construction. Then,
we demonstrate the model performance in OOD
scenarios. We also analyze how well the model
can perform by revealing 50% of the masked data
(≈ 1.5% of the entire data). In the following, we
call the 50% masked-out cases few-data regime.

4.1 Setups

Pretrained Models. We analyze the behavior
of four widely-used pretrained models for source
codes. These models are designed using a vari-
ety of architectures, pre-training objective func-
tions, numbers of parameters, and pre-training
datasets. GraphCodeBERT (Guo et al., 2021) is
an encoder-only pretrained model with 125M pa-
rameters. CodeT5 (Wang et al., 2021) employs
T5 (Raffel et al., 2020) encoder-decoder architec-
ture. In our implementations, we use CodeT5-
base with 220M parameters. Here, we also in-
vestigate the behavior of larger models, includ-
ing CodeT5+ (Wang et al., 2023) with 770M pa-
rameters and Code Llama with 13B parameters.
CodeT5+ (Wang et al., 2023) is an extension of
CodeT5 (Wang et al., 2021), and Code Llama (Roz-
ière et al., 2023) is a model built on top of Llama
2 (Touvron et al., 2023) for code-specialized tasks.
We provide more details in Appendix A.

Downstream Tasks. We study the behavior of
the models on two different downstream tasks, in-
cluding text-to-code generation and code refine-
ment. These tasks are part of the most challenging
tasks in the CodeXGLUE benchmark (Lu et al.,
2021). Text-to-code is the task of generating a
program given a natural language description. In
CodeXGLUE benchmark (Lu et al., 2021), CON-
CODE dataset (Iyer et al., 2018) is proposed for
this task. Code refinement is the task of resolving
the bugs in a given program by automatically gen-
erating a corrected program Tufano et al. (2019).

Evaluation Metrics. Exact match (Wang et al.,
2021), CodeBLEU (Ren et al., 2020), and BLEU
score (Papineni et al., 2002) have been commonly
used to evaluate the model performance in the
downstream tasks. The exact match metric evalu-
ates if the generated code matches the target code
at the token-level. BLEU score measures the n-
gram overlap between the output and the target

code. CodeBLEU considers syntactic and data-
flow matches of the codes in addition to the n-gram
overlap. In this work, we focus on the exact match
metric to quantify the model behaviors. This is
due to the nature of OOD scenarios, where it is
desirable to see if the model can generate specific
unseen programs correctly. It is important to note
that Wang et al. (2021) have demonstrated that for
the code refinement task, achieving a high BLEU
score can be accomplished with a simple dupli-
cation of the input codes, comparable to state-of-
the-art models. Furthermore, it has been shown
that CodeBLEU and BLEU scores are not necessar-
ily correlated with the correctness of the programs
(Evtikhiev et al., 2023; Hendrycks et al., 2021). We
report BLEU score results in Appendix G.

4.2 Data Construction and Fine-tuning

In the data construction process, for each scenario,
we choose P̃ in a way that counts for ≈ 3% of the
entire fine-tuning data. In OOD scenarios, we mask
out all of the data items with properties P̃ . For the
few-data regime cases, we mask-out half (50%)
of data with properties P̃ (≈ 1.5% of the entire
fine-tuning data). In all the scenarios, we infer the
fine-tuned models on test data with P̃ properties.
Note that, in the text-to-code task, we mask out the
data based on the target data (code data rather than
text data) properties. For the code refinement tasks,
we masked the data based on the input.

Length-based Scenarios. To generate data for
length-based scenarios, we characterize the dataset
of programs based on the token size. For each sce-
nario, P̃ specifies a continuous range of program
token sizes. We consider five ranges in our experi-
ments: P̃1 = {[0%, 3%]}, P̃2 = {[24%, 27%]},
P̃3 = {[48%, 51%]}, P̃4 = {[72%, 75%]},
and P̃5 = {[97%, 100%]}. Note that P̃1 =
{[0%, 3%]} represents the top 3% smallest pro-
grams, in terms of token size. We consider P̃1 and
P̃5 as length-based extrapolation scenarios and P̃2,
P̃3, and P̃4 as length-based interpolation scenarios.

Syntax-based Scenarios. In syntax-based sce-
narios, we characterize program datasets based on
the distribution of language elements. For each
task, we select five different elements that cover
≈ 3% of the data. For example, in text-to-code
task we consider P̃1 = {true}. We provide details
of the selected language elements in Appendix E.

1404

Semantic-based Scenarios. In this work, we em-
ploy CodeT5+ (770M parameters) (Wang et al.,
2023) encoder to characterize the semantics dis-
tribution of programs. We feed the tokenized pro-
grams to the CodeT5+ encoder and obtain the corre-
sponding feature vectors V of size 1024× t, where
t is the size of the input program. We obtain the
continuous representation of the programs by aver-
aging the tokens’ embedding following Koto et al.
(2021). We then cluster the programs in continu-
ous space using the K-means algorithm. We set
the number of clusters K = 35 using the elbow
method (Bholowalia and Kumar, 2014). To accel-
erate the clustering procedure, we perform dimen-
sionality reduction PCA with a target dimension
of 50. We determine the dimension in a way that
all the components explain at least 80% of the data
variance. We provide the average results of five ran-
domly selected clusters. Each cluster can represent
a set of P̃i properties. The examples of clusters
representing different semantics are provided in
Appendix F.

Model Fine-tuning Details. We fine-tune four
pretrained models for two different tasks in various
scenarios. We stick to their defaults for fair compar-
isons. For fine-tuning the models with the LoRA
method, we follow Hu et al. (2022). We provide
more details in Appendix C. All our experiments
are conducted using a machine with four NVIDIA
40GB Ampere A100 GPUs.

4.3 How Do Fine-tuned Models Generalize in
OOD Scenarios?

Table 1 and Table 2 shows the overall results of
different models in length-, syntax-, and semantic-
based scenarios, respectively. These tables show
the model performance in the OOD scenarios
where the models do not have access to the fine-
tuning data with P̃ properties. Furthermore, Ta-
ble 1 and Table 2 show how well the models per-
form when they have access to 50% of the masked
data. Note that in Table 1 and Table 2, all of the
results are the average of different scenarios and
show the relative exact match to the 100% baseline
(models with access to the full data distribution).
In Table 1 and Table 2, we provide the results of
fine-tuning the models using full fine-tuning and
LoRA fine-tuning methods. Note that for Code
Llama 13B, due to the substantial resource require-
ments involved in full fine-tuning, we only report
the LoRA fine-tuning results. Additionally, in line

with GraphCodeBERT (Guo et al., 2021), we only
investigate this model on the code refinement task.
In these tables, for the length-based scenarios, we
have five different scenarios, three for the interpo-
lation cases and two for the extrapolation cases,
so we report the average results for each case. In
syntax-based and semantic-based scenarios, we re-
port the average results of five different scenarios.

We conclude according to Table 1 and Table 2
that: 1. Interpolation cases in the length-based
OOD scenarios are the easiest OOD scenarios for
the models in different tasks. 2. Syntax-based and
length-based extrapolation OOD scenarios are the
most challenging scenarios for the models. 3. Us-
ing LoRA fine-tuning, we can achieve significantly
better generalization accuracy than full fine-tuning.
4. Few-data regime scenarios show that adding a
few relevant data to the fine-tuning distribution can
gain huge performance improvement. In the follow-
ing, we describe our key findings in more detail.

Model performance decreases in various OOD
scenarios. Table 1 and Table 2 show that all of
the models have difficulty in dealing with different
OOD scenarios. These include models with differ-
ent architecture and parameter sizes. For example,
in Table 1, we observe that for the Code Llama
model with 13B parameters, the performance sig-
nificantly dropped in the length-based extrapolation
scenario. It achieves only 23.57% of the baseline
performance.

Table 1 and Table 2 indicate that length-based
interpolation scenarios are the least challenging
OOD scenarios for various models in both text-
to-code and code refinement tasks. While length-
based interpolation is the easiest OOD scenario, it
is worth noting that CodeT5+ with full fine-tuning
only attains 49.67% of the baseline performance
(See Table 1). Additionally, Table 1 and Table 2
reveal that the models exhibit the most significant
performance reduction in the length-based extrapo-
lation and syntax-based OOD scenarios. This per-
formance drop occurred despite the models being
exposed to similar examples during the pre-training
phase.

A comparison between the outcomes of the se-
mantic scenarios presented in Table 1 and Table 2
highlights that the text-to-code task is more chal-
lenging than the code refinement task. This is
mainly due to the multi-modality nature of the task,
wherein the models need to learn to map natural
languages to unseen or rare programs.

1405

Table 1: Overall results of the model performance for different scenarios in text-to-code task. The results provide
the relative exact match to the 100% baseline for different scenarios. Length Inter and Length Extra refer to
length-based interpolation and extrapolation scenarios, respectively. FT denotes full fine-tuning, and LoRA refers to
the LoRA fine-tuning method. OOD and Few refer to OOD and few-data regime scenarios, respectively.

Models Length Inter Length Extra Syntax Semantic

FT LoRA FT LoRA FT LoRA FT LoRA

CodeT5
OOD 53.92% 66.91% 0.00% 24.99% 16.46% 34.81% 31.90% 51.42%
Few 86.56% 103.79% 28.56% 55.0% 93.90% 100.0% 37.56% 72.43%

CodeT5+
OOD 49.65% 70.94% 5.0% 26.09% 47.95% 68.97% 39.69% 55.71%
Few 76.40% 96.36% 77.38% 101.72% 67.21% 78.54% 66.04% 83.68%

Code Llama
OOD - 71.75% - 23.57% - 64.81% - 56.72%
Few - 94.08% - 63.21% - 86.08% - 84.74%

Table 2: Overall results of the model performance for different scenarios in code refinement task. The results
provide the relative exact match to the 100% baseline for different scenarios. Length Inter and Length Extra refer to
length-based interpolation and extrapolation scenarios, respectively. FT denotes full fine-tuning, and LoRA refers to
the LoRA fine-tuning method. OOD and Few refer to OOD and few-data regime scenarios, respectively. GCBERT
denotes to the GraphCodeBERT model (Guo et al., 2021).

Models Length Inter Length Extra Syntax Semantic

FT LoRA FT LoRA FT LoRA FT LoRA

GCBERT
OOD 82.91% 87.89% 37.82% 74.35% 1.30% 2.35% 60.38% 69.05%
Few 86.52% 94.45% 90.15% 90.46% 75.42% 77.92% 76.45% 84.43%

CodeT5
OOD 84.10% 86.70% 48.95% 61.53% 10.23% 28.78% 77.41% 79.36%
Few 85.48% 89.97% 57.30% 80.29% 83.08% 85.82% 83.63% 88.73%

CodeT5+
OOD 80.70% 83.39% 73.44% 82.39% 21.41% 37.14% 73.65% 78.67%
Few 93.28% 94.65% 79.56% 90.77% 72.83% 81.01% 85.30% 93.29%

Code Llama
OOD - 81.70% - 57.69% - 43.70% - 70.14%
Few - 87.68% - 85.71% - 87.66% - 89.23%

Table 3: Exact match results of the fine-tuned models
using the full fine-tuning dataset for text-to-code and
code refinement tasks. FT denotes full fine-tuning, and
LoRA refers to the LoRA fine-tuning method. GCBERT
refers to (Guo et al., 2021).

Models Text-to-Code Refinement

FT LoRA FT LoRA
GCBERT - - 10.74 11.38
CodeT5 22.15 21.65 14.43 14.53
CodeT5+ 24.95 24.70 15.18 15.29
Code Llama - 27.65 - 19.19

Takeaway: Performance of fine-tuned models,
regardless of architectures and sizes, can signifi-
cantly deteriorate in OOD cases, even when the
models have seen similar data during pre-training.

LoRA fine-tuning exhibits better OOD gener-
alization compared to full fine-tuning. In Ta-
ble 1 and Table 2, we provide the results of fine-
tuning the models using two different fine-tuning
approaches: full fine-tuning and LoRA fine-tuning.

The results presented in these tables indicate that
LoRA fine-tuning consistently exhibits superior
OOD generalization across various scenarios. For
example, Table 1 shows that in the length-based
extrapolation scenario, fine-tuning CodeT5 with
LoRA resulted in a 24.99% relative exact match,
whereas the model’s relative performance using
full fine-tuning was 0.0%. Furthermore, as demon-
strated in Table 2, in the syntax-based OOD sce-
nario, the utilization of LoRA for fine-tuning
CodeT5 and CodeT5+ results in significantly supe-
rior performance compared to employing full fine-
tuning for these models. This observation shows
that LoRA, which involves freezing the pretrained
weights, effectively leverages the previously ac-
quired knowledge, resulting in improved OOD gen-
eralization compared to full fine-tuning.

Table 3 provides in-distribution performance re-
sults of the models fine-tuned using both full fine-
tuning and LoRA fine-tuning methods. This table
displays the exact match accuracy of the models on

1406

the complete test set under the condition that the
models have access to the entire fine-tuning distri-
bution. Table 3 demonstrates that employing LoRA
fine-tuning enables us to achieve performance that
is comparable to full fine-tuning. It is important
to highlight that in all of the experiments involv-
ing LoRA fine-tuning, the pretrained weights are
frozen, and we only need to optimize newly in-
jected weights. These LoRA parameters account
for less than 1% of the pretrained weights. Note
that we provide BLEU score results in Appendix D.

Takeaway: While full and LoRA fine-
tuning methods show comparable results over in-
distribution data, LoRA fine-tuning outperforms
full fine-tuning in OOD scenarios. This suggests
that with freezing pretrained weights, LoRA fine-
tuned models can effectively utilize their pretrain-
ing knowledge in dealing with OOD scenarios.

Models can gain significant improvement by us-
ing a few data. Table 1 and Table 2 provide the
results for few-data regime scenarios. In these sce-
narios, we only mask out 50% of the data with P̃
properties (≈ 1.5% of the fine-tuning data). The
Table 1 and Table 2 demonstrate in each scenario
that by adding data in size ≈ 1.5% of the fine-
tuning data, the model can gain significant accuracy
performance. For example, Table 1 shows that in
syntax-based scenarios, applying LoRA fine-tuning
to CodeT5 can lead to a gain of 100% of relative
performance by adding a small amount of data. We
provide results of revealing 25% and 75% of data
in subsection G.2.

Takeaway: By incorporating a small amount
of relevant data (representing ≈ 1.5% of the fine-
tuning data) into the fine-tuning set, models can
achieve substantial performance enhancements.

4.4 Can Fine-tuned LLMs Generate Unseen
Language Elements?

In the syntax-based OOD scenarios, we can assess
the fine-tuned LLMs’ ability to leverage their prior
knowledge in generating unseen language elements.
For instance, can the fine-tuned models generate
the yield element if they have not been exposed to
any code data containing yield during fine-tuning?
In Figure 3, we present the relative frequencies of
generating unseen elements by models fine-tuned
using both full and LoRA fine-tuning methods. The
results in Figure 3 show the frequencies of gener-
ating unseen elements relative to the frequencies
in ground truth programs. We report the average

(a)

(b)

Figure 3: The ratios of frequency of generated unseen
language elements over the frequency in ground truth
data. Solid and hatched bars show the results of the
model fine-tuned with the full fine-tuning and LoRA
fine-tuning, respectively.

results of five different unseen elements during
fine-tuning. The list of these elements was reported
Appendix E. In Figure 3, the solid bars represent
the results for models fine-tuned using full fine-
tuning, while the hatched bars depict the results for
models fine-tuned using the LoRA method.

Figure 3 shows that the fine-tuned LLMs are able
to generate unseen language elements in different
tasks. Interestingly, the models fine-tuned using
the LoRA fine-tuning exhibit the ability to generate
a higher percentage of unseen elements when com-
pared to fully fine-tuned models. This indicates
that the models fine-tuned with the LoRA method
possess a superior capability to leverage their pre-
viously acquired knowledge. We can see this as
an advantage. However, in specific scenarios, this
advantage can translate into model failures and
pose security issues. For example, the model could
generate a deprecated API or element, or there
can even be cases when the pre-training dataset is
poisoned in the first place (Schuster et al., 2021).
Furthermore, we observe that generating unseen
elements is more challenging in the text-to-code
task (Figure 3a) compared to the code refinement
task (Figure 3b). The main reason is that in the text-
to-code task, the models need to learn the mapping
from natural language to the programs.

1407

Takeaway: Models fine-tuned with LoRA gen-
erate more unseen elements than those fine-tuned
using the full fine-tuning approach, which is ad-
vantageous. Nonetheless, in certain scenarios, this
capability may result in security issues by generat-
ing deprecated elements and APIs.

5 Future Work

The central message of our work is that OOD issues
for the code data need to be explicitly taken care
of. Our study reveals that using LoRA fine-tuning
the models have higher OOD generalization than
fully fine-tuned models. In future research, meth-
ods from various domains, such as catastrophic
forgetting (Goodfellow et al., 2014; Chen et al.,
2020), OOD generalization (Shen et al., 2021),
OOD detection (Arora et al., 2021; Hendrycks
et al., 2022), and continual learning (Parisi et al.,
2019), could play a role in mitigating or monitor-
ing these OOD issues. For example, employing
the recall and relearn method suggested by Chen
et al. (2020), adapting meta-learning approaches
(Shen et al., 2021), or applying regularization tech-
niques like dropout (Goodfellow et al., 2014) could
be intriguing approaches to mitigate OOD issues
of the fine-tuned source code model. Furthermore,
OOD detection techniques proposed by Arora et al.
(2021); Kong et al. (2020) can be adapted to detect
the OOD source code data.

6 Conclusion

In this work, we propose a systematic approach
to investigate the behaviors of fine-tuned LLMs in
OOD scenarios for the program domain. Given the
data, we simulate OOD scenarios based on the pro-
gram’s length, syntax, and semantics. Using these
scenarios, we shed light on the models’ fragility
in the OOD scenarios, potential performance drop,
and the necessity to improve dataset construction.
We also reveal the model’s impotence in handling
considered OOD dimensions and to what extent
we can improve the generalization of the mod-
els by exposing the relevant data. Furthermore,
our results reveal that, although models fine-tuned
with full fine-tuning and LoRA exhibit similar in-
distribution accuracy, LoRA shows higher OOD
generalization accuracy.

Limitations

One of the limitations of our approach is the com-
putational cost. To investigate the model behavior

in each dimension, we need to fine-tune individual
models. This makes our investigation computa-
tionally expensive. Furthermore, in this work, we
focus on the code generation tasks as they provide
more fine-grained results to investigate the model
behavior. However, in the code generation tasks,
the models might be highly sensitive to the subtle
changes in the data distribution. Hence, it would
also be valuable to investigate how the models per-
form in OOD scenarios for code understanding
tasks such as clone detection, defect detection, and
code summarization.

In our work, we leverage the contextual embed-
ding of source code to model the semantics of the
source codes. We use K-means clustering to group
programs based on their semantics. Even though
we check if these clusters represent specific mean-
ing (we provide examples of cluster semantics in
Appendix F), we do not measure how well these
programs are clustered in terms of their semantics.
The performance of the clustering algorithm can
be measured using datasets with meta-data about
the semantics of each data item, which we do not
have access to in this study.

Potential Risks. Our research on how models be-
have in OOD and few-data regime scenarios sheds
light on the fine-tuning of models and the develop-
ment of future datasets. Nonetheless, it is crucial
to recognize that malicious actors could exploit
these findings to create datasets that intentionally
introduce OOD-related issues, with the implicit or
explicit goal of targeting specific communities and
companies. We recommend that end-users take our
findings into consideration when using the source
code datasets to train their models.

Acknowledgments

This work was partially funded by ELSA – Euro-
pean Lighthouse on Secure and Safe AI funded
by the European Union under grant agreement No.
101070617. Views and opinions expressed are how-
ever those of the authors only and do not necessar-
ily reflect those of the European Union or European
Commission. Neither the European Union nor the
European Commission can be held responsible for
them. This work was partially funded by the Ger-
man Federal Ministry of Education and Research
(BMBF) under the grant AIgenCY (16KIS2012).

1408

References
Roee Aharoni and Yoav Goldberg. 2020. Unsupervised

domain clusters in pretrained language models. In
ACL.

Toufique Ahmed, Dian Yu, Chengxuan Huang, Cathy
Wang, Prem Devanbu, and Kenji Sagae. 2023. To-
wards understanding what code language models
learned. arXiv.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav.
2019. code2seq: Generating sequences from struc-
tured representations of code. In ICLR.

Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor
Lewkowycz, Vedant Misra, Vinay Venkatesh Ra-
masesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer,
and Behnam Neyshabur. 2022. Exploring length gen-
eralization in large language models. In NeurIPS.

Udit Arora, William Huang, and He He. 2021. Types of
out-of-distribution texts and how to detect them. In
EMNLP.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al.
2021. Program synthesis with large language models.
arXiv.

Purnima Bholowalia and Arvind Kumar. 2014. Ebk-
means: A clustering technique based on elbow
method and k-means in wsn. International Journal
of Computer Applications.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In NeurIPS.

Nghi D. Q. Bui and Yijun Yu. 2021. Energy-bounded
learning for robust models of code. arXiv.

George Casella, Christian P Robert, and Martin T Wells.
2004. Generalized accept-reject sampling schemes.
Lecture Notes-Monograph Series.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor

Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code. arXiv.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che,
Ting Liu, and Xiangzhan Yu. 2020. Recall and learn:
Fine-tuning deep pretrained language models with
less forgetting. In EMNLP.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong,
Junqi Zhao, Weisheng Wang, Boyang Li, Pascale
Fung, and Steven Hoi. 2023. InstructBLIP: Towards
general-purpose vision-language models with instruc-
tion tuning. In NeurIPS.

Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov,
and Timofey Bryksin. 2023. Out of the bleu: how
should we assess quality of the code generation mod-
els? Journal of Systems and Software.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In EMNLP.

Ian J. Goodfellow, Mehdi Mirza, Xia Da, Aaron C.
Courville, and Yoshua Bengio. 2014. An empirical
investigation of catastrophic forgeting in gradient-
based neural networks. In ICLR.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundare-
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2021.
Graphcodebert: Pre-training code representations
with data flow. In ICLR.

Hossein Hajipour, Apratim Bhattacharyya, Cristian-
Alexandru Staicu, and Mario Fritz. 2021. Samplefix:
Learning to generate functionally diverse fixes. In
ECML PKDD.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with apps. NeurIPS.

Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy
Zou, Joseph Kwon, Mohammadreza Mostajabi, Ja-
cob Steinhardt, and Dawn Song. 2022. Scaling out-
of-distribution detection for real-world settings. In
ICML.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020.
Pretrained transformers improve out-of-distribution
robustness. In ACL.

1409

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
ICML.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In ICLR.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
SearchNet challenge: Evaluating the state of seman-
tic code search. arXiv.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In EMNLP.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia
Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine
Jernite, Margaret Mitchell, Sean Hughes, Thomas
Wolf, et al. 2022. The stack: 3 tb of permissively
licensed source code. arXiv.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. NeurIPS.

Lingkai Kong, Haoming Jiang, Yuchen Zhuang, Jie
Lyu, Tuo Zhao, and Chao Zhang. 2020. Cali-
brated language model fine-tuning for in- and out-
of-distribution data. In EMNLP.

Fajri Koto, Jey Han Lau, and Timothy Baldwin. 2021.
Discourse probing of pretrained language models. In
NAACL.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew
Jones, Tengyu Ma, and Percy Liang. 2022. Fine-
tuning can distort pretrained features and underper-
form out-of-distribution. In ICLR.

Alexander LeClair, Sakib Haque, Lingfei Wu, and
Collin McMillan. 2020. Improved code summariza-
tion via a graph neural network. In ICPC.

Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia LI, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Joel Lamy-Poirier,
Joao Monteiro, Nicolas Gontier, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muh-
tasham Oblokulov, Zhiruo Wang, Rudra Murthy, Ja-
son T Stillerman, Siva Sankalp Patel, Dmitry Ab-
ulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni,
Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav
Timor, Jennifer Ding, Claire S Schlesinger, Hailey
Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Carolyn Jane Anderson, Brendan Dolan-
Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,
Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz
Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha,

Leandro Von Werra, and Harm de Vries. 2023. Star-
coder: may the source be with you! TMLR.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, MING GONG, Ming Zhou, Nan Duan, Neel
Sundaresan, Shao Kun Deng, Shengyu Fu, and Shu-
jie LIU. 2021. CodeXGLUE: A machine learning
benchmark dataset for code understanding and gener-
ation. In NeurIPS Datasets and Benchmarks Track
(Round 1).

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis.
In ICLR.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. NeurIPS.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In ACL.

German I Parisi, Ronald Kemker, Jose L Part, Christo-
pher Kanan, and Stefan Wermter. 2019. Continual
lifelong learning with neural networks: A review.
Neural networks.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code.
arXiv.

1410

Lukas Schott, Julius Von Kügelgen, Frederik Träu-
ble, Peter Vincent Gehler, Chris Russell, Matthias
Bethge, Bernhard Schölkopf, Francesco Locatello,
and Wieland Brendel. 2022. Visual representation
learning does not generalize strongly within the same
domain. In ICLR.

Roei Schuster, Congzheng Song, Eran Tromer, and Vi-
taly Shmatikov. 2021. You autocomplete me: Poi-
soning vulnerabilities in neural code completion. In
USENIX Security.

Thomas Scialom, Tuhin Chakrabarty, and Smaranda
Muresan. 2022. Fine-tuned language models are
continual learners. In EMNLP.

Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang,
Renzhe Xu, Han Yu, and Peng Cui. 2021. Towards
out-of-distribution generalization: A survey. arXiv.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and
Neel Sundaresan. 2020. Intellicode compose: Code
generation using transformer. In ESEC/FSE.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation and
fine-tuned chat models. arXiv.

Sergey Troshin and Nadezhda Chirkova. 2022. Probing
pretrained models of source codes. In BlackboxNLP
Workshop on Analyzing and Interpreting Neural Net-
works for NLP.

Michele Tufano, Cody Watson, Gabriele Bavota, Massi-
miliano Di Penta, Martin White, and Denys Poshy-
vanyk. 2018. An empirical investigation into learn-
ing bug-fixing patches in the wild via neural machine
translation. In ASE.

Michele Tufano, Cody Watson, Gabriele Bavota, Massi-
miliano Di Penta, Martin White, and Denys Poshy-
vanyk. 2019. An empirical study on learning bug-
fixing patches in the wild via neural machine transla-
tion. TOSEM.

Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Jun-
nan Li, and Steven Hoi. 2023. CodeT5+: Open code
large language models for code understanding and
generation. In EMNLP.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In EMNLP.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent abilities of large language models. TMLR.

Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre-
Alvise Rebuffi, Ira Ktena, Krishnamurthy Dj Dvi-
jotham, and Ali Taylan Cemgil. 2022. A fine-grained
analysis on distribution shift. In ICLR.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. WizardLM: Empow-
ering large pre-trained language models to follow
complex instructions. In ICLR.

1411

A Pretrained Models

Here, we provide more detail about the pretrained
models we used in our experiments.

A.1 BERT-based Models

CodeBERT (Feng et al., 2020) is an encoder-only
transformer-based model that is pretrained using
CodeSerchNet dataset (Husain et al., 2019). This
dataset consists of 2.1M pairs of individual func-
tions and code documentation with 6.4M code-only
data items across multiple programming languages.
This model uses a 12-layer RoBERTa-based (Liu
et al., 2019) architecture with 125M parameters. It
is trained using masked language modeling (MLM)
and the replaced token detection objective.

Guo et al. (2021) proposed GraphCodeBERT
by extending CodeBERT (Feng et al., 2020) using
a semantic-aware pre-training objective function.
They incorporate data-flow information in the pre-
training stage to encode the semantic information
of the program.

A.2 CodeT5

CodeT5 (Wang et al., 2021) employ T5 (Raffel
et al., 2020) encoder-decoder architecture. The au-
thors use CodeSearchNet (Husain et al., 2019) with
1.2M pairs of functions’ code with corresponding
documentation and 0.8M code-only data items. In
our experiments, we use CodeT5-base with 220M.
This model uses MLM objective and identifier-
aware objective functions in the pre-training proce-
dure.

CodeT5+ (Wang et al., 2023) is a family of
encoder-decoder LLMs (Wang et al., 2021) that
is developed with the flexibility to cover a wide
range of downstream tasks. CodeT5+ achieved this
flexibility by employing a mixture of pretraining
objectives, including span denoising, contrastive
learning, text-code matching, and causal LM pre-
training tasks(Wang et al., 2023). In our experi-
ments, we employ CodeT5+ with 770M parame-
ters.

A.3 Code Llama

Code Llama (Rozière et al., 2023) is a family of
LLM for code developed based on Llama 2 mod-
els (Touvron et al., 2023). The models are designed
using decoder-only architectures with 7B, 13B,
34B, and 70B parameters. Code Llama encom-
passes different versions tailored for a wide array
of tasks and applications, including the founda-

tional model, specialized models for Python code,
and instruction-tuned models. Code Llama outper-
forms open models on HumanEval (Chen et al.,
2021) and MBPP benchmarks (Austin et al., 2021)
up to 53% and 55%, respectively. In our exper-
iments, we use the foundation model version of
Code Llama with 13B parameters.

B Further Details of Datasets and
Computational Resources

To study the behavior of the code generation mod-
els in OOD scenarios, we use two datasets of the
CodeXGLUE benchmark (Lu et al., 2021) specif-
ically designed for text-to-code and code refine-
ment tasks. The CodeXGLUE benchmark is li-
censed under Creative Commons Zero v1.0 Uni-
versal. The text-to-code task dataset includes 100k
training samples, 2k validation samples, and 2k test
samples of Java codes. Meanwhile, the code refine-
ment dataset comprises 52,364 training samples,
along with 6,545 validation samples and 6,545 test
samples of Java codes.

C Hyperparameters for LoRA
Fine-tuning

In Table 4, we present the LoRA hyperparameters
that were applied in the fine-tuning of various mod-
els. We fine-tune these models utilizing AdamW
with a linear learning rate decay schedule. Dur-
ing the validation and testing phases, we employed
beam search with a beam size of 10, following
Wang et al. (2021, 2023); Guo et al. (2021).

For fine-tuning GCBERT, CodeT5, and CodeT5+
in the text-to-code task, we set the maximum input
and output sequence length to 320 and 150 tokens,
respectively. In the case of fine-tuning Code Llama,
we set the maximum sequence length to 470 tokens.
In the code refinement task, to fine-tune GCBERT,
CodeT5, and CodeT5+, we set the maximum input
and output sequence length to 240 and 240 tokens.
We fine-tune Code Llama for code refinement tasks
by setting the maximum sequence length to 480.

D Comparison of Full Fine-tuning and
LoRA fine-tuning Method

In Table 5, you can find the in-distribution perfor-
mance results of fine-tuned models using the full
and LoRA fine-tuning methods. This table corre-
sponds to a version of Table 3, which additionally
includes BLEU score results.

1412

Table 4: The LoRA hyperparameters we used to fine-tune the models for text-to-code and code refinement tasks.

Models Batch Size #Epoch Learning Rate Rank (rq, rv) LoRA α

GCBERT 32 20 5e−4 16, 16 32
CodeT5 32 20 5e−4 16, 16 32
CodeT5+ 16 15 5e−4 16, 16 32
Code Llama 4 5 5e−4 16, 16 32

Table 5: Exact match (EM) and BLEU (B) results of the fine-tuned models using the fine-tuning dataset for
text-to-code and code refinement tasks. FT denotes full fine-tuning, and LoRA refers to the LoRA fine-tuning
method. GCBERT refers to (Guo et al., 2021).

Models Text-to-Code Refinement

FT LoRA FT LoRA

EM B EM B EM B EM B
GCBERT - - - - 10.74 90.93 11.38 86.45
CodeT5 22.15 39.60 21.65 38.90 14.43 89.33 14.53 89.40
CodeT5+ 24.95 44.06 24.70 43.78 15.18 88.19 15.29 89.65
Code Llama - - 27.65 45.19 - - 19.19 90.34

E List of Language Elements

In syntax-based scenarios, we consider one ele-
ment in each scenario and mask-out the source
codes with that particular element. Here, we pro-
vide the details of five language elements used in
our experiments. Note that we pick the element
that covers ≈ 3% of the fine-tuning data. We con-
duct our syntax-based experiments based on the
following language elements of each task,

1. Text-to-Code: {else, floating_point_type,
unary_expression, array_access, true}

2. Code Refinement: {while_statement, long,
array_creation_expression, break, ⩾}

F Do the clusters represent programs
with specific semantics?

Table 6 provides the semantics of five random clus-
ters (out of 35) in text-to-code tasks. We randomly
check 20 source codes in each cluster to check their
semantics.

G More experimental results

G.1 BLEU score Results

In Table 7 Table 8, we provide BLEU score re-
sults of different scenarios for the text-to-code and

Table 6: Semantics of five clusters in text-to-code task.

Cluster-ID Semantic

0 Property setter functions
1 Property string getter functions
6 Initialize object
11 Using getter function
17 String concatenation

code refinement tasks, respectively. As we men-
tion in subsection 4.1, BLEU scores are not nec-
essarily correlated with the correctness of the pro-
grams (Hendrycks et al., 2021) and human judg-
ment (Evtikhiev et al., 2023). Furthermore, Wang
et al. (2021) show that in the code refinement
task, the BLEU score of a naive copy of the in-
put code can be as good as the state-of-the-art
methods. Table 7 shows the performance (BLEU
score) dropped for different models in all of the
OOD scenarios compared to the 100% baseline.
For example, in the length-based extrapolation sce-
nario for the CodeLlama model, the BLEU score
dropped over 16 points when compared to the 100%
baseline performance. Furthermore, as shown in
Table 7, it is evident that across all OOD scenar-
ios, fine-tuning the models using the LoRA ap-
proach consistently results in higher BLEU scores.
As depicted in Table 8, it is apparent that there
are fewer performance drops in comparison to the

1413

Table 7: Overall results of the model performance for different scenarios in text-to-code task. The results provide
the BLEU score for different scenarios. Length Inter and Length Extra refer to length-based interpolation and
extrapolation scenarios, respectively. FT denotes full fine-tuning, and LoRA refers to the LoRA fine-tuning method.
OOD and Few refer to OOD and few-data regime scenarios, respectively. Full refers to 100% baseline (when a
model has access to 100% of the fine-tuning set).

Models Length Inter Length Extra Syntax Semantic

FT LoRA FT LoRA FT LoRA FT LoRA

CodeT5
OOD 40.19 42.03 15.09 15.23 24.08 24.18 44.58 46.21
Few 48.91 46.47 20.18 18.46 25.20 24.95 45.43 47.97
Full 47.79 48.34 24.08 23.34 27.01 25.83 48.48 49.65

CodeT5+
OOD 40.58 44.07 15.98 17.48 24.39 26.41 40.52 43.11
Few 50.07 50.10 19.33 21.67 27.25 27.25 48.93 50.77
Full 51.80 51.23 23.29 22.63 28.98 28.04 50.89 51.03

Code Llama
OOD - 54.34 - 21.24 - 25.37 - 47.74
Few - 60.35 - 36.73 - 28.06 - 50.76
Full - 62.11 - 37.44 - 29.50 - 51.38

text-to-code results outlined in Table 7. This dis-
tinction can be primarily attributed to the code re-
finement task’s inherent characteristics, wherein
naively copying the input tokens to the outputs can
yield state-of-the-art BLEU scores.

G.2 Effect of revealing different percentages
of the masked data

In Table 9 and Table 10, we show the effect of re-
vealing different percentages of the masked data on
the model’s performance. Specifically, we show-
case CodeT5+ performance in different scenarios
by revealing 25%, 50%, and 75% of the masked
data (The data was masked for the OOD scenar-
ios). Table 9 presents results for the text-to-code
task, while Table 10 displays results for the code
refinement task.

Table 9 and Table 10 demonstrate that the model
can gain a high performance even by revealing 25%
(0.75% of training data). For instance, in Table 9,
within length extrapolation scenarios, the full fine-
tuned model notably showed relative performance
increases from 5.0% (OOD) to 64.63% (Few-25%).
Furthermore, both tables indicate that revealing
50% and 75% of the masked data can enhance
the model’s performance across different scenarios.
Nevertheless, the observed performance gains for
Few-75% are less apparent compared to the Few-
50% and Few-25% cases.

G.3 Qualitative examples
In Figure 4, Figure 5, and Figure 6, we present qual-
itative results showcasing instances where the Code
Llama model was not able to generate the targeted
codes in the OOD scenarios. These examples high-
light the challenge that even large fine-tuned LLMs
face when handling OOD data. Figure 4 shows
an example of the syntax-based OOD scenarios in
which the model was unable to generate and use
the else element. In Figure 5 demonstrates another
example from the text-to-code task. Here, we pro-
vide an example of the length-based extrapolation
OOD scenarios. In these scenarios, our goal is to
investigate whether the model is able to extrapolate
from shorter programs to longer ones. Figure 5
shows that Code Llama was unable to generate
the target program correctly. Note that Figure 5
shows an example of P̃5 = {[97%, 100%]} OOD
scenario, where only 3% of the entire fine-tuning
data is masked out. Figure 6 shows an example of
the code refinement task. In Figure 6, we provide
an example of the syntax-based scenario, in which
Code Llama encountered difficulty in generating
the while_statement. In this syntax-based scenario
while_statement is the unseen language element.

1414

Table 8: Overall results of the model performance for different scenarios in code refinement task. The results
provide the BLEU score for different scenarios. Length Inter and Length Extra refer to length-based interpolation
and extrapolation scenarios, respectively. FT denotes full fine-tuning, and LoRA refers to the LoRA fine-tuning
method. OOD and Few refer to OOD and few-data regime scenarios, respectively. Full refers to 100% baseline
(when a model has access to 100% of the fine-tuning set). GCBERT denotes to the GraphCodeBERT model (Guo
et al., 2021).

Models Length Inter Length Extra Syntax Semantic

FT LoRA FT LoRA FT LoRA FT LoRA

GCBERT
OOD 88.22 88.37 83.01 81.45 79.44 81.74 88.36 85.76
Few 88.59 88.32 85.14 82.75 90.36 87.67 88.95 86.28
Full 88.32 88.56 84.61 82.99 90.10 87.93 89.73 86.45

CodeT5
OOD 87.37 88.65 80.35 84.11 83.05 87.08 84.68 87.75
Few 86.67 88.06 81.62 84.22 89.19 90.19 86.54 88.24
Full 87.39 88.74 83.22 84.22 89.88 88.78 87.69 88.96

CodeT5+
OOD 83.08 86.29 81.26 82.15 84.60 85.48 84.73 85.97
Few 84.81 87.30 83.03 82.26 88.83 88.96 85.91 86.72
Full 86.05 87.75 83.17 83.16 89.45 89.01 87.46 86.62

Code Llama
OOD - 86.40 - 78.30 - 83.29 - 81.32
Few - 88.79 - 84.07 - 90.92 - 89.12
Full - 89.03 - 84.26 - 91.96 - 89.80

Table 9: Overall CodeT5+ performance results for different scenarios with different amounts of data in text-to-code
task. The results provide the relative exact match to the 100% baseline for different scenarios. Few-XX% show the
results of revealing 25%, 50%, and 75% of the masked data to the model. FT denotes full fine-tuning, and LoRA
refers to the LoRA fine-tuning method. OOD and Few refer to OOD and few-data regime scenarios, respectively.

CodeT5+ Length Inter Length Extra Syntax Semantic

FT LoRA FT LoRA FT LoRA FT LoRA
ODD 49.65% 70.94% 5.0% 26.09% 47.95% 68.97% 39.69% 55.71%
Few-25% 69.34% 88.72% 64.63% 86.55% 63.16% 73.75% 59.71% 78.47%
Few-50% 76.40% 96.36% 77.38% 101.72% 67.21% 78.54% 66.04% 83.68%
Few-75% 89.32% 98.82% 93.62% 99.36% 79.50% 88.73% 76.65% 91.28%

Table 10: Overall CodeT5+ performance results for different scenarios with different amounts of data in code
refinement task. The results provide the relative exact match to the 100% baseline for different scenarios. Few-XX%
show the results of revealing 25%, 50%, and 75% of the masked data to the model. FT denotes full fine-tuning,
and LoRA refers to the LoRA fine-tuning method. OOD and Few refer to OOD and few-data regime scenarios,
respectively.

CodeT5+ Length Inter Length Extra Syntax Semantic

FT LoRA FT LoRA FT LoRA FT LoRA
ODD 80.70% 83.39% 73.44% 82.39% 21.41% 37.14% 73.65% 78.67%
Few-25% 89.66% 91.53% 76.82% 87.47% 58.36% 75.44% 81.48% 88.82%
Few-50% 93.28% 94.65% 79.56% 90.77% 72.83% 81.01% 85.30% 93.29%
Few-75% 98.23% 99.51% 86.56% 92.21% 84.24% 89.75% 89.32% 96.52%

1415

Input text: Returns true if view’s layout direction
is right-to-left.

(a) Target Code

1 boolean function (View arg0) {
2 if (Build.VERSION.SDK_INT >=

VERSION_CODES.JELLY_BEAN_MR1) {
3 return arg0.getLayoutDirection () ==

View.LAYOUT_DIRECTION_RTL;
4 }
5 else {
6 return false;
7 }
8 }

(b) Generated Code

1
2 boolean function (View arg0) {
3 return arg0.getLayoutDirection () ==

View.LAYOUT_DIRECTION_RTL;
4 }

Figure 4: An example of generated code by Code Llama
in the syntax-based OOD scenario for the text-to-code
task. Here else is the unseen language element.

Input text: Does this nodetest pass using the
specified nodetester instance?

(a) Target Code

1 void function (NodeTester arg0 , short [
] arg1) {

2 NodeIterator loc0 = documentTraversal.
createNodeIterator(rootNode ,
NodeFilter.SHOW_ALL , new
NodeTypeNodeFilter(arg1), true);

3 for(Node loc1 = loc0.loc1 (); loc1 !=
null; loc1 = loc0.loc1()){

4 arg0.testNode(loc1 , this);
5 }
6 arg0.noMoreNodes(this);
7 }

(b) Generated Code

1 String function (Node arg0) {
2 StringBuilder loc0 = new StringBuilder

();
3 handleWsRec(arg0 , loc0);
4 return loc0.toString ();
5 }

Figure 5: An example of generated code by Code Llama
in the length-based OOD scenario for the text-to-code
task. Here we provide an example of length-based ex-
trapolation scenarios (P̃5 = {[97%, 100%]}).

(a) Target Code

1 public java.lang.String toString (){
2 java.lang.String VAR_1 = STRING_1;
3 int temp = start;
4 while (temp != end){
5 VAR_1 += (array[temp]) + STRING_2 ;
6 if(temp == ((array.length) - 1)){
7 temp = 0;
8 }else{
9 temp ++;}

10 }
11 VAR_1 += array[temp];
12 VAR_1 += STRING_3;
13 return VAR_1;
14 }

(b) Generated Code

1 public java.lang.String toString (){
2 java.lang.String VAR_1 = STRING_1;
3 if ((METHOD_1 ()) != null){
4 VAR_1 += METHOD_2 ();
5 if ((METHOD_1 ()) != null){
6 VAR_1 += STRING_2;
7 }
8 }
9 VAR_1 += STRING_3;

10 return VAR_1;
11 }

Figure 6: An example of generated code by Code Llama
in the syntax-based OOD scenario for the code refine-
ment task. Here while_statement is the unseen language
element.).

1416

