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Abstract
This paper investigates the question of what
makes math word problems (MWPs) in En-
glish challenging for large language models
(LLMs). We conduct an in-depth analysis of the
key linguistic and mathematical characteristics
of MWPs. In addition, we train feature-based
classifiers to better understand the impact of
each feature on the overall difficulty of MWPs
for prominent LLMs and investigate whether
this helps predict how well LLMs fare against
specific categories of MWPs.1

1 Introduction

In recent years, large language models (LLMs)
have not only demonstrated huge potential across a
range of core NLP tasks (Zhao et al., 2023; Brown
et al., 2020; Radford et al., 2019, inter alia), but
also exhibited a number of emergent abilities, such
as an ability to solve mathematical puzzles (Wei
et al., 2022). Math word problems (MWPs) have
been proposed as a challenging testbed for LLMs,
as they test not only the ability of the models to
deal with purely mathematical expressions, but also
their reasoning and natural language understand-
ing abilities (Wang and Lu, 2023; Cobbe et al.,
2021; Patel et al., 2021; Miao et al., 2020, inter
alia). Experiments show that even quite power-
ful LLMs are still challenged by MWPs (Cobbe
et al., 2021). At the same time, most previous work
has either focused on evaluation of LLMs’ perfor-
mance on MWPs or on changes in their behavior
in response to progressive-hint prompting, prompt
paraphrasing or similar approaches (Norberg et al.,
2023; Raiyan et al., 2023; Zheng et al., 2023; Zhu
et al., 2023), while an in-depth analysis of what ex-
actly makes math problems challenging for LLMs
is lacking. We aim to address this knowledge gap.

A recent study by Almoubayyed et al. (2023)
demonstrates a strong connection between reading

1Our code, data, and analysis are publicly available at
github.com/kvadityasrivatsa/analyzing-llms-for-mwps

Figure 1: A response from Llama2-70B to a lengthy
math problem that involves NLU challenges.

skills and math outcomes in students. We hypoth-
esize that LLMs’ ability to solve MWPs correctly
may similarly rely on: (1) the linguistic complexity
of the questions; (2) the conceptual complexity of
the tasks (e.g., the number of steps and types of
math operations involved); and (3) the amount of
real-world knowledge required to solve the tasks.
Supporting this intuition, our preliminary analysis
of the GSM8K dataset (Cobbe et al., 2021) suggests
that relatively short questions with a small number
of described entities, a few calculation steps and
a limited range of operators involved in the solu-
tion (e.g., Mark is 7 years older than Amy, who is
15. How old will Mark be in 5 years?) are typi-
cally answered correctly by a range of LLMs. At
the same time, long questions requiring real-world
knowledge (e.g., how many cents there are in a dol-
lar) and extended natural language understanding
(NLU) (e.g., interpretation of a lower price) pose
challenges for LLMs (see Figure 1).

In this paper, we formulate and investigate two
research questions: (1) Which characteristics of the
input math word questions make them complex for
an LLM? and (2) Based on these characteristics,
can we predict whether a particular LLM will be
able to solve specific input MWPs correctly?
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2 Methodology

Data We use the GSM8K dataset (Cobbe et al.,
2021), divided into 7, 473 training and 1, 319 test
instances, because of the high quality of human-
generated MWPs. This dataset contains a diverse
set of problems in English with minimal amount
of recurring templates. Furthermore, the difficulty
level of the problems is tailored for LLMs, allowing
for a wide variation in correctness across models
and question types, which is ideal for our feature-
based analysis.

Approach We collect solution attempts from sev-
eral LLMs to the questions from the GSM8K training
and test sets. Next, we train statistical classifiers on
a filtered subset of questions to predict if they are
consistently solved correctly or incorrectly across
multiple runs of the models. Our approach is rela-
tively simple but it allows us to investigate which
of the features are most indicative of the challenges
LLMs face in solving math problems.

LLMs We select an array of open-source models
for our experiments. We use Llama2 (13B and
70B) (Touvron et al., 2023), Mistral-7B (Jiang
et al., 2023) as its performance on math tasks has
been found to match models several times its size,
and MetaMath-13B (Yu et al., 2023) as it is fine-
tuned on math QA data in contrast to the other
general-purpose models in the pool.

Features We analyze and experiment with the
features extracted from MWP questions and their
respective expected solutions. This way, the fea-
tures remain grounded in the dataset, allowing our
approach to be applied to any LLM. The features
are broadly grouped into the following categories:2

1. Linguistic features focus on the phrasing of
the question. These include the length of
the question, sophistication of the vocabulary,
syntactic complexity, instances of coreference,
and overall readability. Note that the linguistic
features are only extracted from the question
body as the phrasing of the gold solution has
no impact on the expected answer.

2. Mathematical features cover the math ar-
guments, operations, and reasoning steps re-
quired to solve the questions. These include
the number and diversity of the math opera-
tions in the solution body. Arguments pro-
vided in the question but not utilized in the

2The complete list of features extracted, their description
and further statistics can be found in Appendix A

Model Success Rate (N=1,319 )

µ σ

Llama2-13B 0.3724 0.3681

Llama2-70B 0.5609 0.3941

Mistral-7B 0.3627 0.3309

MetaMath-13B 0.6373 0.3816

Table 1: Success rates for solution attempts per LLM

solution also require mathematical reasoning
for them to be disregarded as noise. Note that
while a question can be phrased in many ways
(affecting its linguistic features), the underly-
ing math operations and reasoning steps (thus,
the mathematical features) remain unchanged.

3. Real-world knowledge & NLU based fea-
tures indicate the amount of extraneous in-
formation needed to solve the task that is not
provided explicitly in the question. This may
include how many days there are in a month
or the interpretation of “half” as 1/2.

3 Experiments

3.1 Solution Generation

To collect solution attempts from the LLMs, we use
a simple task-specific prompt (See Appendix B) to
minimize any bias imposed on the model genera-
tion. We query each LLM 5 times on each question
with varying generation seeds and a temperature of
0.8. A soft-matching strategy is then used to extract
the final answer from the solutions. Using each
LLM’s attempted solutions, every question is as-
signed a mean success rate using (# of correct
answers) / (# of solution attempts).

3.2 Success Rate Prediction

We train and evaluate classifiers on their ability
to predict for input test questions whether they
will be answered correctly or incorrectly by a spe-
cific LLM. We also train and evaluate classifiers on
the intersection set of questions, which are either
solved correctly by all or by none of the LLMs.

Models We use Logistic Regression, Decision
Tree, and Random Forest classifiers, which allow
us to extract relative feature importance with ease.

Data For high confidence samples, we use the
training and test subset from GSM8K where the sam-
pled success rate is either 1.0 (always correct) or
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0.0 (never correct). The distribution of the LLM-
specific splits is detailed in Table 2.

Preprocessing & Optimization We employ sev-
eral preprocessing steps including dropping highly
correlated features, class-balancing, and feature
scaling. We also perform a hyperparameter search
for each model to maximize performance on un-
seen data. See Appendix C for more details.

4 Results

4.1 Success Rate Distribution

We report the mean success rates for each LLM
on GSM8K’s test set in Table 1.3 We observe
that Llama2 13B and 70B follow the expected
order of scores along their respective parameter
counts. Mistral-7B scores similar to the 13B
Llama2 model, and the additional fine-tuning al-
lows MetaMath-13B to outperform the other mod-
els (including the 70B Llama2). Figures 2a and
2b respectively capture the number of questions
always and never answered correctly by each LLM.
Overall, MetaMath-13B has the lowest number of
incorrectly and the highest number of correctly an-
swered questions across the tested LLMs.

4.2 Classification Results

To compare classifiers’ performance, we report the
accuracy and macro-F1 scores for each classifier
and LLM-specific test data split (see Table 2). We
observe that Random Forest outperforms other clas-
sifiers across most solution sets.

At the same time, we also note that, due to sig-
nificant class imbalance, this task is not easy for
the classifiers, with the best accuracy scores across
LLM splits being in the range of 71.7%− 81.4%.
The small number of questions always or never
solved correctly by any LLM speaks to the models’
varying capabilities (and potential points of brittle-
ness). We include additional analysis of the results
in Appendix D.

For comparison, we also report the classification
results for a fine-tuned RoBERTa-base model (Liu
et al., 2019) for the same training and evaluation
sets (tuned on the question and gold solution as
input text; see Appendix C for more details) in Ta-
ble 2. We note that the Transformer base classifier
scores on a par or a few points above the best sta-
tistical classifier, i.e., Random Forest, suggesting

3Our results generally align with those reported previously
for these models.

(a) Always correct

(b) Never correct

Figure 2: Number of questions from the GSM8K-test (a)
always and (b) never answered correctly by each LLM.
The rows in each figure correspond to individual LLMs,
with the counts on the right denoting the total number
of questions always (or never) answered correctly by
each LLM. The counts at the bottom denote the number
of questions in each subset of LLMs.

that the proposed feature-based classifiers are not
far behind token-level contextual models for this
task.

4.2.1 Feature Importance
The statistical classifiers used in our experiments
allow us to estimate the importance of each fea-
ture and its contribution to the classification per-
formance. We report the top 10 features with
the highest aggregate ranks across LLM data
splits and classifiers in Table 3. We use mean
rank here as a proxy for relative importance
across features, and the respective standard devi-
ations indicate how spread out this importance is
across classifiers and queried LLMs. We observe
that a greater number (Gx_op_unique_count)
and diversity (Gx_op_diversity) in math oper-
ations, and the use of infrequent numerical to-
kens in the question and solution body (Qx_ &
Gx_mean_numerical_word_rank) impact the suc-
cess rate. The list also contains linguistic fea-
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Class Distribution
Split Class Llama2-13b Llama2-70b Mistral-7b MetaMath-13b Intersection

Train
Always 1102 (30.22%) 2438 (61.36%) 733 (24.06%) 5162 (94.7%) 205 (53.38%)
Never 2545 (69.78%) 1535 (38.64%) 2313 (75.94%) 289 (5.3%) 179 (46.61%)
Total 3647 3973 3046 5451 401

Test
Always 188 (28.14%) 427 (60.06%) 111 (21.51%) 528 (71.64%) 31 (24.41%)
Never 480 (71.86%) 284 (39.94%) 405 (78.49%) 209 (28.36%) 96 (75.59%)
Total 668 711 516 737 135

Classification Performance

Classification Model Llama2-13b Llama2-70b Mistral-7b MetaMath-13b Intersection
Acc. Macro F1 Acc. Macro F1 Acc. Macro F1 Acc. Macro F1 Acc. Macro F1

Logistic Regression 0.707 0.686 0.684 0.673 0.721 0.675 0.737 0.686 0.800 0.787
Decision Tree 0.657 0.625 0.644 0.637 0.667 0.611 0.703 0.627 0.733 0.719
Random Forest 0.767 0.724 0.717 0.707 0.814 0.738 0.744 0.549 0.815 0.799
RoBERTa-base 0.816 0.771 0.756 0.738 0.838 0.743 0.701 0.415 0.811 0.781

Table 2: Class-wise distribution and classification results for different LLMs. "Intersection" refers to questions
always or never solved correctly by all or any LLM, respectively. All classification results are mean values across 5
runs with varying initialization seeds. The best results for feature-based classifiers are highlighted in bold.

Type Feature Name Rank (N=23)

µ σ

L Qx_np_count 1.2 0.45

M Qx_mean_numerical_word_rank 4 1.87

M Gx_op_unique_count 4 2.65

M Gx_op_diversity 4.4 2.30

M Gx_mean_numerical_word_rank 4.4 1.82

L Qx_mean_word_rank 5.6 1.82

L Qx_flesch_kinkaid_grade 6 1.87

W Gx_world_knowledge 7.8 2.28

L Qx_constituency_tree_depth 9.6 1.95

M Gx_op’+’_count 11.6 3.97

Table 3: Feature importance ranks across classification
models and LLM-wise data subsets.

tures based on the phrasing of the questions:
longer questions with a high number of noun
phrases (Qx_np_count), mean syntactic depth
(Qx_constituency_tree_depth), and readability
grade (Qx_flesch_kinkaid_grade) are also diffi-
cult for LLMs to solve. Additionally, the need for
extraneous information (Gx_world_knowledge),
such as conversion units for time, distance, or
weight, can make a question challenging. We also
report value thresholds at which each feature af-
fects the success rate significantly: see the results
of the Student’s t-test and p-values in Table 7 in
Appendix D.

4.2.2 Ablation Studies
To further measure the impact of each feature
type, we report classification scores along different
feature-type subsets in Figure 3. We note that the
feature set with all types (L+M+W) is not optimal for

Figure 3: Results of the ablation studies across feature
types (L – Linguistic, M – Mathematical, W – World
Knowledge & NLU). Each bar represents the mean
macro-F1 score over all three classifier models.

classification. For instance, the questions answered
by Llama2-13B are best classified using only math-
ematical features (M). The best-performing classi-
fiers for Llama2-7B, MetaMath-13B, and the inter-
section set either solely use linguistic features (L)
or both linguistic and math features (L+M), whereas
the world knowledge & NLU feature set if suffi-
cient for Mistral-7B.

4.2.3 Impact of Linguistic Features
In order to better gauge the impact of linguistic fea-
tures on the success rate, we cluster questions by
mathematical features. We fit a KMeans clustering
model4 on all math features for each question in
the GSM8K training set with a target cluster count
of 100. This helps group together questions from
the data, wherein the math features hardly vary
within each question subset (or cluster). Thus, vari-

4https://scikit-learn.org/stable/modules/
generated/sklearn.cluster.KMeans.html
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Cluster Feature Spearman(ρ)
ID Size

09 27 Qx_constituency_tree_depth -0.64***

24 14 Qx_mean_word_rank -0.82***

63 62
Qx_token_length -0.42***

Qx_word_length -0.43***

96 51 Qx_flesch_kinkaid_grade -0.51***

Table 4: Cluster-wise feature correlations. The clus-
ter count represents the number of questions included
in the respective cluster. The p-value for all reported
correlation values is <0.001 (marked by ‘***’).

ations in success rate across the questions within
a cluster can be more clearly attributed to other,
i.e., linguistic types of features. We report some
notable Spearman correlation values between the
linguistic feature values within a cluster and the
corresponding success rates in Table 4. The strong
and significant feature-wise negative correlations
suggest that for a relatively fixed set of math fea-
tures, questions with greater length, nesting, lexical
rank, and reading grade become more challenging
for LLMs to solve. Note that this form of analy-
sis on feature-based minimal pairs is extractive in
nature and may, to a certain extent, be restricted
to the question types in the GSM8K dataset. For a
more exhaustive analysis for each feature, gener-
ative approaches to furnish question paraphrases
with the desired set of linguistic features need to
be employed.

5 Conclusions

This work aims to identify what aspects of MWPs
make them difficult for LLMs to solve. To this
end, we extract key features (spanning linguistic,
mathematical, and real-world knowledge & NLU-
based aspects) to predict whether several LLMs
can reliably solve MWPs from GSM8K. We find that
questions with a high number and diversity of math
operations using infrequent numerical tokens are
particularly challenging to solve. In addition, we
show that lengthy questions with low readability
scores and those requiring real-world knowledge
are also seldom solved correctly. Our future work
will rely on these findings to make informed modifi-
cations to questions in order to study the impact on
LLMs’ reasoning and MWP-solving abilities. Fig-
ure 4 provides an example of an informed modifica-
tion, which leads to improved LLM performance.

Figure 4: Solution attempt by Llama2-70B on the ques-
tion from Figure 1, with the required real-world knowl-
edge explicitly specified.

Limitations

With the rapidly growing body of research on
LLMs, this study necessarily has several limita-
tions, which we discuss below.

Limited set of LLMs tested We consider it im-
portant to test and report results with a diverse set
of open-source LLMs, which motivated the selec-
tion of the specific models included in this study.
At the same time, we do not claim this study to be
comprehensive with respect to the range of LLMs
tested and in future work, we plan to include more
LLMs in this research.

Limited number of classification models As the
main goal of this study is to identify aspects of the
MWPs that make them challenging for LLMs to
solve, we have opted for a feature-based approach
and a range of traditional classification models
as opposed to less transparent but more powerful
black-box algorithms. Our results show that the
prediction task is challenging for the traditional
classifiers that we used, and it is likely that these
results can be improved with stronger classification
models.

Limitations of the dataset In this work, we have
focused on a single MWP dataset (GSM8K) due to
its unique properties, namely the high quality of
the questions, high diversity of the tasks (including
linguistic diversity of the questions), and moderate
difficulty of the math problems covered (Cobbe
et al., 2021). At the same time, we recognize that
the results we report in this work may be limited
in certain ways to the dataset on which we report
them. Our future work will apply this approach to
other available MWP datasets (Kim et al., 2023;
Wang and Lu, 2023; Patel et al., 2021; Miao et al.,
2020) to verify the consistency of the findings.
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Impact studies Finally, whilst we have identified
aspects of the MWPs that make them challenging
for LLMs to solve, we admittedly presented only
one example (see Figure 4) where acting upon one
of the identified aspects improves the output of an
LLM. While a thorough investigation of the im-
pact of such informed modifications is outside the
scope of the current paper, such experiments will
follow in future work to demonstrate the practical
usefulness of the identified MWP aspects.
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A Feature Details

Below, we describe the features used in our study
and how they were extracted.
(1) Linguistic features (L) include 9 features per-
taining to the question (Q) itself:

• Qx_token_length: The number of tokens in
the tokenized version of the question body.
We apply each LLM’s respective tokenizer
from HuggingFace to extract this feature.

• Qx_sentence_length: The number of sen-
tences detected in the question body. We use
the sentence_splitter Python library to ex-
tract this count.

• Qx_word_length: The number of space-
separated segments (words) in the question
body.

• Qx_flesch_kinkaid_grade: The readability
grade of the question body as per the FKGL
metric (Flesch, 1948). We use the textstat
Python library to extract this feature.

• Qx_mean_word_rank: The mean vocab-
ulary rank (in decreasing order of fre-
quency) of the tokens in the question body.
We use the same tokenizer set used for
Qx_token_length.

• Qx_constituency_tree_depth: The mean
depth of the constituency tree across the sen-
tences in the question body. We use Stanford’s
Stanza parsing library to parse the questions.

• Qx_np_count: Number of distinct noun
phrases detected in the question body. We
extract this from the constituency parse col-
lected from the Stanza parser.

• Qx_prp_count: Number of prepositions in
the question body. We use the part-of-speech
tags generated as part of the parse by Stanza.

• Qx_coref_count: Number of pronominal
or nominal instances of coreference in
the question body. We use Stanford’s
CorefAnnotator to extract this feature.

(2) Mathematical features (M) include 12 features
pertaining to the question (Q) and gold solution
(G):
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Type Source # Feature Name Range µ σ

L

Q 1 Qx_token_length [12 – 239] 66.05 24.384

Q 2 Qx_sentence_length [1 – 13] 3.431 1.201

Q 3 Qx_word_length [9 – 184] 45.885 17.832

Q 4 Qx_flesch_kinkaid_grade [-1.9 – 26.3] 4.236 2.468

Q 5 Qx_mean_word_rank [3661.96 – 21929.96] 10646.615 2110.891

Q 6 Qx_constituency_tree_depth [5 – 31] 10.803 2.798

Q 7 Qx_np_count [3 – 74] 18.034 7.488

Q 8 Qx_prp_count [0 – 16] 1.772 1.854

Q 9 Qx_coref_count [0 – 16] 0.462 1.283

M

Q 10 Qx_arg_count [0 – 17] 4.438 1.94

Q 11 Qx_word_arg_count [0 – 14] 1.091 1.397

Q 12 Qx_mean_numerical_word_rank [259.0 – 29905.38] 22643.319 3260.09

G 13 Gx_arg_count [6 – 73] 24.377 9.732

G 14 Gx_op‘+’_count [0 – 12] 1.06 1.212

G 15 Gx_op‘-’_count [0 – 6] 0.601 0.78

G 16 Gx_op‘*’_count [0 – 8] 1.369 1.183

G 17 Gx_op‘/’_count [0 – 7] 0.621 0.789

G 18 Gx_op‘(’_count [0 – 4] 0.026 0.187

G 19 Gx_op_unique_count [0 – 6] 2.284 0.93

G 20 Gx_op_diversity [0.15 – 1.0] 0.758 0.196

G 21 Gx_mean_numerical_word_rank [22645.0 – 29915.0] 28626.04 776.73

B 22 Gx_parameter_usage [0.07 – 1.0] 0.642 0.241

W B 23 Gx_world_knowledge [0 – 8] 1.104 1.006

Table 5: Details of formulation and distribution (across GSM8K) for all features included in the feature set. Each
feature is of type: Linguistic (L), Mathematical (M), or World Knowledge and NLU (W) and is sourced either from
the question body (Q), gold solution body (G), or both (B).

• Qx_arg_count: The number of distinct nu-
merical quantities (e.g., “3.5 hours later” or
“100 boxes”) in the question body. We use a
Regexp pattern to detect whole numbers, dec-
imal point values, and quantities preceded by
a negative sign or dollar (and other currency)
signs.

• Qx_word_arg_count: The number of quanti-
ties mentioned in word-form (“three times” or
“half as much”) in the question body. We use
a vocabulary of frequently used word-form
tokens and accommodate compound expres-
sions (e.g., “twenty-two”).

• Qx_mean_numerical_word_rank: The
mean vocabulary rank of the numerical
tokens in the question body. We first isolate
numerical tokens tokenized by respective
tokenizers, then aggregate their token rank.

• Gx_arg_count: The number of distinct nu-
merical quantities present as plain text or on
the left-hand side of equations in the gold so-
lution. We use the same Regexp pattern used

for Qx_arg_count.

• Gx_op{‘+’/ ‘-’/ ‘*’/ ‘/’/ ‘(’}_count: Number
of times each listed math operation is used in
the gold solution. A simple Regexp pattern is
applied to extract these from within equations.

• Gx_op_unique_count: The maximum num-
ber of times a single operation has been used
in the gold solution. For instance, “3 + 4.5 +
7 + 1 − 2.7” contains 3 instances of the ‘+’
operator.

• Gx_op_diversity: Ratio of the number of
unique math operators used to the total num-
ber of operators in the gold solution. For in-
stance, a question with the consolidated math
solution expression "(2 × 12) × 3 = 72"
contains two arithmetic operations in total
but only one unique operation type, i.e., ‘×,’
Gx_op_diversity= 1/2 = 0.5.

• Gx_mean_numerical_word_rank: The
mean vocabulary rank of the numerical tokens
used on the left-hand side of equations in the
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gold solution. Extracted the same way as
Qx_mean_numerical_word_rank.

• Bx_parameter_usage: The ratio of distinct
arguments used in the gold solution to that
in the question body. A value lower than 1
indicates that one or more arguments provided
in the question were not required to solve the
MWP (potentially acting as distractors).

(3) World knowledge and NLU features (W) in-
clude:

• Bx_world_knowledge: The number of dis-
tinct arguments on the left-hand-side of equa-
tions in the gold solution, that are neither
present in the question body nor produced as
intermediate results from any prior equations
in the solution. A non-zero value is interpreted
as the use of a quantity (perhaps a conversion
factor, or the number of entities involved in
computing mean) unspecified by the question.
The arguments were extracted from both sides
using the same Regexp policies used for pre-
vious features.

Table 5 shows further statistics on the features,
including the range as well as the mean and stan-
dard deviation of the values for each feature type.
Additionally, we report the Spearman correlation
between all pairs in the feature set in Figure 5.

B Querying Details

B.1 Prompt Template
We use a simple task-specific prompt (see Figure
6) either prepended to the question-prompt or spec-
ified as a system-prompt if an LLM input query
format requires so.

B.2 LLM Details
The exact large language models used in our ex-
periments, along with their reported performance
on GSM8K according to the OpenLLM leaderboard
(Beeching et al., 2023) are mentioned in Table 6.
All LLMs and libraries used are open-source. The
license to use Meta’s Llama2 models was procured
through due process.

Model HuggingFace Model Name Pass@1
Llama2-13B meta-llama/Llama-2-13b-chat-hf 28.70
Llama2-70B meta-llama/Llama-2-70b-chat-hf 56.80
Mistral-7B mistralai/Mistral-7B-Instruct-v0.2 40.03
MetaMath-13B meta-math/MetaMath-13B-V1.0 72.30

Table 6: List of HuggingFace model variants and their
respective reported pass@1 (single run) accuracies on
the GSM8K test set from the OpenLLM leaderboard.

B.3 Implementation and Compute Resources
Used

We use vLLM to load and query models. Mod-
els of parameter sizes 7B and 13B were queried
with a single NVIDIA A100 GPU. Llama2-70B
was loaded and queried using 4 A100 GPUs. Each
query was set to a temperature of 0.8, and a max-
imum token length of 2000. Each question was
queried 5 times by each LLM, with a varying seed.
Querying the entire GSM8K dataset (8, 793 ques-
tions) took approximately 1 hour for each LLM.
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Figure 5: Spearman correlation matrix between features. All correlation values are marked with ‘*’, ‘**’, and ‘***’
if their corresponding p-values are less than 0.05, 0.01, and 0.001 respectively.

Feature Llama2-13B Llama2-70B Mistral-7B MetaMath-13B Intersection
Thresh. Diff. T-val Thresh. Diff. T-val Thresh. Diff. T-val Thresh. Diff. T-val Thresh. Diff. T-val

Gx_num_arg_count 51.102 0.313 -8.328 53.273 0.380 -7.747 55.082 0.283 -5.452 59.061 0.438 -5.558 57.735 0.330 -5.977
Qx_np_count 40.673 0.200 -5.440 47.465 0.435 -5.090 33.429 0.207 -11.201 47.918 0.448 -7.230 47.918 0.333 -5.645
Gx_arg_count 57.959 0.336 -6.018 58.111 0.380 -5.742 57.959 0.289 -5.644 51.122 0.271 -10.323 60.694 0.335 -5.249
Qx_word_length 91.143 0.219 -7.944 97.384 0.300 -8.468 19.714 0.233 -7.016 101.857 0.275 -9.267 116.143 0.251 -5.328
Gx_op’-’_count 2.082 0.198 -7.683 2.061 0.246 -9.009 2.082 0.181 -7.660 3.061 0.339 -7.348 3.061 0.280 -6.383
Qx_prp_count 7.184 0.215 -5.957 8.081 0.313 -6.322 8.163 0.235 -5.475 7.184 0.167 -6.039 8.163 0.233 -6.834
Qx_sentence_length 6.143 0.206 -6.843 6.091 0.264 -8.278 6.143 0.203 -7.357 7.122 0.253 -5.756 7.122 0.229 -5.473
Gx_op’+’_count 4.163 0.241 -7.849 4.121 0.293 -8.996 5.143 0.296 -6.038 3.184 0.080 -5.377 5.143 0.238 -6.081
Qx_token_length 123.184 0.211 -8.937 126.646 0.258 -9.557 113.918 0.214 -12.560 132.449 0.232 -9.953 118.551 0.219 -14.125
Gx_op’*’_count 4.082 0.211 -6.135 4.040 0.220 -6.043 4.082 0.184 -5.831 5.061 0.268 -5.423 5.061 0.250 -5.295

Table 7: Feature-wise thresholds which reflect the greatest difference in the corresponding mean success rate.
For each feature, the optimal threshold creates two sets of questions on either side, wherein the difference in the
corresponding mean success rates of the two sets is the greatest. We perform Student’s t-tests on both sets to
determine if this difference is significant and report the corresponding t values. All results reported in the table have
an absolute t-value >5 and a p-value <0.0001.

Figure 6: Prompt template used for solution generation
across LLMs.

C Training Details

C.1 Preprocessing

Before training classifiers, we perform the follow-
ing steps on the feature data:

1. Pruning: For each training feature-set, we

iteratively remove features with high correla-
tion with other features until no two columns
in the data have an absolute Spearman corre-
lation higher than 0.5.

2. Scaling: We fit scikit-learn’s
StandardScaler onto the train split to
normalize the mean and standard deviation of
all features. We then apply the same scaler on
the test split features.

3. Balancing: As many LLM solution splits ei-
ther contain too few always-correct or always-
incorrect question samples, we use imblearn’s
RandomOverSampling tool to balance the pro-
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Classification Model Llama2-13B Llama2-70B Mistral-7B MetaMath-13B Intersection
F1(Never) F1(Always) F1(Never) F1(Always) F1(Never) F1(Always) F1(Never) F1(Always) F1(Never) F1(Always)

Logistic Regression 0.8454 0.4968 0.5641 0.7862 0.8926 0.5081 0.0095 0.8354 0.8263 0.7184
Decision Tree 0.8199 0.4532 0.4958 0.7431 0.8732 0.4592 0.0727 0.8373 0.732 0.6496
Random Forest 0.8535 0.5049 0.6133 0.7824 0.8936 0.5161 0.019 0.8361 0.8439 0.7216

Table 8: Class-wise F1 scores for each classification model across LLM solution splits.

portions of the two classes in each run.

C.2 Hyperparameter Search
For each classifier model and LLM solution split
pair, we conduct Bayesian optimization on the
ranges of key hyperparameters for each classifier.
As the objective function, we maximize the Macro-
F1 score on a 15% held-out set of GSM8K’s test split
to prevent the models from over-fitting onto the
train samples.

C.3 Fine-tuning RoBERTa Classifier
We use HuggingFace’s Trainer module to tune a
pre-trained RoBERTa-base classifier on the same
target data as the statistical classifiers in each set-
ting. The corresponding input text for training and
evaluation was built by concatenating the GSM8K
question and gold-solution text for each sample,
i.e., "<question> Question Body </question>
<solution> Solution Body </solution>". The
model is trained for 3 epochs with a peak learning
rate of 2e − 5 and a warmup ratio of 0.1. On a
Tesla P100, each training run took approximately
10-15 minutes.

D Results Analysis

D.1 Class-wise Classification Review
Table 8 reports the class-wise F1-scores (for ques-
tions that are always or never solved correctly) for
each classifier across LLM question splits. Though
there may be notable class imbalances among the
two classes across splits, all classifiers were trained
with proportional oversampling. We see that for rel-
atively smaller pretrained models, i.e., Llama2-13B
and Mistral-7B, F1 scores for always-incorrect
questions are significantly higher than their coun-
terparts. Thus, the scores indicate that for smaller
models, questions answered incorrectly are more
predictable. For larger models like Llama2-70B,
this difference is lower, with the always-correct
questions being somewhat more predictable. For
the fine-tuned MetaMath-13B model, the small
number of questions that are never answered cor-
rectly, fail to provide a generalizable sample for
predicting on unseen data.

D.2 Feature Impact
We continue our discussion of feature importance
(from Section 4.2.1) by identifying pivot points for
key features about which the corresponding suc-
cess rates for questions show a significant differ-
ence in mean values. We perform Student’s t-tests
on equally spaced thresholds along each feature
and report the thresholds which show the highest
variation in mean success rates in Table 7.

We see that across most LLMs, a significant
rise in the mean success rate is observed as the
question contains, on average, more than 6-7 sen-
tences, 90-115 words, or 113-132 tokens. We get
a better idea of the kind of questions Mistral-7B
gets wrong more often than other models, as its
threshold (19.71 words) for the number of words
in the question body is substantially lower than
the average. Across features involving number of
math operations, the threshold for the fine-tuned
MetaMath-13B model is either on a par or higher
than other models.
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