CLEAN-EVAL: Clean Evaluation on Contaminated Large Language
Models

Wenhong Zhu'! * Hongkun Hao'
Yiran Wei?
!Shanghai Jiao Tong University
“University of Edinburgh

Yumeng Zhang® Hanxu Hu*

3Tsinghua University

Zhiwei He!  Yunze Song?
Rui Wang'!" Hongyuan Lu?f

2FaceMind Corporation

{zwhong714, haohongkun, zwhe.cs, wangruil2} @sjtu.edu.cn
hongyuanlu @outlook.com

Abstract

We are currently in an era of fierce competition
among various large language models (LLMs)
continuously pushing the boundaries of bench-
mark performance. However, genuinely assess-
ing the capabilities of these LLMs has become
a challenging and critical issue due to potential
data contamination. In this paper, we propose a
novel and valuable method, Clean-Eval, which
mitigates the issue of data contamination and
evaluates the LLMs more cleanly. Clean-Eval
employs a neural-based model to paraphrase
and back-translate the contaminated data into a
candidate set, generating expressions with the
same meaning but in different surface forms.
A semantic detector is then used to filter those
generated low-quality samples to narrow down
this candidate set. Candidates with moderate
BLEURT scores against the original samples
are selected as the final evaluation set. Ac-
cording to human assessment, this set is almost
semantically equivalent to the original contam-
ination set but expressed differently. We con-
duct experiments on 20 existing benchmarks
across diverse tasks, and results demonstrate
that Clean-Eval substantially restores the ac-
tual evaluation results on contaminated LLMs
under both few-shot learning and fine-tuning
scenarios.

1 Introduction

In recent years, LLMs have made breakthroughs in
handling complex and nuanced scenarios, achieved
superior performance in some professional and aca-
demic benchmarks, and attracted many resources
from industry and academia (OpenAl, 2023; Tou-
vron et al., 2023; Golchin and Surdeanu, 2023).
This subsequently opens the arms race era of LLMs,
and various LLMs are continuously launched, such
as GPT-4 (OpenAl, 2023), LLama2 (Touvron et al.,
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Figure 1: Data contamination happens when Benchmark
A is included in the pretraining data, leading to inflated
performance metrics like top leaderboard rankings. This
can cause a clean model to lag behind the contaminated
one. We aim to revise Benchmark A, preserving its
meaning but changing its surface forms. This aims to
re-evaluate the contaminated model and align its perfor-
mance closer to that of a clean model.

2023) and other LLMs, which have refreshed vari-
ous evaluation benchmarks continuously.

There is room for doubt regarding the poten-
tial overestimation of these benchmark measure-
ments. One reason is that LLMs are trained on
data extracted from websites and publicly accessi-
ble datasets (OpenAl, 2023; Touvron et al., 2023).
Therefore, ensuring no overlap between the pre-
training dataset and the evaluated benchmark be-
comes challenging. This subsequently introduces a
significant concern: the risk of data contamination.

Data contamination arises when the pre-training
data of one model integrates evaluated data, conse-
quently enhancing test performance (Magar and
Schwartz, 2022; Golchin and Surdeanu, 2023).
Currently, many models opt not to disclose their
training sets in technical reports, raising concerns
about the potential inclusion of benchmark datasets
within their training data. This presents an urgent
problem (Wei et al., 2023), as these contaminated
models claim highly evaluated results but often
lead to poor real-world experiences. We strongly
advocate for a cleaner evaluation of LLMs. Un-
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(a) Data Collection.

(b) Paraphrase and Back-translation.

(c) Semantic Filter.

Figure 2: An overview of our method. We first gather existing benchmarks for LLM assessment and then
meticulously clean contamination in these benchmarks through LLM-powered paraphrase and multi-language
back-translation, employing a semantic detector to filter and select optimal results based on BLEURT scores.

veiling the genuine capabilities of LLMs could sig-
nificantly propel the community of LLMs forward.
The most effective resolution involves relabeling
a new dataset when developing a new model to
assess its capabilities. Unfortunately, this process
demands considerable time and labor.

This paper employs previously proposed bench-
marks to create a new benchmark, and our method
is called Clean-Eval, aiming to mitigate data con-
tamination using LLMs and accurately assess the
actual capabilities of LLMs. Leveraging the ex-
ceptional creative capabilities of these models, we
perform diverse paraphrasing of contaminated data
and back-translate it across multiple language di-
rections. This process results in a pool of calibrated
datasets. We effectively filter out low-quality sam-
ples by utilizing semantic detectors, and then se-
lect the best items based on BLEURT scores de-
rived from comparisons between the calibrated and
contaminated data. Finally, We conducted experi-
ments on 20 benchmarks across diverse tasks, and
our analysis unveiled noticeable calibrated effects
achieved through Clean-Eval. Our human evalua-
tion reinforces the method’s potential to improve
sentence structure, grammar, and linguistic diver-
sity while maintaining core semantics. Acknowl-
edging the challenge of detecting model contamina-
tion within specific benchmarks, we propose a new
evaluation approach for in-context learning and
fine-tuning. Our experiments convincingly demon-
strate that processing contaminated data through
our method effectively restores the genuine perfor-
mance of LLMs.

2 Related Work

2.1 Data Contamination

Detecting data contamination is crucial in ensur-
ing the integrity of model training and usage. Re-

searchers and practitioners have dedicated consid-
erable efforts to developing methods for identifying
and mitigating instances where test data uninten-
tionally becomes part of the training dataset of
models (Brown et al., 2020; Touvron et al., 2023).

Model Trainers. Brown et al. (2020) conducted
experiments on data contamination, using an n-
gram overlap metric to evaluate duplication levels
between training and test sets. They subsequently
eliminated these duplications from the training
dataset. Similarly, Dodge et al. (2021) assessed
exact matches, accounting for capitalization and
punctuation normalization. This method scruti-
nized whether entire evaluation text inputs existed
within the training data. However, Touvron et al.
(2023) critiqued the precision of previous high-
order n-gram-based detection methods in determin-
ing contamination extent within a sample. Their
proposed approach involved token-level contamina-
tion identification, allowing for slight variations in
overlap positions between evaluation samples and
training data. Wei et al. (2023) took a distinctive
approach, comparing the LM loss between the test
splits of a dataset and a mimic dataset generated
by GPT-4 (OpenAl, 2023) to correspond to it. A
smaller discrepancy value between these sets indi-
cated potential contamination within the model.

Model Users. Carlini et al. (2023) construct a set
of prompts using the model’s training data. They
investigated by supplying prefixes of these prompts
to the trained model to assess the model’s capacity
to complete the remaining portion of the example
verbatim. Their study revealed that as the model’s
capacity, duplicated numbers, and context length
increased, the models would be more proficient in
memorizing data. Meanwhile, Golchin and Sur-
deanu (2023) introduced an approach involving the
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Figure 3: Evaluation setting of in-context learning. Each input comprises a demonstration and a tested sample. In
the contamination setting, the demonstration matches the tested sample. In contrast, in the absence of contamination,
the demonstration is drawn from another dataset split, maintaining distinction from the tested sample (e.g., sampled
from the train split). In our Clean-Eval setup, the tested sample is a calibrated version of the demonstration,
specifically designed to mitigate the effects of contamination.

development of guided instructions that include
the initial segment of a data instance and its corre-
sponding partition name. These guided instructions
are subsequently utilized to induce the model to
generate the second part of the data, based on a
provided prompt. Rouge (Lin, 2004), BLEURT
(Sellam et al., 2020), and GPT4 auto evaluation de-
termine whether the model had data contamination.
Furthermore, Li (2023) analyzed six prominent
multi-choice QA benchmarks, quantifying their
overlap with the training dataset already known
of Llama to detect potential data contamination.

2.2 Existing Benchmark

Many benchmarks have been proposed, including
MMLU (Li et al., 2023a), CEVAL (Huang et al.,
2023), etc., to measure the capability of LLMs
comprehensively. However, labeling these bench-
marks is time-consuming and laborious, and en-
suring no overlap with the training set of LLM is
often challenging. There is also work to reformu-
late existing benchmarks to build new ones. For
example, Li et al. (2023b) propose ReForm-Eval to
reformulate existing benchmarks into unified large
vision-language model compatible formats.

Nevertheless, based on our knowledge, there
is no proposed solution to the problem of data
contamination causing inflated model evaluation
performance. In this paper, we propose an effec-
tive method to mitigate this problem. Experiments
demonstrate that our methods work in evaluating
both closed and open LLMs.

3 Clean-Eval

The framework of our method is shown in Fig-
ure 2. Our methodology comprises three primary
stages. Initially, we concentrate on gathering ex-
isting benchmarks to assess LLMs. In the subse-
quent phase, we meticulously cleaned contamina-
tion in the collected benchmarks. This involves
paraphrasing samples using the creative capacities
of the LLMs and performing multi-language back-
translation on the contaminated data. In the final
phase, we use the semantic detector to filter the
outcomes of the contamination cleanup, eliminat-
ing subpar results and selecting the ultimate results
based on the BLEURT score.
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text-davinci-003 |

In-context Learning |

[Accuracy]

AGNews QQP OQNLI RTE MNLI WNLI SNLI IMDB PIQA
w/ Contamination 53.67 95.00 90.67 9639 80.00 95.78 94.00 95.67 86.33
Possibly w/o Contamination 40.67 83.33 80.00 84.12 71.00 5493 73.67  89.00  80.33
Clean-Eval 53.00/ 79.00, 82.00] 7690 71.67] 71.83| 62.00] 8533 7533

MultiArith MRPC GSMS8K COPA

CB BOOLQ SST2 MMLU CEVAL

w/ Contamination 65.00 93.67 6433  92.00 98.21 8733  90.67 73.67  66.33
Possibly w/o Contamination 35.00 68.33 1233 90.00 82.14  81.33 80.00 59.00  41.00
Clean-Eval 60.00,  65.67] 50.67| 75.00/ 91.07] 83.67] 78.00, 57.00] 3833]
Llama2 | Fine-Tuning | [Accuracy]

AGNews QQP QNLI RTE MNLI WNLI SNLI IMDB PIQA
w/ Contamination 54.00 99.00 98.00 99.27 99.67 6338 99.00 97.33 100.00
Possibly w/o Contamination 31.67 84.00 8567 80.51 72.00 47.89 82.00 94.00 74.33
Clean-Eval 51.34| 81.00, 79.00] 67.87) 73.67] 60.56| 6837] 9533] 78.67|

MultiArith MRPC GSMS8K COPA

CB BOOLQ SST2 MMLU CEVAL

w/ Contamination 36.11 96.33  50.67 100.00 85.71 99.33 9999 82.67  87.33
Possibly w/o Contamination 16.11 79.33 7.00 89.00 58.93 73.33 94.67 3733 30.00
Clean-Eval 2278 6033 2633] 76.00] 7143 91.33] 90.67] 25.00] 85.00.)

Table 1: Natural language understanding tasks. The symbol | indicates a decrease in performance compared to the
contamination setting. The optimal candidate is chosen according to the lowest BLEURT score.

3.1 Back-translation

Back-translation (BT) involves retranslating con-
tent from the target language into its source lan-
guage using literal terms (Sennrich et al., 2016). In
this process, slight differences can be introduced,
such as replacing synonyms. Therefore, we trans-
late the raw data into various language orientations
and then revert to the original language to compose
our candidate set of contamination cleanup data. In
this process, we aim to achieve a distinct expres-
sion from the original sample while preserving the
semantics.

3.2 Paraphrase

LLMs have showcased significant potential across
diverse professional domains, particularly in cre-
ative writing (Touvron et al., 2023). Harnessing
their creative prowess, we utilize LLMs to gener-
ate multiple paraphrases of raw data, purposefully
introducing variations. Specifically, we leverage
the text-davinci-003 version of GPT-3 to generate
these paraphrases. For instance, a typical prompt in
our approach was: Please paraphrase this sentence
in three different ways.

3.3 Filter

However, these candidate sets might need further
examination to ensure their quality. As shown in
Figure 2c, we use a semantic detector to judge
whether the content in the candidate set is semanti-
cally similar to the original content to narrow the
set of candidate sets further and select the candidate
according to the BLEURT score as the final result.!
In Appendix C.3, the BLEURT scores of each in-
stance on various benchmarks are presented, with
scores typically ranging from 0.4 to 0.9. Our anal-
ysis indicates that the lowest BLEURT score is an
effective indicator for restoring the true capabilities
of LLMs.

With these essential steps, we have achieved
greater efficiency in harnessing existing datasets,
mitigated data contamination concerns, and fur-
nished high-calibrated new data suitable for evalu-
ating model performance.

4 Evaluation Setting

Nearly all LLMs operate with proprietary training
datasets, making it challenging to ascertain whether
'This detector is optional. Removing the detector saves

computational and token costs, but can potentially degrade the
quality of the selected candidates.
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CNN/Daily-Mail

BBC-XSUM

Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L
w/ Contamination 23.38 9.45 21.69 33.64 18.56 29.2
Possibly w/o Contamination 21.18 7.18 19.57 22.97 7.78 19.08
Clean-Eval 23.14 | 935 2141 33.09) 17.92) 28.90 |

Table 2: ICL experiments and metrics in Rouge. | is compared to the contamination dataset. The optimal candidate

is chosen according to the lowest BLEURT score.

Evaluation

Fine-tuning

w/ Contamination

Clean Eval

w/o Contamination

Figure 4: Evaluation setting of fine-tuning. We fine-
tuned two models using datasets labeled red and green.
When evaluated on the red dataset, these two models are
categorized as contaminated and uncontaminated. Test-
ing a model’s performance on the red dataset processed
by Clean-Eval is attributed to the Clean-Eval setting.

the data being tested is free from contamination.
We introduce an experimental framework for simu-
lating data contamination to address this issue.

4.1 In-context Learning

In-context learning (ICL) involves presenting a task
demonstration to the model as a part of a natu-
ral language prompt. According to Brown et al.
(2020), LLMs are classified as few-shot learners.
Due to restricted access to the GPT-3 model and
its variability, we execute ICL on these models to
assess the efficacy of Clean-Eval. Within the ICL
scenario, we propose and compare three evaluation
settings: contamination, possibly no contamination,
and clean evaluation for any given benchmark.
Each input comprises a demonstration and a
tested sample, with different evaluation settings
contingent upon their constitution. The demonstra-
tion matching the tested sample, depicted on the
left side of Figure 3, constitutes the contamina-
tion setting. When the demonstration and tested
sample originate from different dataset splits (cen-
ter of Figure 3), it is categorized as the possibly
without contamination setting. In contrast, when
the tested sample is the demonstration processed

by Clean-Eval (right side of Figure 3), it represents
the Clean-Eval setting.

4.2 Fine-tuning

Fine-tuning entails further optimization adjust-
ments for a specific task or dataset using a pre-
trained LLM. Illustrated in Figure 4, we fine-tune
two models using distinct splits of a dataset.

Each instance within a benchmark is formatted
as an instruction for fine-tuning the model. When
the evaluation data mirrors the fine-tuned data, it’s
categorized as the contamination setting. If the
evaluation and fine-tuned data originate from dif-
ferent splits of the same dataset, it falls under the
possibly without contamination setting. Lastly,
when the evaluation data is fine-tuned data pro-
cessed by Clean-Eval, it represents our Clean-Eval
setting.

5 Experiments

5.1 Datasets

We have meticulously curated 20 datasets, span-
ning a wide array of tasks. These tasks encompass
text implication, problem pair matching, natural
language reasoning, semantic similarity, sentiment
analysis, common sense reasoning, text classifica-
tion, mathematical reasoning, examinations, and
even some natural language generation tasks. This
classification provides valuable insights into the
performance of various task types concerning data
contamination. Below is the comprehensive list of
datasets we have utilized. The specific release date
of the dataset is listed in the Appendix B.

» Nature Language Inference. GLUE dataset
(Wang et al., 2019b) that includes QNLI,
MNLI, SNLI, WNLI, RTE, QQP, MRPC,
SST2; IMDB (Maas et al., 2011); BOOLQ
(Clark et al., 2019); Super-GLUE dataset
(Wang et al., 2019a) that includes COPA, CB;
Ag News (Zhang et al., 2015).
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Data Method Rouge-1 Rouge-2 Rouge-I. BLEURT Equivalence
Back-translation 54.08 29.80 50.47 63.44 100.00
QNLI Paraphrase 48.50 26.02 43.28 63.19 100.00
Clean-Eval 46.85 22.90 42.53 60.21 100.00
Back-translation 52.35 32.05 51.01 59.94 100.00
SST2 Paraphrase 30.39 9.98 27.77 42.96 100.00
Clean-Eval 26.66 7.55 23.64 40.90 100.00
Back-translation 52.85 30.15 48.68 57.91 100.00
MMLU Paraphrase 45.71 23.10 40.79 55.46 100.00
Clean-Eval 42.42 19.70 38.32 51.99 100.00

Table 3: The difference between the sample processed with different methods and the original sample. We choose
the lowest BLEURT score as our optimal candidate. As all generated samples undergo semantic detection, their

semantic equivalence consistently reaches 100%.

Generation.
2017),

* Nature Language
CNN_Dailymail (See et al.,
BBC_XSUM (Narayan et al., 2018).

¢ Arithmetic Reasoning. GSMS8K (Cobbe
et al., 2021), MultiArith

e Examination. MMLU (Hendrycks et al.,
2021), CEVAL (Huang et al., 2023).

5.2 Maetrics

ROUGE & BLEURT. To measure the degree
of overlap between a generated instance and a ref-
erence, we utilize both ROUGE (Lin, 2004), and
BLEURT scores (Sellam et al., 2020). ROUGE
evaluates lexical similarity, focusing on shared
words and phrases, while BLEURT assesses the
semantic relevance and fluency of the generated
sequence concerning the reference instance.

Equivalence. We employed the text-davinci-003
model (Brown et al., 2020) to assess equivalence
before and after the processing of contaminated
data by Clean-Eval. Details of the prompt designs
are in Appendix C.1.

5.3 Contamination Cleanup.

Models. We employ the text-davinci-003 model
(Brown et al., 2020) for paraphrasing, back-
translation, and semantic detection purposes. We
also utilize the BLEURT-20 model (Sellam et al.,
2020) to compute BLEURT scores and select the
optimal candidate.

Process. Given the diversity in format and con-
tent across datasets, our processing criteria vary
accordingly. Resource constraints prevent compre-
hensive processing of every dataset aspect within
our method, Clean-eval. For instance, while we

thoroughly handle all contents in SNLI-paired
datasets, our focus narrows to questions alone
in question-options-answer or question-answer
datasets. Additionally, our analysis is limited to the
initial three sentences or less when dealing with
lengthy text. Furthermore, all generated samples
undergo semantic detection. If they fail this detec-
tion, the original sample is output.

Results. The results are shown in Table 3. Fol-
lowing our Clean-Eval method, the surface form
of the newly generated sample notably differs from
the original sample, particularly in terms of n-gram
variations. However, the presence of the seman-
tic detector ensures the quality and fidelity of the
generated results, assuring their reliability despite
these surface-level alterations.

5.4 In-context Learning

Model. We use the text-davinci-003 model
(Brown et al., 2020) to conduct ICL experiments.

Implementation Details. Each tested use case
is provided with task-specific instructions. For in-
stance, one instance attributed to CNN/Dailymail
would receive a prompt such as “The task is to
summarize this article:”. Detailed designs for all
prompts are in Appendix C.2.

Results and Analysis The results displayed in
Table 1 and Table 2 consistently showcase supe-
rior performance across all tasks in the presence
of data contamination, surpassing the possible no-
contamination and Clean-Eval settings. This em-
phasizes a distinct performance advantage influ-
enced by data contamination. Notably, the model
demonstrates robust generalization across more
straightforward tasks like RTE, IMDB, and QQP,
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which is evident from its strong performance even
without possible contamination. However, when
contamination occurs in these tasks, the model sus-
tains a near-optimal performance level.

The Clean-Eval setting is reliable, revealing the
model’s genuine capability. Many datasets exhibit
performance levels close to those without contam-
ination. Yet, a performance gap exists between
the possible no-contamination and Clean-Eval set-
tings, especially in more intricate tasks involving
mathematical reasoning, such as GSM8K and Mul-
tiArith. The model’s reduced performance in the
possible no-contamination setting might stem from
a lack of chain of thought, leading to performance
degradation. Moreover, as depicted in Table 2, our
approach effectively mitigates data contamination,
even when limiting processing to the first three sen-
tences or fewer in an article. All results indicate
that employing our Clean-Eval method results in a
gradual performance decline, aligning more closely
with the possible no-contamination setting.

5.5 Fine-tuning

Model. For fine-tuning, we employ the LLama2-
7Tb-chat model (Touvron et al., 2023).

Implementation Details As model parameters
grow in size, achieving full fine-tuning becomes in-
creasingly challenging. In such scenarios, we resort
to LoRA for fine-tuning (Hu et al., 2021). Addi-
tional experiment settings are detailed in Appendix
A. Our process commences by transforming origi-
nal data into instructional data, followed by single-
instruction fine-tuning. Considering the exten-
sive datasets, conducting exhaustive fine-tuning for
each model to attain optimal performance would
be impractical and time-consuming. Thus, we fine-
tune the model for approximately 40 epochs before
assessing its performance.

Results and Analysis The results are displayed
in Table 1. When the model undergoes fine-tuning
and subsequent performance testing using the same
dataset, it achieves notably higher accuracy, even
reaching 100% on some datasets. However, this
performance dips when evaluated on a different
dataset split. A significant performance gap exists
between the possibly uncontaminated and contami-
nated dataset settings, particularly in challenging
tasks like MultiArith, GSM8k, MMLU, and CE-
VAL. Notably, when tested under a Clean-Eval set-
ting, the model’s performance aligns closely with
the possibly uncontaminated data.

6 Analysis
6.1 Ablation Study

In Table 3, we conducted an ablation study com-
paring three methods, including back-translation,
paraphrase, and Clean-Eval. Back-translation con-
sistently yields higher Rouge and BLEURT scores
than other methods across three datasets. This sug-
gests that back-translation effectively maintains
lexical and sentence structure from the original
text. Paraphrase introduces variations in content
expression, showcasing the ability to offer alterna-
tive ways of expressing the same semantic content.
Clean-Eval, which combines paraphrase and back-
translation, emerges as a comprehensive approach.
It maintains semantic equivalence, as indicated by
the Equivalence score, and enhances the diversity
of content expression.

6.1.1 BLEURT Score

In this part, we explored whether the selection
based on the BLEURT score impacts the model
performance.

Method Score QNLI SST2 MMLU
lowest 7.33  6.00 14.67

BT median -5.99  6.00 3.33
highest -10.67 6.00 4.01
lowest -8.67  6.00 8.01

Para median 4.01  4.66 5.33

highest 0.01  6.00 8.67

Table 4: In ICL experiments, we assess the performance
gap using various BLEURT scores. This gap represents
the difference in performance between the model tested
in the Clean-Eval setting versus the no-contamination
setting and the model tested in the contamination setting
versus the Clean-Eval setting. A higher value signi-
fies that Clean-Eval approaches performance levels like
those in the no-contamination setting.

Results. Table 4 illustrates that paraphrasing
exhibits variability across three datasets. How-
ever, back-translation demonstrates the potential
to bring the model’s performance closer to the no-
contamination setting when choosing the lowest
BLEURT score. Hence, to restore the large model’s
capabilities, selecting the best candidate based on
the lowest BLEURT score might be a viable strat-

egy.
6.1.2 Combination Order

We compared the effects of different combination
orders on the performance of the results.
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Order QNLI SST2 MMLU

Para+ BT 10.67 6.00 14.67
BT + Para 10.67 6.00 12.67

Table 5: Performance gap with different combination
orders of paraphrase and back-translation.

Results. From Table 5, we can see that while
QNLI and SST?2 tasks are less sensitive to method
order, the MMLU task shows slight differences.
Therefore, we can tailor the order based on task
requirements, and we choose first to paraphrase
and then back-translation in Clean-Eval.

6.1.3 Equivalence Detector

Continuous back translation would end up with a
string that differs markedly from that which you
started (Way, 2013). A combination of paraphrase
and back-translation might also cause this problem.

Method QNLI SST2 MMLU
BT 74.17  86.33 73.33
Para 91.67  82.67 73.33

Clean-Eval (w/o detector) 72.17 | 56.34] 60.34]

Table 6: Model performance on the calibrated dataset
without equivalence detector.

Results. As we can see from Table 6, across all
three datasets, the paraphrasing method demon-
strates relatively high performance, especially in
QNLI and SST2. Without a semantic detector, re-
sults generated through Clean-Eval exhibit a gen-
eral decline in performance. This suggests the
possibility of introducing semantic errors or in-
accuracies during the generation process and the
importance of semantic detectors.

6.2 Human Evaluation

We performed human evaluations of the generated
output to assess potential changes after our method
Clean-Eval.

Results. Human evaluation results on the SST2
dataset indicate that 97% of instances maintain se-
mantic equivalence with the original ones. This
suggests the Clean-Eval largely preserves the origi-
nal data’s intended meaning, showcasing the effec-
tiveness in retaining input semantics.

-~a this flick is about as cool and )

< e Original

Y’ asa y can get.

<o No documentary beats this one in terms of

N~

D¢ being cool and delighting the audience. Paraphrase

-~ There is no documentary movie that can

N~ i i .

Yy’ match this t.)ne in terms of co(_:lness and Back-translatlon
enthusiasm from the audience.

Figure 5: A case study from SST2 dataset.

7 Case Study

In this case, the paraphrased sentence success-
fully conveys the essence of the original while
introducing some variation. The transformation
maintains a positive sentiment, emphasizing the
documentary’s coolness and appeal to the audi-
ence. Back-translation aims to ensure that the para-
phrased sentence retains its intended meaning. The
back-translated sentence aligns well with the para-
phrased version. The key elements, such as the
documentary’s uniqueness, coolness, and audience
appeal, are preserved. The combined approach
of paraphrasing and back-translation effectively
enhances the original sentence. The paraphrased
version introduces a nuanced expression, and the
subsequent back-translation successfully captures
the intended meaning. The final output maintains
a positive tone and successfully communicates the
documentary’s appeal.

8 Conclusion

Data contamination is an urgent problem for the de-
velopment of LLMs society. Downloading and try-
ing contaminated models can be a waste of time for
both researchers and developers. To save their time,
this paper intends to mitigate the issue of data con-
tamination in LLMs by introducing the Clean-Eval
method. This approach leverages existing datasets
to create a new evaluation dataset, effectively miti-
gating the impact of contamination. Experimental
results demonstrate the method’s success in accu-
rately assessing model capabilities. Clean-Eval
holds promise in enhancing transparency and re-
liability in evaluating LL.Ms. Future work can be
dedicated to co-training a data contamination detec-
tor in a neural-based framework with Clean-Eval
in a multi-tasking fashion. Additionally, we hope
to open-source various versions of intentionally
contaminated LLMs and their contamination infor-
mation for research purposes.
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Limitations

Datasets. This paper focuses on two mainstream
models. Without knowledge regarding their train-
ing data, our selected benchmark, mimicking the
no-contamination setting, likely overlaps with their
existing training data. Consequently, performance
testing on these benchmarks could yield inflated
performance metrics. Moreover, we sampled ap-
proximately 300 instances for each benchmark due
to resource constraints. However, despite this lim-
ited number, randomness in sampling aims to en-
sure these instances represent the entire dataset.

Fine-tuning. Given the extensive collection of
benchmarks, conducting exhaustive fine-tuning to
maximize model performance becomes impractical.
Instead, we fine-tune the model using a consistent
experimental setup for approximately 40 epochs.
Our goal is to illustrate that models affected by
contamination exhibit higher performance. Fur-
thermore, evaluating benchmarks processed by our
method Clean-Eval aims to mitigate this perfor-
mance inflation and restore the true capabilities of
the LLMs.
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in previous articles.
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version on 2 RTX4090 GPUs, each with 24GB
of memory. The model was fine-tuned accord-
ing to specific instructions, utilizing the following
prompt:

[INST] <<SYS>>\n"

"You are a helpful, respectful, and honest
assistant.”

"<</SYS>>\n\n{@} [/INSTI\n{1}</s>"]

To optimize memory usage and enable deploy-
ment on smaller devices, we loaded our Llama2-
7b-chat model in 4-bit precision, effectively reduc-
ing memory consumption. Employing a bfloat16
compute data type alongside nested quantization
further contributed to memory efficiency. Addition-
ally, we leveraged LoRA with a 16-dimensional
updated matrix and scaling set at 64. A batch
size 16 was chosen for shorter instructions, while
longer instructions used a batch size of 4. The ini-
tial learning rate was set to 2e-4, coupled with the
paged_adamw_8bit optimizer for training.
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MRPC March 3, 2005
RTE April 11, 2005
WNLI March 21, 2011
IMDB June 19, 2011
SST2 October 18, 2013
Agnews September 9, 2015
SNLI August 21, 2015
MultiArith August 20, 2016
QNLI October 11, 2016

CNN-Dailymail
MNLI

QQP November 1, 2018
BBC-XSUM August 27, 2018
COLA October 1, 2019
PIQA November 26, 2019
BOOLQ May 24, 2019

CB July 25, 2019
MMLU January 12, 2021
GSMBK November 18, 2021
CEVAL November 6, 2023

April 25, 2017
February 19, 2018

Table 7: The date of each dataset

B Potential Contamination

Table 7 shows the dates of the datasets we collected.
In cases where the collection dates were not speci-
fied in the paper, we take the publication date. It is
important to acknowledge that some new datasets
may contain older data. In addition, the release
date of the dataset may be earlier than the table.

Additionally, we gather information on the
model release dates: text-davinci-003, launched
in September 2021, and Llama2-7B, introduced on
July 9, 2023.

In the text-davinic-003 report (Brown et al.,
2020), they conducted data contamination experi-
ments. Datasets include BOOLQ, PIQA, RTE, CB,
and COPA. The dirty rates were 75.80, 89.90%,
71.40%, 100.0%, and 100.0%, respectively.

In the report for Llama2 (Touvron et al., 2023),
they conducted data contamination experiments.
They pointed out that the degree of possible data
contamination in the humanities and overall data
in MMLU reached 94.5% and 94.4%, respectively.
Therefore, we can assume that LLlama2 included

MMLU’s data at the beginning of the training,
which means that there may be data contamination.

C Prompt Design
C.1 Method prompt

Our paraphrasing, back-translation, and equiva-
lence detector prompts are shown in Table 8.

C.2 Instruction for Each Dataset

Our prompts for each benchmark are shown in Ta-
ble 9.

C.3 BLEURT Score

Figure 6 illustrates the BLEURT score of each in-
stance from selected benchmarks compared to the
original instance.
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Method

Prompt Design

Paraphrase

Back-translation

Equivalence Detector

Please paraphrase the following sentence without changing the mean-
ing in 3 ways, then return as a list.

Please translate the following sentence into [language] without
changing the meaning.

Please determine whether the following sentences are equivalent.

Table 8: Prompt designs of each method.

Dataset

Prompt Design

RTE

QQP, MRPC

QNLI

MNLI, CB

WNLI

SNLI

IMDB

PIQA

COPA

BOOLQ

SST2

AG News

GSMSK, MultiArith

MMLU, CEVAL

CNN_Dailymail,
BBC_XSUM

The task is to determine whether a pair of sentences are entailed by
each other. Just return entailment or not_entailment.

The task is to determine whether a pair of questions are semantically
equivalent. Just return equivalent or not_equivalent.

The task is to determine whether the context sentence contains the
answer to the question. Just return entailment or not_entailment.

The task is to predict whether the premise entails the hypothesis,
contradicts the hypothesis, or neither. Just return entailment, contra-
diction, or neutral.

The task is to predict if the sentence with the pronoun substi-
tuted is entailed by the original sentence. Just return entailment
or not_entailment.

The task is to determine whether a pair of sentences are entailed,
contradicted, or neutral to each other. Just return entailment, contra-
diction, or neutral.

The task is to determine whether the sentiment of the text is positive
or negative. Just return positive or negative.

The task is to select the best solution to the question. Just return the
solution]1 or solution2.

Given a premise, choose one of the following two choices that express
the sample["question"] relationship. Just return choicel or choice2.

The task is to answer true or false given the question. Just return true
or false.

The task is to determine whether the sentiment of the sentence is
positive or negative. Just return positive or negative.

The task is to classify the article into sports, world, business, or
sci/tech. Just return sports, world, business, or sci/tech.

The task is to answer a given mathematical question. Just directly
return the final number answer.

Please select the best answer from the options according to the ques-
tion. Just return one answer with A, B, C, or D.

Please summarize this article.

Table 9: Prompt designs of each benchmark.
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