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Abstract

In the context of computational models of de-
pendency syntax, most dependency treebanks
have the restriction that any valid dependency
tree must have exactly one edge coming out
of the root node in addition to respecting the
spanning tree constraints. Many algorithms
for dependency tree sampling were recently
proposed, both for sampling with and without
replacement.

In this paper we propose a new algorithm called
Wilson Reject SWOR for the case of sampling
without replacement by adapting the Wilson Re-
ject algorithm originally created for sampling
with replacement and combining it with a Trie
data structure. Experimental results indicate
the efficiency of our approach in the scenario
of sampling without replacement from depen-
dency graphs with random weights.

1 Introduction

Dependency trees are one of the most popular struc-
tures used to represent syntactic relations between
words (Kübler et al., 2009). A popular formalisa-
tion for them is based on spanning trees in directed
graphs, which is one of the core ways to represent
dependency structures in natural language process-
ing (McDonald et al., 2005). A dependency graph
for n words has n+1 nodes: one for each word
and a special root node. It also has n2 weighted
edges between nodes: n(n-1) edges between any
pair of distinct word nodes and n edges from the
root to each node. A spanning tree of the graph
is a subgraph that contains all the n+1 nodes, ex-
actly n edges and no cycles. Each node except
for the root has exactly one incoming edge and
is reachable from the root. Probabilistic models
over spanning trees have uses in non-projective de-
pendency parsing (Ma and Hovy, 2017; Dozat and
Manning, 2016; Wang and Chang, 2016), recover-
ing phylogenic structures (Andrews et al., 2012)
and event extraction (McClosky et al., 2011).

A typical dependency tree constraint that is also
applied in the case of Universal Dependencies
(Nivre et al., 2020) is that the tree must have ex-
actly one edge coming out of the root node. In the
rest of the paper we will refer to spanning trees that
have exactly one edge coming out of the root node
as "dependency trees".

The need for algorithms that sample depen-
dency trees comes from the fact that state-of-the-art
parsers often predict invalid dependency trees as
the most probable output (Zmigrod et al., 2020).

Dependency tree sampling has uses in domains
such as semi-supervised training of parsers (Corro
and Titov, 2018), facilitating the approximate de-
coding of higher-order models (Zhang et al., 2014)
and unsupervised grammar induction (Mareček and
Žabokrtský, 2011).

There are 2 main sampling scenarios: sampling
with replacement and sampling without replace-
ment. In the case of sampling with replacement,
the same tree can be sampled multiple times, while
in the case of sampling without replacement, each
tree can only be sampled once. Some recent ad-
vances in dependency trees sampling can be found
in (Stanojević, 2022), including algorithms for sam-
pling dependency trees both with and without re-
placement, but in this paper we will focus on adapt-
ing the fastest algorithm in practice for sampling
with replacement, Wilson Reject, to sampling with-
out replacement, thus creating a new algorithm that
we will call Wilson Reject SWOR that achieves
superior performance compared to the other algo-
rithms for graphs with random weights. The ran-
dom weights setting usually occurs in the beginning
of training of dependency parsers.

2 Distributions over tress

In this section we will give formal definitions to
distributions over spanning trees and dependency
trees in rooted directed weighted graphs. A rooted
directed graph can be denoted by G={V,E}, where
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V is a set of n+1 nodes (1 node for each of the n
words and one special root node) and E is a set of
directed weighted edges of the form {n1, n2, w}
where n1 is the starting node of the edge, n2 is
the end node of the edge and w is the nonnegative
weight of an edge.

A spanning tree is any subgraph of G that con-
tains all the n+1 nodes, has exactly one incoming
edge for each node except for the root and contains
no cycles.

A dependency tree is any subgraph of G that is a
spanning tree and also has exactly one edge coming
out of the root node. Let DG be the set of all the
dependency trees of G.

Let’s denote the edge from node i to node j with
i → j and the weight of the edge from node i to
node j with W(i,j).

Weight of a dependency tree can then be de-
fined as:

Wt
def
=

∏
W(i,j), i→ j ∈ t

Probability of a dependency tree can similarly
be defined as:

p(t)
def
=

Wt

ZDG

, where ZDG

def
=

∑

t∈DG

w(t)

Any unbiased dependency tree sampler must sam-
ple the trees according to their probabilities.

3 Previous Work on Sampling
Dependency Trees

For the problem of sampling with replacement
(SWIR), the fastest algorithm in practice is the
Wilson Reject algorithm (shown in Algorithm 2),
proposed here (Stanojević, 2022). Wilson Reject
is based on rejection sampling, a strategy that we
will also use in the algorithm we propose. Rejec-
tion sampling is commonly used when we want to
sample from a distribution d1(t) from which sam-
pling is difficult, but there is a related distribution
d2(t) from which sampling is easier. More details
about rejection sampling can be found in (Murphy,
2012, Chapter 23.3). Wilson Reject uses Wilson’s
sampling algorithm to sample spanning trees un-
til a valid dependency tree is sampled. Wilson’s
algorithm is a random walk based algorithm. The
algorithm starts with the root node as the current
selection. At each step, if there is a node that is
not in the current selection, it starts a random walk
from that node through its incoming edges until it

reaches a node in the current selection. During the
walk it samples a parent node of the current node
randomly based on the weights of the incoming
edges of the node. Any cycles during the walk are
implicitly deleted by the algorithm. The resulting
chain is attached to the current selection. When all
nodes are part of the selection, the selection will
be a spanning tree and will be returned by the al-
gorithm. It was proved in (Stanojević, 2022) that
Wilson Reject is an unbiased sampler, and that the
expected number of samples it needs until it gets
a valid dependency tree is Euler’s number. There-
fore, 3 runs of Wilson’s sampling algorithm are
expected to be enough to sample a valid depen-
dency tree. The total runtime complexity of Wil-
son’s algorithm depends on the graph edges and
their weights, but can be as small as O(|V |) (Wil-
son, 1996). Therefore, the complexity of Wilson
Reject is also often as small as O(|V |).

The pseudocode of Wilson’s Algorithm can be
found in Algorithm 1, and the pseudocode of Wil-
son Reject can be found in Algorithm 2.

Algorithm 1 WILSON

1: p← ∅ ▷ p will keep the sampled tree edges
2: ▷ p[n1] = n2 stands for edge n2 → n1

3: visited← {ROOT}
4: for i ∈ V \ {ROOT} do
5: c← i
6: while c /∈ visited do
7: random sample node v with edge

weight Wv→c

8: p[c]← v
9: c← v

10: c← i
11: while c /∈ visited do
12: visited.add(c)
13: c← p[c]

14: return p

Algorithm 2 WILSON REJECT
1: t←Wilson(G)
2: while t has more than one root edge do
3: t←Wilson(G)
4: return t

4 Wilson Reject SWOR

We will now analyze the scenario of sampling with-
out replacement (SWOR), scenario in which it is
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not allowed to sample the same instance twice.
For this scenario, 2 algorithms with complexity
O(k ∗ n3) where k is the number of samples and
n the number of words were proposed in (Stanoje-
vić, 2022): Trie-SWOR and SBS-SWOR. Both use
Colbourn’s algorithm (Colbourn et al., 1996), an
ancestral sampling algorithm, as an auto-regressive
form of dependency tree distribution and each of
the 2 algorithms uses a different algorithm for sam-
pling from sequential models: Trie-SWOR is based
on the Trie algorithm (Shi et al., 2020) and SBS-
SWOR is based on Stochastic Beam Search (SBS)
(Kool et al., 2019). More details about these algo-
rithms can be found in (Stanojević, 2022).

We will focus on comparing our results with the
SBS-SWOR algorithm, as it was found to be faster
than Trie-SWOR on CPU and, unlike Trie-SWOR,
its performance improves significantly when run on
GPU. This is mainly caused by the fact that SBS-
SWOR draws all the required samples in parallel
instead of sequentially, so it can substantially bene-
fit from the GPU’s parallel computing. In order to
ensure that no instance is sampled twice, SWOR
algorithms need to constrain the current sample
based on the previous samples (Kool et al., 2020).

We create a new algorithm called Wilson Reject
SWOR based on the Wilson Reject algorithm for
the random weights setting. We do that by keeping
a list of already sampled trees that are considered
invalid samples for this step. At each sampling
step we keep generating dependency trees with the
Wilson Reject algorithm until we get a tree that
wasn’t already sampled. That tree is considered the
valid sample for that step and added to the list of
already sampled trees.

Theorem 1. Wilson Reject SWOR is unbiased.

Proof. We have to prove that at each step Wilson
Reject SWOR samples dependency trees in an un-
biased way. We consider that the trees sampled
before the current step are invalid as they can’t be
sampled again in SWOR. It was already proved
that Wilson Reject is an unbiased sampler of de-
pendency trees (Stanojević, 2022). We can use
rejection sampling concepts (Murphy, 2012, Chap-
ter 23.3) to prove that Wilson Reject SWOR which
uses Wilson Reject is unbiased. Let C be the cur-
rent step, SC be the set of already sampled depen-
dency trees, d1SC

(t) be the distribution of valid
dependency trees at step C and d2(t) be the dis-
tribution of all dependency trees that can be sam-
pled. The condition for rejection sampling to work

is that there must be a constant c > 0 such that
c ∗ d2(t) ≥ d̃1SC

(t), where d̃1SC
(t) is the unnor-

malized target distribution. After a sample is re-
trieved from d2(t), it is accepted with probability
d̃1SC

(t)

c∗d2(t) . In our case, since the trees in both distri-
butions come from the same graph, they have the
same weights, so we can have c = 1 and accept
any sample from d2(t) that is also part of d1SC

(t).
Therefore, accepting any dependency tree sampled
by Wilson Reject that wasn’t already sampled is
an unbiased SWOR sampling method. This means
that Wilson Reject SWOR is unbiased.

Any node in a dependency tree except for the
root can have exactly one incoming edge. There-
fore, if we have an edge from a node n1 to a node
n2, we will call n1 the "parent" of node n2. To
make the Wilson Reject SWOR algorithm more ef-
ficient, we can uniquely represent any dependency
tree using a list of the parents of all the nodes. Since
the root has no parent in a dependency tree, we use
a placeholder for its parent in the list. Building a
list of parents from a dependency tree and building
a dependency tree from a list of parents are trivial
operations that have O(|V |) time complexity.

We can keep the parents list representations of
the already sampled trees in a Trie data structure.
This allows us to check if a tree was already sam-
pled by searching for its associated parents list in
the Trie in O(|V |) time. Insertion of the parents list
associated to a tree in the Trie can also be done in
O(|V |) time (Brass, 2008). Wilson Reject SWOR
has no worst case complexity, but we can estimate
the complexity for graphs with random weights.
An important question is how often do we expect
to sample a tree that was already sampled, which
depends on the number of nodes, the configuration
of edges and the number of samples. It is well
known that there are nn−2 spanning trees for a
complete graph of size n (Cayley, 1878), and from
each of them we can build a dependency tree for
the graph with n+1 nodes corresponding to n words
by adding the artificial root node and an edge from
it to the root of the spanning tree. Therefore, for
the graph of size n+1 corresponding to n words,
there are nn−2 dependency trees. Since each de-
pendency tree has the same number of edges, for
graphs with random edge weights we can expect
most dependency trees to most likely have their
total weights close to their mean. This indicates
that for graphs with a significant number of nodes
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and random weights, it is very unlikely the same
tree would be sampled twice without a very big
number of samples. As an experiment, we sampled
20000 dependency trees from a graph of size 100,
and the same tree was never sampled twice. For
cases when the same tree is only sampled once, we
can consider that the complexity of Wilson Reject
SWOR is the same as that of Wilson Reject, which
as discussed previously depends on many factors
but can be as small as O(|V |). Therefore, the com-
plexity of Wilson Reject SWOR can be as small as
O(k ∗ |V |), where k is the number of samples. The
steps of the algorithm are shown in Algorithm 3:

Algorithm 3 Wilson Reject SWOR
1: G← original graph
2: t← sample_with_wilson_reject(G)
3: t_parent_array ← get_prnt_array(t)
4: trie← ∅
5: while t_parent_array ∈ trie do:
6: t← sample_with_wilson_reject(G)
7: t_parent_array ← get_prnt_array(t)
8: trie.insert(t_parent_array)
9: return t

5 Experiments

We will now compare the results of Wilson Re-
ject SWOR to those of SBS-SWOR for the case
of sampling without replacement. Unlike Wilson
Reject SWOR, SBS-SWOR can be significantly
improved by GPU acceleration due to the fact
that it draws all samples in parallel, so it makes
sense to compare the results with both those of
SBS-SWOR on CPU and those of SBS-SWOR on
GPU. The experiments were run on a 11th Gen
Intel® Core(TM) i7-11800H @ 2.30GHz CPU and
a NVIDIA® GeForce RTX 3050 GPU. The SBS-
SWOR implementation that was used was from the
SynJax Python library, version 2023.8.5, (Stano-
jević and Sartran, 2023) which is written in JAX
(Bradbury et al., 2018). We will present the results
of the 2 algorithms for dependency graphs with
random weights corresponding to 100 words. We
found that Wilson Reject SWOR on CPU has better
performance than both SBS-SWOR on CPU and
SBS-SWOR on GPU, as it can be seen in Figure
1. It also has the advantage of being sequential
unlike SBS-SWOR, allowing us to stop sampling if
certain criteria were met, and the advantage of not
relying on GPU. Results for additional experiments
with graphs with different numbers of words can

be found in Appendix A.

Figure 1: Speed for SWOR with 100 words

6 Conclusion

In this paper we presented the Wilson Reject
SWOR algorithm for sampling dependency trees
without replacement which is based on random
walks. We also showed that it is unbiased and
has the best performance for graphs with random
weights. It may have uses in tasks where de-
pendency tree sampling is required such as semi-
supervised training of parsers (Corro and Titov,
2018), unsupervised grammar induction (Mareček
and Žabokrtský, 2011) and approximate decoding
of higher-order models (Zhang et al., 2014).

Limitations

Even though the Wilson Reject SWOR algorithm is
very efficient for sampling dependency trees with-
out replacement for graphs with random weights,
it is still based on random walks due to its reliance
on the original Wilson’s Algorithm. That means
that we don’t have any worst case complexity for it.
Methods such as Colbourn based algorithms have
a predictable runtime, even though in practice they
tend to be slower. There are some types of graphs
for which the performance is expected to be greatly
impacted, such as graphs in which almost all of
the probability mass is on a single dependency tree.
For this kind of graphs we can expect that a big
number of samples would be required to sample
anything but the most probable dependency tree,
making Wilson Reject SWOR inefficient for these
cases compared to alternatives like SBS-SWOR.
Therefore, the algorithm would be most useful in
the random weights setting that usually happens in
the beginning of training of dependency parsers.
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A Results for additional SWOR
experiments

In this appendix we will present additional re-
sults for Wilson Reject SWOR and SBS-SWOR
on graphs with different word counts. The experi-
ments were run on a 11th Gen Intel® Core(TM)
i7-11800H @ 2.30GHz CPU and a NVIDIA®

GeForce RTX 3050 GPU and the SBS-SWOR im-
plementation that was used was from the SynJax
Python library, version 2023.8.5, (Stanojević and
Sartran, 2023) which is written in JAX (Bradbury
et al., 2018). We found that Wilson Reject SWOR
on CPU achieved a better performance than SBS-
SWOR on CPU and SBS-SWOR on GPU for all the
word counts tried for graphs with random weights,
thus proving its efficiency.

Figure 2: Speed for SWOR with 45 words

Figure 3: Speed for SWOR with 60 words

Figure 4: Speed for SWOR with 75 words

Figure 5: Speed for SWOR with 90 words

Figure 6: Speed for SWOR with 100 words
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