Extremely efficient online query encoding for dense retrieval

Nachshon Cohen
Amazon
nachshon@amazon.com

Yaron Fairstein
Amazon
yaronf@amazon.com

Guy Kushilevitz
Amazon
guyk@amazon.com

Abstract

Existing dense retrieval systems utilize the
same model architecture for encoding both the
passages and the queries, even though queries
are much shorter and simpler than passages.
This leads to high latency of the query encod-
ing, which is performed online and therefore
might impact user experience. We show that
combining a standard large passage encoder
with a small efficient query encoder can pro-
vide significant latency drops with only a small
decrease in quality. We offer a pretraining and
training solution for multiple small query en-
coder architectures. Using a small transformer
architecture we are able to decrease latency
by up to ~ 12x, while M RRQ10 on the MS
MARCO dev set only decreases from 38.2 to
36.2. If this solution does not reach the desired
latency requirements, we propose an efficient
RNN as the query encoder, which processes the
query prefix incrementally and only infers the
last word after the query is issued. This short-
ens latency by ~ 38x with only a minor drop
in quality, reaching 35.5 M RRQ10 score.'

1 Introduction

Information retrieval was revolutionized by seman-
tic matching models (Karpukhin et al., 2020; Xiong
et al., 2021; Gao and Callan, 2021, 2022). Such
models encode the corpus of passages’ and the
query in a shared embedding space, where re-
trieval is performed using an (approximated) near-
est neighbors search (Johnson et al., 2021). These
models increase the quality of search results dra-
matically (Zhao et al., 2022), but suffer from a large
computational overhead (Chen et al., 2021). While
training a large model and encoding the corpus is
costly, this can usually be done offline once (or ev-
ery couple of days/weeks) and cost is bounded by

'Code can be found at https:/github.com/amzn/extremely-
efficient-query-encoder

*In this paper we consider the passage retrieval task. Re-
trieving documents or other textual units is similar in concept.

43

the size of the corpus. On the other hand, encoding
queries is a major part of the retrieval system that
is performed frequently and online, making latency
an important consideration.® Hence, cutting the
latency of this component directly leads to a cut in
the online-latency of the whole system.*

Today, practically all semantic retrieval models
use the same architecture to embed both the corpus
(passages) and the queries. Knowledge distillation
(Hinton et al., 2015) has been used to improve
efficiency by creating smaller models. However,
mainly transformer-based architectures (Vaswani
et al., 2017) of medium size were considered (Gao
et al., 2020; Chen et al., 2021), putting a bound on
the achievable latency of the query encoding.

Balancing between the latency and cost require-
ments is challenging; while sophisticated GPU im-
plementations can run BERT inference in just a
few milliseconds, this hardware is very costly. This
is especially problematic in an over-provisioning
setting, where utilization is kept low to handle burst
of traffic. Further, as query encoding is run online,
it is often necessary to use a batch size of 1, which
also limits the GPU utilization. Therefore, it is
often necessary to use a CPU for query encoding,
which in-turn increases the latency overhead. This
challenge calls for a query-embedding solution that
can balance cost and latency, while still providing
quality embeddings for retrieval.

The simple, yet crucial observation we make in
this paper is that queries are usually very short; of-
ten just 3-5 words, and rarely exceeding 15 words.
This is in contrast to passages (or documents),

3The other significant part typically run online is an ap-
proximate KNN-search. We experiment with ScaNN (Guo
et al., 2020), a popular KNN solution. We use it with standard
parameters to retrieve from MS-MARCO’s corpus and find
that query embedding takes ~ x4 more time than the KNN
search. Hence, we can determine that the significant portion
of online latency is spent on embedding the query.

*Additional avenues for reducing latency are presented in
(Seo et al., 2019; Fang et al., 2020; Lewis et al., 2021; Formal
etal., 2021).

Findings of the Association for Computational Linguistics: NAACL 2024, pages 43-50
June 16-21, 2024 ©2024 Association for Computational Linguistics

https://github.com/amzn/extremely-efficient-query-encoder
https://github.com/amzn/extremely-efficient-query-encoder

which consist of dozens of words or more in some
settings. Therefore, we argue that while large, com-
plex models and a vast amount of training data
are crucial for quality passage embedding’, for
query embedding it is sufficient to use smaller, sim-
pler models. With this observation, we propose a
method to trade-off latency and quality of online
query encoding for dense retrieval, reaching low
latency while preserving reasonable quality.

Specifically, we propose training two different
variations of small models for query encoding. The
first straightforward option is a small, efficient
transformer. This leads to impressive results, barely
hurting the retrieval quality, but the decrease in
online-latency is limited to 12x, reaching 2.1 mil-
liseconds. To extend our solution and also deal with
cases where a more significant decrease in online
latency is needed, we propose using an RNN-based
model. As mentioned above, queries tend to be
short, making RNNs a viable option.

Apart from being efficient, the RNN architecture
offers another benefit for online latency. Since an
RNN processes tokens sequentially, the system can
feed the model with the prefix of the query as it is
typed by the user. When the user issues the query,
the model only needs to process its last word. This
method is denoted as incremental inference in this
paper, and is able to further reduce online-latency.
Our smallest proposed model reaches a 38 x drop
in latency compared to the baseline, with an online
latency of only 0.7 milliseconds running on a CPU,
while also achieving competitive quality results.
Finally, for cases where online-latency is of utmost
importance, we suggest a method to practically
nullify the contribution of query-encoding to the
online-latency at the cost of ~ 4 rise in compute.

2 Design

We want to train a dual encoder system composed
of a small and efficient query encoder and a stan-
dard larger transformer passage encoder. We are
not interested in the training procedure of the large
encoder, which was already studied thoroughly.
Therefore, we assume one is available.

We denote by T, the large Transformer en-
coder, and S, as the small query encoder (either
a smaller transformer, or an RNN). Even though
the passage and query encoders cannot share all
their weights due to their different sizes and archi-

3Gao et al. (2020) show that in order to properly distil an
encoder for retrieval a vast amount of data is needed.

44

tectures, we opt to keep the token embeddings of
both models tied. This ensures that a token has the
same “meaning” in both models (Dong et al., 2022).
This decision is further discussed in Appendix A.
To train the efficient query encoder we operate in
stages, as detailed in this section.

2.1 Pretraining via Distillation

A large encoder T, trained for passage and query
encoding, is available. Thus, we use it as a teacher
to the smaller S,. We train S, to imitate the em-
beddings 7., generates for all queries in the train
set. We use a standard cosine similarity loss, push-
ing the embeddings generated by .S, towards the
embeddings generated by T¢,,.. We pretrain for 10
epochs, as discussed in Section 4.4.1.

2.2 Training on Labeled Data

The large passage encoder T, and the small query
encoder, starting from the pretrained Sy, are trained
for dense retrieval. We use the standard training
procedure of (Gao and Callan, 2022), including
the selection of negative samples and other hyper-
parameters. Further details appear in Appendix B.

2.3 Small Model Architectures

RNN. In this work we use a GRU (Cho et al., 2014)
as the architecture of S;. In order to increase the
capability of the network, we consider models with
different capacities by stacking multiple recurrent
networks together and adding a feed-forward (FF)
layer on top of the embedding generated for the
last token of the query. This, of course, comes with
a latency cost. The FF network is defined as:

FF(x) =
Layer Norm(x + Wa(Gelu(W1 - x + by) + be)

Small Transformer (ST). When using a trans-
former based model to implement S,, we use a
BERT-like architecture with different number of
layers. We initialize the model from the first layers
of the pretrained encoder Tpy,.

3 Incremental Inference with RNNs

When using an RNN to encode a token-sequence,
the encoding of the prefix of tokens is independent
of the rest of the tokens:

RNN(pref + suff) = RNN(RNN(pref), suff)

This property enables incremental encoding of user
queries before they are fully composed. Upon

query completion, encoding only the remaining
part accelerates encoding and minimizes latency.

However, while the model can encode tokens
incrementally, the tokenization process is not inde-
pendent of the prefix. For example, while hell
is a prefix of hello, their token representations
are not. Luckily, word boundaries (e.g., a space)
are not crossed by the tokenizer, so prefix encoding
can immediately be applied when coming across
such a boundary. When the user issues the query,
only the last word has to be encoded.

A single word can span multiple tokens (e.g.,
‘cephalosporin’ consists of 5 tokens), necessitating
multiple inference steps. Still, in the MS MARCO
dev set queries, the last word’s token count per-
centiles (p50, p90, p95, and p99) are 1, 2, 3, and
4 (respectively). In complete queries the same per-
centiles correspond to 9, 12, 14, and 18 tokens.
This suggests that by only processing the last word
of a query on the critical path of inference, we can
significantly reduce the latency. Note, the current
Guinness record for fast typing is 212 words per
minute®, or 283ms per average word. As our com-
putation speed per word is significantly smaller,
computations of the query prefix are done before
the last word is issued. While this approach could
increase overall computation time’, in most cases
the latency of the critical path is more important
than overall latency. Section 4.1 shows that incre-
mental encoding can vastly reduce this measure.

3.1 Extreme Incremental Encoding

There are cases where reducing latency is drasti-
cally more important than computation cost. As-
suming that the user has to hit the Enter key to
initiate the search, we show that by encoding each
intermediate string, each requiring a single RNN
computation step, the query encoding can be com-
puted before the user hits Enter, practically trans-
lating to an online latency of 0.
We start by stating a property of tokenizers:

Property 1 For every string S and non-space char-
acter c, the tokenization of S + c consists of a se-
quence of tokens T such that T[: —1] corresponds
to the tokenization of a prefix of S.

Thus, adding a single character to a string corre-
sponds to adding just a single token to a prefix of
the computed tokens. Assuming we store the em-

®https://www.academyoflearning.com/blog/the-fastest-
typists-in-the-world-past-and-present
"The overhead of invoking PyTorch is non-negligible.

45

@ coCondenser v RNN(2,0) ST(2) L]
20 | RNN(1,0) v RNN(21) x sT(3)
¥ RNN(1,1) ® ST(1) ST(4)
104 @
_ 3)
%] x
E
- 51 (2)
(9]
c
]
(1]
3 @
2.1)
v
2,011
N 9a.D
w0
0355 0360 0365 0370 0375 0.380
MRR@10

Figure 1: Illustrating the quality (MRR @ 10) - latency
(in milli-seconds) tradeoff. x represents the small trans-
formers architecture, V represents the RNN architecture.

beddings of all token prefixes, the embeddings of
the tokens of the new string can be computed with
a single RNN step. We note that the encodings
generated by this process are equivalent to those
generated by the vanilla RNN approach. There-
fore, result presented in Section 4.1 for the RNN
models are reached by this method as well, with
an online latency of 0. However, this incurs a com-
putational cost, as we encode every possible prefix
of the string. The number of steps grows by a fac-
tor equal to the number of non-space characters
divided by the number of tokens in the query. In
MS MARCO, this is equal to ~ 4x compared to
the vanilla RNN approach.

4 Experiments

Our models are based on the Tevatron framework
(Gao et al., 2022) and therefore coCondenser is
the main baseline we compare to. For complete-
ness we also include the results of BM25, DPR
(Karpukhin et al., 2020) and ANCE (Xiong et al.,
2021). We follow many previous works and train
and test our methods on the MS MARCO dataset
(Nguyen et al., 2016) using M RRQ@10 as the main
metric and R@50/1000 as complementary metrics,
and on the NQ dataset (Kwiatkowski et al., 2019)
using R@5/20/100 as metrics. For T¢,. we use
the pretrained version of coCondenser, trained on
the MLM task in a retrieval-friendly way. S, is
implemented both using an RNN model and a ST
model as described in Section 2. We denote by
RNN(, f) an RNN model with ¢ layers and f feed-
forward layers. ST(¢) is an ST model with ¢ layers.

Query encoder 95 Params MS-MARCO Natural Question

y P MRR@10 R@50 R@lk | R@5 R@20 R@100
BM25 - - 18.7 - 85.7 - 591 737
DPR 2681 110 - - - - 744 853
ANCE 26.81 110 33.0 - 95.9 - 81.9 875
coCondenser | 26.81 110 | 382 86.5 984 | 758 843 89

RNN(1,0) 070 274 35.5 82.6 97.0 | 6745 8036 8745
RNN(1,1) 107 321 36.2 83.8 978 | 67.64 8113 88.11
RNN(2,0) 110 309 36.1 841 978 | 6839 8041 8772
RNN(2,1) 165 356 36.5 84.6 979 | 6861 8124 8825
ST(1) 21 315 36.2 837 977 | 685 8119 88.03
ST(2) 444 386 37.2 856 983 | 69.88 8213 88.69
ST(3) 699 457 37.1 862 983 | 7094 8232 88.64
ST(4) 931 528 373 865 984 | 71.82 8315 88.86

Table 1: Online latency vs quality of different query encoder models. Number of parameters is reported in millions.
Online latency is measured in milliseconds and the p95 percentile is reported.

4.1 Main Results

Main results are provided in Table 1.8 Using a
small query encoder can indeed be very rewarding.
For example, on the MS-MARCO dataset reduc-
ing the query-encoder from the standard 12-layer
transformer to a 2-layer transformer drops latency
by ~ 6x for only a modest drop in the M RRQ10
score (from 38.2 to 37.2) and barely any change
in the Recall@1000 measure. On a different note,
in Figure 1 it can be seen that the RNN methods
are highly effective in extending the latency/quality
trade-off curve. While the smallest transformer can
reduce ~ 12X in latency compared to the base-
line with a drop from 38.2 to 36.2 in M RRQ@10
score, the smallest RNN model extends the drop in
latency to ~ 38 reaching 35.5 M RRQ10 score.
A similar trend can be seen in the results for NQ,
with a slight difference in behavior at the top and
bottom of the lists metrics. We further elaborate on
this topic in Section 4.2.

4.2 Fine-grained Topical Understanding

Table 2 compares the fine-grained topical under-
standing of our smallest architecture, RNN(1,0),
with that of coCondenser. As expected, the smaller
models are less capable in capturing more complex
nuances, affecting its R@k scores for small k-s.
Yet, it is interesting to note that its performance is
almost on-par with that of coCondenser for large k-
s, showing impressive coarse-grained understand-
ing. Another observation is that the performance

8For brevity, we report only the 95" percentile as the
latency measure in this table. Extended latency results and
measurements can be found in Appendix C, where it can be
seen that trends are kept across all percentiles.

46

R@k | MS-MARCO NQ

1 92% 88%
5 93% 89%
10 94% 93%
20 95% 95%
50 96% 96%
100 96% 98%

Table 2: Performance of RNN(1,0) measured in percent-
age w.r.t. the performance of coCondenser.

of the small models follow a similar trend on both
datasets, with some advantage in MS-MARCO at
small k-s and a slight advantage in NQ at large k-s.

4.3 RNNs Dependence on Query Length

A concern one might have regarding using RNN
models as query encoders, due to the recursive
inference process of RNNs, is that the encoding
quality will drop significantly for longer queries.

To measure whether quality drops (more than the
baseline) when the query becomes longer, we com-
puted the quality drop for each query by subtract-
ing the M RRQ10 score of an RNN model from
the score of the coCondenser baseline, computed
on the MS-MARCO dataset. We then compute
Pearson correlation between the score drop and the
query length. We found that the correlation is only
0.018 and 0.045 for the RNN(1,0) and RNN(2,0)
models respectively. These results suggest that the
RNN architecture is capable of computing qual-
ity embeddings even for the longer queries in the
dataset.

Epochs | MRR@10
| ST(2) | RNN(2,1)

0 34.1 31.5

5 37.2 36.5

10 37.3 36.6

15 37.3 36.7

Table 3: Pretraining effect.

model type passage embeder ‘ MRR@10
RNN pretrained_coco 0.362
RNN fine-tuned_coco 0.353
transformer pretrained_coco 0.372
transformer fine-tuned_coco 0.362

Table 4: Starting the retrieval training from a trained/pre-
trained passage encoder model.

4.4 Ablation Study

We study some of the design decisions made when
training the models. Specifically, we discuss the
pretraining procedure and the teacher model used.

4.4.1 Pretraining

Table 3 shows that the pretraining procedure de-
scribed in Section 2.1 improves the MRR@10
scores. For the RNN-based models, pretraining
is especially important. This makes sense as pre-
trained RNN weights are not available for initial-
ization, as opposed to the transformer which is ini-
tialized from the first layers of a pretrained model.

4.4.2 Teacher Selection

Training S, relies on a teacher model. The main
results uses a pre-trained version of coCondenser
as the teacher 7%, which utilizes a self-supervised
MLM training. An alternative option would be to
utilize the fine-tuned coCondenser model, trained
on ground truth labels. On one hand, starting from
a well trained model may result in converging to
a better model, but on the other hand, it might
result in overfitting the training data. We report
results both on the RNN architecture (with 2 RNN
layers and without feed-forward layers) and the
transformer architecture (2 layers) in Table 4. It
can be seen that the encoders benefit from learning
the retrieval task simultaneously, as opposed to
starting the training from a well-trained passage
encoder and an untrained query encoder.

47

5 Conclusions

In this paper, we point out that queries are signifi-
cantly shorter and simpler than passages, suggest-
ing that using similar architectures for both passage
and query encoders might be wasteful. Indeed, we
show that small transformer-based query encoders
improve latency with only a minor hurt to qual-
ity. We also introduce incremental inference with
RNN-based encoders, and show they produce an
even lower latency, better suited for cases where
latency is highly constrained. Again, we show this
improvement in latency comes with only a small
drop in the quality of the generated embeddings.

6 Limitations

While incremental inference with RNNs drops la-
tency significantly when running on CPUs this is
not the case when using GPUs. The overhead of
calling the GPU is high compared to the embedding
time; in addition, GPUs are not well optimized for
the RNN architecture. This means that the bene-
fit of the proposed method is limited. CPUs are
often used for retrieval as discussed in Section 1,
but there are cases where GPUs are used in which
RNN-based architectures are expected to give a
lesser gain.

Another limitation of our method is that it re-
quires running two training procedures. First, train-
ing a large encoder, and only after it is trained
we can start the pretraining and training procedure
of the smaller query encoder. Furthermore, since
training the query encoder involves inferencing pas-
sages (using a larger passage encoder) the training
time of a small model is very similar (~ 10 hours)
to the training time of the large transformer. Never-
theless, since online query encoding can run a vast
amount of time and the query encoder is trained
once, in most cases we believe this is a price worth

paying.

References

Xuanang Chen, Ben He, Kai Hui, Le Sun, and Yingfei
Sun. 2021. Simplified tinybert: Knowledge distil-
lation for document retrieval. In Advances in In-
formation Retrieval - 43rd European Conference on
IR Research, ECIR 2021, Virtual Event, March 28 -
April 1, 2021, Proceedings, Part II, volume 12657 of
Lecture Notes in Computer Science, pages 241-248.
Springer.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. In Proceedings of SSST@EMNLP 2014,
Eighth Workshop on Syntax, Semantics and Structure
in Statistical Translation, Doha, Qatar, 25 October
2014, pages 103-111. Association for Computational
Linguistics.

Zhe Dong, Jianmo Ni, Dan Bikel, Enrique Alfonseca,
Yuan Wang, Chen Qu, and Imed Zitouni. 2022. Ex-
ploring dual encoder architectures for question an-
swering. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9414-9419.

Yuwei Fang, Shuohang Wang, Zhe Gan, Siqi Sun,
Jingjing Liu, and Chenguang Zhu. 2020. Accelerat-
ing real-time question answering via question gener-
ation. arXiv preprint arXiv:2009.05167.

Thibault Formal, Benjamin Piwowarski, and Stéphane
Clinchant. 2021. SPLADE: sparse lexical and

expansion model for first stage ranking. CoRR,
abs/2107.05720.
Luyu Gao and Jamie Callan. 2021. Condenser: a

pre-training architecture for dense retrieval. arXiv
preprint arXiv:2104.08253.

Luyu Gao and Jamie Callan. 2022. Unsupervised cor-
pus aware language model pre-training for dense pas-
sage retrieval. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2843-2853,
Dublin, Ireland. Association for Computational Lin-
guistics.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2020. Un-
derstanding BERT rankers under distillation. In IC-
TIR °20: The 2020 ACM SIGIR International Confer-
ence on the Theory of Information Retrieval, Virtual
Event, Norway, September 14-17, 2020, pages 149—
152. ACM.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.
2022. Tevatron: An efficient and flexible toolkit for
dense retrieval. CoRR, abs/2203.05765.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng,
David Simcha, Felix Chern, and Sanjiv Kumar. 2020.
Accelerating large-scale inference with anisotropic
vector quantization. In International Conference on
Machine Learning.

48

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021.
Billion-scale similarity search with gpus. IEEE
Trans. Big Data, 7(3):535-547.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 6769—6781. Associa-
tion for Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Trans. Assoc. Comput. Linguistics, 7:452—
466.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Min-
ervini, Heinrich Kiittler, Aleksandra Piktus, Pontus
Stenetorp, and Sebastian Riedel. 2021. Paq: 65 mil-
lion probably-asked questions and what you can do
with them. Transactions of the Association for Com-
putational Linguistics, 9:1098-1115.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated machine
reading comprehension dataset. In Proceedings of
the Workshop on Cognitive Computation: Integrat-
ing neural and symbolic approaches 2016 co-located
with the 30th Annual Conference on Neural Infor-
mation Processing Systems (NIPS 2016), Barcelona,
Spain, December 9, 2016, volume 1773 of CEUR
Workshop Proceedings. CEUR-WS.org.

Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur
Parikh, Ali Farhadi, and Hannaneh Hajishirzi. 2019.
Real-time open-domain question answering with
dense-sparse phrase index. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4430-4441, Florence, Italy.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998—-6008.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. 2021. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In 9th International Conference on Learning

https://doi.org/10.1007/978-3-030-72240-1_21
https://doi.org/10.1007/978-3-030-72240-1_21
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
http://arxiv.org/abs/2107.05720
http://arxiv.org/abs/2107.05720
https://doi.org/10.18653/v1/2022.acl-long.203
https://doi.org/10.18653/v1/2022.acl-long.203
https://doi.org/10.18653/v1/2022.acl-long.203
https://doi.org/10.1145/3409256.3409838
https://doi.org/10.1145/3409256.3409838
https://doi.org/10.48550/arXiv.2203.05765
https://doi.org/10.48550/arXiv.2203.05765
https://arxiv.org/abs/1908.10396
https://arxiv.org/abs/1908.10396
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://doi.org/10.18653/v1/P19-1436
https://doi.org/10.18653/v1/P19-1436
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln

Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and IJi-
Rong Wen. 2022. Dense text retrieval based on pre-
trained language models: A survey. arXiv preprint
arXiv:2211.14876.

A Tying the Passage and Query Encoders
Embeddings

In this section we provide justification for our deci-
sion to tie the token embeddings of the passage and
query encoders. This decision can be split into two;
For the transformer based models, that are loaded
from the first layers of some pretrained model, it
is not very significant. Experiments show that ty-
ing the embeddings has very small effect on these
models (e.g. for a 2-layer transformer M RR@10
results increase from 37.25 to 37.28). On the other
hand, we do not have available pretrained models
to initialize GRU-based models. Tying the embed-
dings allows us to transfer some of the knowledge
acquired during the pretraining of the transformers
to the GRU models. Further, if a dev query con-
tains a token that does not appear at all in the train
set, during testing on the dev set the token embed-
ding will be totally random, and the model will
not be able to correctly encode the query. Indeed,
experiments show that for the GRU-models tying
the embeddings is extremely important as without
doing so they have a hard time to converge.

B Training Procedure

This work does not focus on the training procedure
of the model. Thus, we chose to utilize the popular
training procedure of (Gao and Callan, 2022). For
completeness we provide the technical details of
their procedure in this section.

We assume we have at hand a pre-trained model.
The procedure starts by retrieving hard negative
examples using a model denote by 57 (described
below). Then, our model is trained for three epochs
and a batch size of 64 using a contrastive loss. We
used the AdamW optimizer with a 5e — 6 learning
rate and a linear learning rate schedule.

The model 5 is trained using the same training
procedure. It only differs in the set of negative
samples used. Specifically, when training 57 the
negative samples are retrieved by BM25.

49

C Complete Latency Report

In Table 5 we give a full latency report. For each
model we report latency in milliseconds of 50,
90, 95 and 99 percentiles. We report both online-
latency (marked as pX) and full latency (marked as
pXf). Online and full latency differ only For RNN-
based models where online latency is considered
as latency when applying incremental inference
as described in Section 3. We measure latency
on a c6i.2xlarge EC2 machine featuring Ice Lake
processor with 8 hyperthreads. Each evaluation is
repeated 1020 times, and we discard the first 20 to
allow the model to warm up. We report the average
of the remaining runs. We note that utilizing a GPU
typically requires provisioning a separate machine
with a GPU. Since network latency is above 5ms,
this does not decrease the total inference cost, so
we avoid measuring it here.

Encoder Layers FF Layers ‘ Params ‘ p50 p90 p95 P99 ‘ pS0f p9of p95f p99f
BERT 12 NA ‘ 110 ‘ 21.05 23.69 26.81 25098 ‘ 21.05 23.69 26.81 2598
GRU 1 0 274 043 058 070 0.84 1.2 .52 1.66 2.04
GRU 1 1 32.1 087 099 1.07 123 | 1.66 199 223 253
GRU 2 0 30.9 0.66 090 1.10 143 | 230 285 324 4.09
GRU 2 1 35.6 .19 149 165 197 | 284 360 3.89 4.67
Transformer 1 NA 31.5 1.6 191 210 229 1.6 191 210 229
Transformer 2 NA 38.6 353 4.03 444 470 | 353 403 444 470
Transformer 3 NA 45.7 569 623 699 783 | 569 623 699 7.83
Transformer 4 NA 52.8 748 823 931 933 | 748 823 931 933

Table 5: Full latency report.

50

