ATG: Benchmarking Automated Theorem Generation for Generative
Language Models

Xiaohan Lin! Qingxing Cao'*, Yinya Huang?, Zhicheng Yang?,

15

Zhengying Liu*, Zhenguo Li*, Xiaodan Liang'®*,

!Shenzhen Campus of Sun Yat-Sen University

2City University of Hong Kong

3The Hong Kong University of Science and Technology (Guangzhou)

4Huawei Noah’s Ark Lab

SDarkMatter Al Research

{1inxh55, caogx}@mail2.sysu.edu.cn, {yinya.huang}@hotmail.com

{yangzhch6, xdliang328}@gmail.com, {liuzhengying2, Li.Zhenguo}@huawei.com

Abstract

Humans can develop new theorems to explore
broader and more complex mathematical re-
sults. While current generative language mod-
els (LMs) have achieved significant improve-
ment in automatically proving theorems, their
ability to generate new or reusable theorems is
still under-explored. Without the new theorems,
current LMs struggle to prove harder theo-
rems that are distant from the given hypotheses
with the exponentially growing search space.
Therefore, this paper proposes an Automated
Theorem Generation (ATG) benchmark that
evaluates whether an agent can automatically
generate valuable (and possibly brand new) the-
orems that are applicable for downstream the-
orem proving as reusable knowledge. Specif-
ically, we construct the ATG benchmark by
splitting the Metamath library into three sets:
axioms, library, and problem based on their
proving depth. We conduct extensive experi-
ments to investigate whether current LMs can
generate theorems in the library and benefit
the problem theorems proving. The results
demonstrate that high-quality ATG data facil-
itates models’ performances on downstream
ATP. However, there is still room for current
LMs to develop better ATG and generate more
advanced and human-like theorems. We hope
the new ATG challenge can shed some light on
advanced complex theorem proving.

1 Introduction

Recent generative language models (LMs) can
perform advanced mathematical reasoning includ-
ing automated theorem proving (ATP) (Polu and
Sutskever, 2020) where the LMs need to provide a
proof for a given theorem. Some studies (First et al.,
2023) use the LMs to perform all-at-once genera-
tion to obtain the proof, while another line of work
(Polu and Sutskever, 2020; Han et al., 2021) lever-
ages multi-step generation and combines reinforce-
ment learning (Lample et al., 2022), expert iteration

* Corresponding author.

8 You are an expert in Metamath. Now I will give you a set of basic axioms:
ax-mp:A&(A—B)=>B
ax-1:A— (B—A)
ax-2:(A—-B—(C)—>(A—B)—(A—0Q)
ax-3:("A— —B) —» (B —A)
please generate a intermediate theorem so that we can prove the proposition A — A

@ Based on the given axioms, we can generate an intermediate theorem as follows:
Intermediate theorem (A —» (B - A)) & (A— (B—A) —~A—A) >A—A
We would first prove (A — (B — A) — A — A) , and then using that, prove (A — A).

Let's do the derivation:

Proof: X mismatch
1.A— (B— A) by ax-1

2.(A— (B —A) — ((A—B)— (A—A)) by ax-2

3.(A— B) — (A — A) by Modus Ponens (1, 2), by ax-mp

Then, this gives us our intermediate theorem ((A — B) — (A — A)) which can be
used to prove A — A.

We prove A — A as follows:

4(A->A) > (A>A)byax- X incorrect

5. A — A by Modus Ponens (3, 4), by ax-mp

Thus, A — A is proven.

8 A possible ground truth:
1. A—(A—A)byax-1
2. A= ((A—A)—A)byax-1 intermediate
3. A= (A—A)—A) > (A>(A—A) > (A—>A)byax-2 © theorem
4. (A— (A— A)) — (A— A) by Modus Ponens (2, 3), by ax-mp
5. (A— A) by Modus Ponens (1, 4), by ax-mp

J

Figure 1: An example theorem generated by GPT-4
(OpenAl, 2023). GPT-4 wrongly refers to the inter-
mediate theorem (A — (B — A) - A — A) as
((A— B) —» (A — A)). In Step 4, it applies “ax-
17’ but obtains the wrong expression instead of correct
(A — (B — A)) and can not derive (A — A) even
with the incorrect Steps 4 and 5.

(Polu et al., 2023; Wang et al., 2023), or reflection
techniques (Yang et al., 2023) to simulate the multi-
step search process. Given the models achieve
some complex theorem proving, a shared limitation
is their inability to reuse sub-propositions while
proving or developing new theorems as humans do,
which also leads to redundant proving processes
and low efficiency.

One demonstration is shown in Figure 1. Given
a basic propositional logic system (as shown in
the top box), GPT-4 struggles deriving the ba-
sic proposition (A — A) (shown in the second
box). Although GPT-4 being the most advanced
language model performs formal logical reasoning
to a certain extent (Yang et al., 2023), in this case, it
wrongly refers to the intermediate theorem in Step
3 and axioms in Steps 4 and 5. This case suggests
an overlooked performance gap between LMs and

4465

Findings of the Association for Computational Linguistics: NAACL 2024, pages 4465-4480
June 16-21, 2024 ©2024 Association for Computational Linguistics

Axiom
Flo=>-9)> 1> 9)

Fo & Flp>1Y)
Fle>Woe) s ey

ax-1 ax-mp

1
1
1
1
1
1
1
1

N
Theorem *\
\

pm2.21dd
“o-v
SRR
proof

Lo | ommertion | wer | on |
1

1 1
1 1
! ' Fle—v) hypol
i i 2 Flp - —y) hypo2
H ' 3 F g pm2.65i 1,2
1 1 2 L Vs A\ £l
| 1 E: X) ax—T
1 1 C L (o~)
H | S A T X 374
| pm2. om2. 654 | Yk et 3 —are—3
T ! 7 F—p—¢ R 56
N)
: = H(p->1Y) :Ezzlﬁ,})& : Geherate 4 Fe—->x pm2.21i 3
1 | .
! = -9 ! pi2.21i pm2.21i
N pm2.21dd /
N Flp>9) & Hl@=>-9) = @) e

Figure 2: Illustration of the Automated Theorem Generation (ATG) task and the process of proof reduction. Black
and green lines represent the proof and generation paths, while the red line is the new proof step. It takes 7 steps
to prove the theorem “pm?2.21dd” with given theorem “pm2.21i” and axioms while an ATG model can properly
deduce the theorem “pm?2.21i” and the total proof length of theorem “pm?2.21dd” reduces from 7 steps to 4 steps.

humans in rigorous logical and structured deriva-
tion. Moreover, current state-of-the-art neural ATP
methods (Wu et al., 2022; Wang et al., 2023) do not
reuse the searched sub-propositions in proving se-
quences. Thus they do not decompose the complex
theorems into sub-problems and still suffer from
the exponential search space.

To address the above-mentioned issues, we need
to develop the capability of an agent to automat-
ically create new and reusable theorems that are
applicable for downstream theorem proving. For
example, generating a theorem that can serve as
a general sub-problem in proofs. Moreover, such
new theorems as a data source can further facilitate
model parameter updates. However, this question
is under-explored and needs a clear problem defini-
tion and available data source.

This paper thus introduces the Automated The-
orem Generation (ATG) task, where the LMs are
required to automatically generate valuable theo-
rems when given a set of axioms, and reduce the
proof steps accordingly. Figure 2 illustrates the
ATG task. In this case, an ATG method is given
axioms (“ax-17, “ax-mp”, and “ax-3”) and should
properly deduce the theorem “pm?2.21i”, which ef-
fectively simplifies the proof by reducing the origi-
nal Steps 4-7 with the new Step 4. The proposed
ATG task has the following merits. Firstly, the for-
ward deduction process in ATG is more aligned
with text or code generation. Since the LMs have
shown impressive performance (Chen et al., 2021;
Roziere et al., 2023), the ATG task can better probe
LMs’ reasoning ability. Secondly, the generated

theorems can be used in proving other theorems,
and reduce the proof difficulties by deducing the
intermediate steps from given axioms.

Accordingly, we construct an ATG benchmark

based on the Metamath formal system (Megill and
Wheeler, 2019) and its “set.mm” library'. We also
propose new metrics to evaluate the generated the-
orems by considering the correctness, compact-
ness, and usefulness of the proving target theorems.
Furthermore, we combine the Monte Carlo tree
search method (Silver et al., 2017; Lample et al.,
2022) with LMs and train the pipeline with self-
play policy learning to generate valuable theorems.
The generated theorems, as augmented data train-
ing theorems prover, improved the performance of
Holophrasm (Whalen, 2016) and GPT-f (Polu and
Sutskever, 2020) by 16.16% (passrate@1, from
20.48% to 23.79%) and 7.72% (passrate @1, from
30.94% to 33.53%), respectively.

Our contributions are summarized as follows:

* We introduce a new Automated Theorem Gen-
eration (ATG) task and propose a new dataset.

* We define a metric that specifically evaluates
the quality of ATG which is independent of
theorem provers.

* We propose a self-play learning method and
evaluate various methods on our proposed
datasets to study the current state-of-the-art
performance of theorem generation.

* We use the generated theorems as data aug-
mentation and improve the performance of
neural theorem provers.

"https://github.com/metamath/set.mm/blob/develop/set.mm

4466

https://github.com/metamath/set.mm/blob/develop/set.mm

2 Related Work

Over the past few years, generative language mod-
els (Radford et al., 2019; Brown et al., 2020; Ope-
nAl, 2023) have achieved better mathematical rea-
soning. For example, solving math word problems
(Wang et al., 2017b; Cobbe et al., 2021; Lightman
et al., 2023), linear programming (Ramamonjison
et al., 2022; He et al., 2022), and parametric partial
differential equations (Alet et al., 2019; Anandku-
mar et al., 2019). Among the mathematical rea-
soning tasks, automated theorem proving (Irving
etal., 2016; Wang et al., 2017a; Selsam et al., 2019;
Alet et al., 2019; Roziere et al., 2020; Chaslot et al.,
2008) is one of the most challenging tasks as re-
quires the neural models to perform consistent rea-
soning and rigorous multi-step deduction. More
recent work (Polu and Sutskever, 2020) applies the
generative LM to automated theorem proving, and
following works improve the pipeline with kernel-
level proof terms (Han et al., 2021), expert itera-
tion (Polu et al., 2023), HyperTree Proof Search
(Lample et al., 2022), and sketching intermediate
theorems (Jiang et al., 2023). Such works sug-
gest a great potential for generative LMs to prove
theorems. However, a more advanced capability
of synthesizing new and provable theorems and
reusing them as intermediate proofs during proving
remains unexplored.

Synthesizing theorems and their applications are
in the preliminary research stage. Previous works
theoretically investigate theorem generation sys-
tems by executing computer programs (Johans-
son, 2009; Sutcliffe et al., 2003; Colton, 2001;
Lenat, 1977, 1976; McCasland et al., 2006; Mc-
Casland and Bundy, 2006) or by deriving from
proof schemes (Buchberger, 2004; Buchberger
et al., 2006; Montano-Rivas et al., 2012). Such
systems are barely applicable to modern neural
models. Another line of work (Wang and Deng,
2020; Wu et al., 2021; Chou et al., 2000; Lample
et al., 2022) leverages transformer-based LMs to
generate theorems. However, the quality of the
generated theorems is not guaranteed, and thus are
less beneficial for downstream applications such as
automated theorem proving (ATP). Therefore, this
work proposes a rigorous task that challenges mod-
els to perform automated theorem generation and
introduces corresponding metrics. To our knowl-
edge, this is the first work on benchmarking neural
automated theorem generation, and the resulting
synthetic theorems can be directly applied to ATP.

3 Benchmarking Automated Theorem
Generation
3.1 Preliminary with Metamath

Metamath (Megill and Wheeler, 2019) is one of the
widely used formal proof systems for proof verifi-
cation and can interact with human and language
models. It aims to describe rigorous mathematics
with simple substitution operation.

As shown in Figure 3, the upper left is an ex-
ample Metamath script, which includes the state-
ment and the proof (in a compressed form). The
upper block shows two hypotheses (denoted as
“pm2.21dd.1” and pm2.21dd.2” in line 2 and 3)
and the assertion to be proved ($p |- (ph ->ch)
$=, denoted as “pm2.21dd” in line 6). In line 7, it
also shows the referred theorems (the names of the
theorems in parentheses) and the compressed proof
sequence “ACABDEFG”. The lower block gives
the assignments of these uppercase letters.

The Metamath compiler treats the proof se-
quence as a list of operations on the proof stack.
The statements represented by these capital letters
perform push/pop operations on the proof stack ac-
cording to their type. When first encountering letter
“F”, since “F:pm2.65i” is a theorem which has four
variables (two for symbols and two for hypothe-
ses), the Metamath program pops four elements
(“ABDE”) from the stack, substitutes the “pm2.65i”
variables with (“ABDE”), returns the proved ex-
pression —) and pushes it to the stack. Metamath
program performs a similar operation when encoun-
tering the other referred theorems “G:pm2.21i”.
It substitutes ¢, ¥, 1) with first 3 stack elements
(v, x,), respectively, and then returns the sub-
stituted assertion ¢ — x. The proof is regarded as
complete once there is only one element remain-
ing in the stack and it is equal to the assertion.
Appendix A.1 describes the detailed procedure for
this proof.

3.2 Task Definition

We introduce the task of Automated Theorem
Generation (ATG), as we assume that valuable the-
orems should be applicable for further proving,
while it is intuitive that it is effortless for one to
generate numerous and random theorems.

The task is formally defined as follows. Given
an initial theorem library L = {71, T%,--- ,T,}
that consists of axioms 7T;, and a problem set
P = {P,P, - ,P,} where the problem P;
has the shortest proof p; = {t1,t9, -+ ,ty|t; €
L} deduced from the initial library L, an au-

4467

Theorem pm2.21dd

pm2.21dd

pm2.21dd.1 $e |-
pm2.21dd.2 Se |-

(ph —> ps) $.
(ph > -. ps) S.

hypol Fe—9)

$(A contradiction implies anything. ..
pm2.21dd $p |- (ph -> ch) s$=

22-Jul-2019.) §)

hypo2 F(p—)

(pm2.65i pm2.211i) ACABDEFG S.

assertion Fo—-x \

Proof

Proof Variables:
A:p B:Y C:yDi-p -y EF ¢ - ¢
F:pm2.65i G:pm2.211

step | expression ref sub

1 Flo—-1Y) hypol

Proof Stack:

2 F(p—-—Y) | hypo?2

1.AC{ABDEF}G

Substitute: (&,B,D,E)—=(¢,¥, F¢ -1, |—(p_>_,1/;)4‘ 3 |
Apply pm2.65i: F@ oY &F@ > =2F @

¢ |pm2.65i] 1,2 |

2. {AC—@G}

Apply pm2.21li:k =@ 2@ - Y

Substitute: (&,C,=@) =@, ¥, F =)

4 [re-x

|pm2.21i| 3 |

3.9 o)

Figure 3: Example of proving with Metamath script. The script and verification process are shown on the left and
the visualized proof step on the right. The script starts with defining symbols, hypotheses, and referred theorems. It
pushes variables into the stack and applies substitution when encountering theorems. The applied result is pushed
into the stack. The proof terminates when no more theorems are pushed in the stack.

tomated theorem generation algorithm G is re-
quired to expand the initial library IL to L/ =
{Th,Ts,- -+, Tn,Tpt1, -, Tnik} with new the-
orems Lg = {T,4+1, -+ ,Th+k}, such that for
problem P, € P, its shortest proof p, =
{t),th, -t |t; € L'} is shorter than p;.

3.3 Evaluation Metrics

Average Proof Reduction We propose average
proof reduction (AP R) to evaluate the generation
quality. The assumption is that shorter proofs are
preferred, (Bengio and Malkin, 2024) or else the
search space of the proof will grow exponentially
as the proof length increases, thus affecting the per-
formance of theorem proving. Besides, The proof
length of a theorem indicates its level of abstrac-
tion.

The APR metric automatically measures the
number of reduced proof steps given the expanded
theorem library I/. We first define proof distance
D(LL, P) as the average proof length from theorem
library LL to problem set IP:

1 m
D(L,P) = —> len(p:), (1)
=1

where p; is the shortest proof of problem P; € P
deduced from the library L. Recall that all prob-
lems P; has its shortest proof p; given the initial IL
and I C I, thus problem P; is always provable
with " and D(IL, P) has a feasible value. We then
define the average proof reduction (AP R) as:

APR = D(L,P) — D(L',P) — len(Lg), (2)

where the constraint term [en(L¢) restricts the
number of generated theorems L. It avoids the
models from generating too many theorems that
will increase the searching difficulty in downstream
automated theorem proving.

To distinguish whether the generated theorem
is helpful or irrelevant for theorem proving, we
introduce two evaluation criteria as follows:

1. We check whether the generated theorem
matches any theorem in the ground truth
“set.mm” library. This criterion ensures that
the generated theorem is included in the origi-
nal proof and thus certainly helps the proof.

2. We inspect if both the hypotheses and the as-
sertion in the generated theorem are consistent
with the intermediate results in the ground-
truth proof. This second criterion guarantees
that the generated theorem is a proper substi-
tution of the original proof segments.

For instance, in Figure 2, the hypothesis —¢ in
theorem “pm?2.21i” matches the intermediate Step
3, and we thus obtain the assertion ¢ — X that
matches Step 7. Therefore, the generated theorem
“pm2.21i” helps reduce Steps 4 - 7. APR is inde-
pendent of theorem provers. It only depends on
the axiom system and the amount of information
in the theorem library. As a result, this metric can
be generally applied to ATG evaluation.

Human-Aligned Precision We consider the
human-written theorems in the “set.mm” library
as the standard and anticipate that the generated
theorems should align with human-written ones.

4468

Axioms L ax-1 ax-2
(

- § 6T

Ve
depth 2 . .
Train syl / adantr Test
Theorem . Theorem
Library ’ Library

depth 1

simpl

depth k

Test
Problem

/ P

euim

Train
Problem
P

\¥i2/14d

Figure 4: The construction process of the ATG bench-
mark. Each node is a theorem in “set.mm” and edges
represent if a node refers to another in its proof. We
assign each node a depth and use it to split the theorem
library I and IP. Lastly, we select the red node and use
all its successor nodes for testing.

pm3.41

Thus we compute the precision of generated theo-
rems set L over “set.mm” Ly,:

Precision = len(Lg ULp)/len(Lg). (3)

Theorem Count To further investigate the extent
to which a model expands the initial theorem li-
brary and generates how many theorems, we also
evaluate the theorem count. The measure is the
direct len(Lg).

3.4 Dataset Construction

We construct the ATG benchmark based on the
Metamath formal language (Megill and Wheeler,
2019) and its “set.mm” set. The “set.mm” library
comprises ~ 38k human-written theorems. To cre-
ate a dataset that consists of concise, fundamental,
and high-quality theorems while encompassing a
broad range of theorems, we focus on a subset
of around 2,000 theorems specifically related to
propositional calculus. To evaluate the reasoning
ability of a generation method G at different levels,
we further construct “wb”, “wif”” and “minimp”, 3
datasets with different complexity. We construct a
directed acyclic graph of theorems for each dataset,
and split the theorem library and problem set ac-
cording to the depth of the theorem in the graph.
As shown in Figure 3, a theorem proof in "set.mm"
involves references to hypotheses and other proven
theorems. Using the reference relations, we cre-
ate a directed graph that illustrates how a theorem

Axioms & Theo- Set Split Theorem Problem

Dataset Hypotheses rems Type Depth Library Set
train 10 82 32
wb 83 T et 20 54 21
. train 33 518 220
wif #3900 21 88
- train 36 754 298
nimp 373 2048 st 40 441 182

Table 1: Statistics of proposed ATG datasets.
100
B Depths
90 Tokens
BN References
80
70
60

50

40 A

wb wif
Datasets

minimp

Figure 5: Statistics of proof depth, tokens, and referred
theorems of test theorem library.

is deduced from the axioms. As demonstrated in
Figure 4, we represent each “set.mm” theorem as a
node, then draw an edge from referenced theorem
A to B to indicate B is proved with A. The resulting
directed acyclic reference graph encompasses all
theorems connected to the axioms. The depth of
each theorem node is assigned based on its longest
distance to the axiom nodes. For example, the ax-
iom “ax-1” has depth 0, and theorems “ali”, “syl”
have depth 1 and 3.

We build the initial theorem library I with ax-
ioms. Then, theorems with depth less or equal to k
are assigned to theorem library I’, and the others
are assigned to problem set P. Lastly, we split the
training and testing theorems mostly randomly with
balanced sample numbers such that the training and
test set have minimum overlap library I/, problem
set IP, and corresponding proof path p. More details
on constructing the dataset are described in A.2.

3.5 Dataset Statistic

As demonstrated in Table 1, the “wb” dataset con-
tains 83 axioms and hypotheses, and “wif” and
“minimp” dataset contains 247 and 373, respec-
tively. More statistics of the test theorem library
in Figure 5 show a large variance across all three
datasets. Theorems in the “wb” dataset have a rela-
tively low depth (max=18, min=4, average=13),

4469

’ Action Space
ax-2 ax—l ax-mp ax—-3

n(als)

SV

1
1
1
1
1
1
1
i
1
| — PUCT(s,a)
1
1
1
1
1
1
1
1
1
)

Figure 6: Overview of single-step expansion by our proposed method MCTS+pvn. We use the proof stack as state
and applicable axioms or hypotheses as action. We use a language model and graph network to encode states and
actions for obtaining PUCT scores. State-action pair with the highest PUCT is expanded to the next state.

while “wif” and “minimp” have higher depths

“wif” average=34 and “minimp” average=35). On
the other hand, the token numbers of the statement
of the theorem do not differ much across the three
datasets, indicating similar difficulty for LMs to
generate a single theorem. Moreover, the number
of references is 9 for both the “wif” and “minimp”
and 7 for “wb”. More details of the dataset statisti-
cal information are shown in Appendix A.3.

4 Self-Play Policy Learning

In this section, we propose a theorem generation
method based on Monte Carlo tree search and self-
play learning. We use the current proof stack as a
state and act to apply one possible axiom, hypoth-
esis, or theorem. Starting with an empty state, we
iteratively select a state and action to expand based
on policy/value network (pvn) output until a valid
proof or maximum length is reached. During train-
ing, we sample state-action/state-value pairs with
policy/value networks and use the sample pairs as
supervised signals.

Action Actions are axioms or hypotheses that
can be applied during theorem generation. We use
a subset of possible actions during each genera-
tion. Specifically, the sub-action space includes all
axioms and all symbols such as ¢, 1, x. We ran-
domly add 5 theorems from the current generated
theorem library L} and then sample 5 hypotheses
from proof of the selected theorems. We further
build a graph indicating their referring relation, as

shown in Figure 6.

State The state represents the current proof stack.
As shown in Figure 6, we start with an empty state
“{}” sg. If we apply action ¢, then the resulting
state s1 is “@”. Further applying action %) and
“ax-17, we obtain the state s5 = {(, 1, ax-1} and

reduce to ¢ — .
Monte Carlo Tree Search We expand the initial

empty state iteratively until we reach a valid proof

or a maximum step. Figure 6 shows the process of
one-step expansion. At each step, we first obtain
the policy probability and value for all state-action
pairs. Specifically, we apply GPT2-large (Radford
et al., 2019) to encode the action history with spe-
cial prefix tokens. For example, to encode state
s3, we input sequence “[CLS] PROOFSTEP wph
wps” to the LM, where “[CLS] PROOFSTEP” is
the prefix and “wph” and “wps” represent ¢ and ¢
in Metamath. We also use a graph convolution net-
work (Kipf and Welling, 2017) to encode the action
and their relations. The action features are then
concatenated with the state feature, then flattened
and fed into a fully connected layer to obtain the
value of current state v(s, a) and the policy prob-
ability 7(a|s) for all possible actions. Given the
policy 7(als) and the value v(s, a), we obtain the
PUCT (Silver et al., 2017) scores:
S, N(5,b)

1+ N(s,a)’
where c is a factor to balance exploration and ex-
ploitation and N (s, a) is the visit count for state-
action pairs (s, a). N(s,a) adds 1 if its descendant
nodes are expanded at current step.

PUCT(s,a) = v(s,a) + cn(s,a) 4)

Reward and Theorem Generation The search
stops once it reaches a valid proof or a maximum
step. We give a state reward 1 if it is a new theorem
T or 0 otherwise. At each episode 7, we repeat
the search process with the same sub-action space,
and select the most value theorem 7; for theorem
library expansion:

T, = arg II%H D(LL; U{T;}, Perain),

Li < Liy U{T3}, 5)
where IL{, = LL is the the initial theorem library. We
stop expand L/ if the model in episode ¢ does not
generate any new theorem.

Self-Play Learning We use its own policy and
value networks to perform theorem generation to

4470

Methods wb wif minimp

len(Lg) APR?T Precisiont | len(Lg) APRT Precisiont | len(Lg) APRfT Precisiont
BPE 66 21.41 15.79 504 53249 44.26 697 662.23 46.88
Random 129 1.66 0.00 407 32.67 0.00 136 61.21 0.00
MCTS 3384 2998 0.00 22585 456.04 0.00 28870 530.73 0.00
MCTS+pvn 3697 34.56 1.85 30184 482.81 1.18 35798 548.89 0.77

Table 2: Performance for BPE, random search, MCTS, and MCTS+PVN methods on wb, wif, minimp datasets.

Generated theorems

30000 T random
== MCTS
= MCTS+pvn

25000
20000
15000
10000

5000

0 10 20 30 40 50 60
Episode

Figure 7: Number of generated theorems across genera-
tion episodes.

assist training. During each training iteration, we
first perform theorem generation 100 times with
current policy/value network parameters. For all
search results, we back-propagate the reward to the
ancestors with a discount factor ~ to obtain (state,
value) pairs. We also count the action frequencies
of all traveled states and obtain the (state, action)
probabilities. We also use the theorems in training
library IL” as successful search results and obtain
(state, action) (state, value) in the same way. All
obtained (state, action) are used to train the policy
network with KL divergence loss, and (state, value)
are used to train the value network with MSE loss.

Inference During inference, the algorithm starts
from an empty stack and uses a neural network for
predicting the 7(a|s) and v(s, a). Then the PUCT
value is calculated using Equation 4. We then per-
form MCTS to select the optimal node and execute
the corresponding action. We use Metamath rules
to determine whether a new theorem is generated:
If so, update the theorem library according to Equa-
tion 4, and enter the iteration of the next episode; If
no, regenerate the theorem from an empty stack.

5 Experiments
5.1 Baseline Methods

In addition to our proposed MCTS+pvn trained
with self-play, we also evaluate three baseline meth-

Episode 1
I == e
1 wff e wph
2 wff - wn
Episode 38
] e (e
1 @ hypol
2 Flp-Y) hypo?2
3 F@-ox hypo3
4 Y ax-mp 1,2
5 =X ax-mp 4,3

Generated theorem

-

hypo2 | (¢ -)

hypo3 F@W -

Figure 8: Example theorems by MCTS+pvn. This is
the exact theorem “mp2b” in the “set.mm” library.

ods: The random search policy, traditional Monte
Carlo tree search (MCTS), and a Byte Pair En-
coding (BPE) based statistical method. Note that
BPE retrieves theorems from the human-written
library I” as an approximation of human perfor-
mance. Details of baseline models are introduced
in Appendix A.4 and the details of implementation
are demonstrated in Appendix A.S.

5.2 Main Results

The compared theorem generation abilities are
demonstrated in Table 2. We have the following ob-
servations: (1) Random search policy suffers from
poor performance as it lacks any form of intelligent
decision-making, generating only a few basic theo-
rems and they do not overlap with the human theo-
rem library. (2) MCTS policy gradually improves
its search efficiency and can make informed choices
by leveraging the information gathered from previ-
ous simulations. (3) MCTS+pvn helps to improve
search efficiency and decision quality by incorpo-
rating learned knowledge and heuristics into the ex-
ploration and exploitation process. In general, com-
pared with the human-approaching BPE method,
current methods show significant performance gaps
and still struggle to synthesize theorems as humans.

4471

Cpuct 0.0 0.1 0.3 0.5 1 3 5 10 100
len(Lg) 11645 24883 30184 27921 26325 25583 22847 20453 16840
APR? 30427 413.85 48281 452.65 40731 39542 37583 33433 335.18
Precision? 0.36 0.89 1.18 1.03 0.91 0.91 0.82 0.75 0.63
Table 3: Performance of different ¢, values.
Training data Prover Pass (%) Model params APR delta
set.mm Holophrasm 20.48 BERT-base 104M 407.85
set.mm + MetaGen Holophrasm 22.06 BERT-large 320M 43038 +22.53
set.mm + ours Holophrasm 23.79 GPT2 124M 397.21
set.mm + MetaGen + ours Holophrasm 24.30 GPT2-medium ~ 355M 41173 +14.52
set.mm GPT-f 30.94 GPT2-large 744M 482.81 +85.60
set.mm + augmented GPT-f 31.58 OPT-350m 350M 491.89
set.mm + ours GPT-f 33.53 OPT-1.3b 1.3B 49547 +3.58
Llama 2-7B 7B 507.71
Table 4: Generated theorems as augmented data im- Llama 2-13B 13B 51230 +4.59
prove ATP performances. Mixtral-7B 7B 511.64
Mixtral-8x7B 45B 52729 +15.65

5.3 Generation Efficiency

Given infinite time, a generative method G can
eventually obtain as many provable theorems. How-
ever, we prefer a GG that generates more valid theo-
rems with fewer generation episodes. Specifically,
we observe how many theorems can be generated
by the search policies except for the BPE method.
The results are shown in Figure 7. As the search
space complexity grows, it becomes more difficult
for search policies to generate new theorems, which
further reflects the challenge of our dataset. The
random policy ends generation early with few gen-
erated theorems, while heuristic search methods
generate new theorems at high speed. The genera-
tion efficiency of the MCTS with a neural network
is inferior to pure MCTS without training, but fi-
nally achieves better generation performance with
learning from a combination of human-written data
and self-play data.

5.4 Case Study

Figure 8 shows the theorems generated by
MCTS+pvn on the “minimp” dataset. In the first
few episodes, our algorithm only attempts to con-
struct simple expressions using symbols and ax-
ioms that conform to Metamath syntax. In episode
38, with the introduction of proper hypotheses, the
algorithm successfully applies the axiom “ax-mp”
twice and deduces a provable conclusion. The re-
sult shows that the policy benefits from self-play
learning and learning to reason in the formal sys-
tem. More examples of generated theorems are
attached in A.7.

Table 5: “wif” results with different LM scales.

5.5 Benifits for Theorem Proving

To gain a more comprehensive understanding, we
conducted additional analysis on theorems gen-
erated by our MSTS+pvn method on the "wif"
dataset. We evaluate the number of "wif" test prob-
lems whose proof has utilized the generated theo-
rems. The results are shown in Table 6 and show
that our method can produce generalized theorems
that closely resemble axioms and solve multiple
problems. These generalized theorems involve
declarative premises, basic definition inferences,
and similar elements. Some of these theorems are
illustrated in Appendix A.7.

We further evaluate whether the generated the-
orems are helpful for automated theorem proving.
The results are shown in Table 4. We test two
provers: the Holophrasm (Whalen, 2016) prover
and the GPT-f (Polu and Sutskever, 2020) prover.
The implementation details are demonstrated in
Appendix A.6.

We observed that after co-training with the gener-
ated ATG theorems (ours), the Holophrasm prover
achieves an improvement of 90 generated theorems
(i.e., 20.48% — 23.79% in the Holophrasm test set).
Moreover, co-training including the ATG and Meta-
Gen (Wang and Deng, 2020) theorems, the num-
ber of theorems improves by 104 (i.e., 20.48% —
24.30% in the Holophrasm test set). Furthermore,
GPT-f (Polu and Sutskever, 2020) synthesizes some
theorems about n-digit arithmetic and ring algebra,
and the pass rate is improved to 31.58%. With our
ATG theorems, the pass rate is further improved to

4472

problems help to solve ~ 1~2 3

4 5 6 7 8 >9

theorems 22831

3346

1532 734 327 217 16 1181

Table 6: The distribution of the number of problems solved by the generated theorems.

33.53%. Therefore, the generated high-quality data
are suggested as beneficial to automated theorem
proving.

5.6 Ablation Study

We ablate different model variants and see the per-
formances. We first explore whether the model
scale affects the results. We evaluate some open-
source language models (Devlin et al., 2019; Rad-
ford et al., 2019; Zhang et al., 2022) on the “wif”
dataset. The result in Table 5 demonstrates that the
language model scale has a remarkable influence
on the generation. Models with more parameters
achieve a higher APR on the same dataset. Be-
sides, we only use the language model to encode
the proof steps, and the decoder-only models do
not show the same advantages on ATG task as it
does on text generation tasks.

We also investigate the impact of different ¢yt
in Equation (4) on search performance. When c
approaches infinity, PUCT approaches breath-first
search. While c approaches 0, PUCT becomes a
depth-first search. The results of MCTS+pvn with
different ¢y, are demonstrated in Table 3. It is
suggested that when c is 0.3, the algorithm reaches
the balance between exploration and exploitation
and achieves the best performance.

6 Conclusion

This paper introduces the Automated Theorem
Generation (ATG) task that evaluates generative
language models’ capability of generating high-
quality theorems and reducing complex theorems.
We also introduce evaluation metrics that consider
the correctness, compactness, and usefulness of
the generated theorems. We conduct extensive ex-
periments and find that high-quality human-like
theorems benefit downstream tasks such as auto-
mated theorem proving. Moreover, there is still
room for current language models to generate such
high-quality theorems. Therefore, we hope the
proposed ATG benchmark can facilitate the devel-
opment of language models’ theorem generation
and thus improve the overall theorem proving.

Limitations

This paper introduces a new Automated Theorem
Generation (ATG) task and a corresponding bench-

mark. There are several directions for future re-
search:

* We only construct the training and test prob-
lems set based on theorems depth in the
“set.mm” library. However, an ideal problem
set should be general enough to represent the
distribution of all of the math problems in the
real world.

* We sample several hypotheses randomly from
the training library during each generation
process. Developing a method to automati-
cally generate non-contradictory hypotheses
remains a challenge.

* We only build the ATG dataset on the Meta-
math language. A more general ATG bench-
mark should include other formal systems
such as Lean and Isabelle.

Ethics Statement

The proposed ATG datasets are constructed based
on the open-sourced human labeled “set.mm” li-
brary. No personal or confidential information is
collected. Therefore, to the best of our knowledge,
there is no ethical concern.

Acknowledgements

This work was supported in part by National
Key R&D Program of China under Grant
No. 2020AAA0109700, Guangdong Outstand-
ing Youth Fund (Grant No. 2021B1515020061),
Mobility Grant Award under Grant No. M-
0461, Shenzhen Science and Technology Program
(Grant No. RCYX20200714114642083), Shen-
zhen Science and Technology Program (Grant No.
GJHZ20220913142600001), Nansha Key RD Pro-
gram under Grant No.2022ZD014, the China Post-
doctoral Science Foundation under Grant Number
2023M744001,

References

Ferran Alet, Adarsh Keshav Jeewajee, Maria Bauza
Villalonga, Alberto Rodriguez, Tomas Lozano-Perez,
and Leslie Kaelbling. 2019. Graph element networks:

4473

adaptive, structured computation and memory. In In-
ternational Conference on Machine Learning, pages
212-222. PMLR.

Anima Anandkumar, Kamyar Azizzadenesheli, Kaushik
Bhattacharya, Nikola Kovachki, Zongyi Li, Burigede
Liu, and Andrew Stuart. 2019. Neural operator:
Graph kernel network for partial differential equa-
tions. In ICLR 2020 Workshop on Integration of
Deep Neural Models and Differential Equations.

Yoshua Bengio and Nikolay Malkin. 2024. Ma-
chine learning and information theory concepts to-

wards an Al Mathematician. arXiv e-prints, page
arXiv:2403.04571.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Bruno Buchberger. 2004. Algorithm-supported math-
ematical theory exploration: A personal view and
strategy. In AISC, pages 236-250. Springer.

Bruno Buchberger, Adrian Créciun, Tudor Jebelean,
Laura Kovacs, Temur Kutsia, Koji Nakagawa, Flo-
rina Piroi, Nikolaj Popov, Judit Robu, Markus
Rosenkranz, et al. 2006. Theorema: Towards
computer-aided mathematical theory exploration.
Journal of applied logic, 4(4):470-504.

Guillaume MJ B Chaslot, Mark HM Winands, and
H Jaap van Den Herik. 2008. Parallel monte-carlo
tree search. In Computers and Games: 6th Interna-
tional Conference, CG 2008, Beijing, China, Septem-
ber 29-October 1, 2008. Proceedings 6, pages 60-71.
Springer.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong
Zhang. 2000. A deductive database approach to au-
tomated geometry theorem proving and discovering.
Journal of Automated Reasoning, 25(3):219-246.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Simon Colton. 2001. Automated theory formation in
pure mathematics. Ph.D. thesis, University of Edin-
burgh.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171-4186. Association for Computational
Linguistics.

Emily First, Markus Rabe, Talia Ringer, and Yuriy Brun.
2023. Baldur: Whole-proof generation and repair
with large language models. In Proceedings of the
31st ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Soft-
ware Engineering, pages 1229-1241.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward
Ayers, and Stanislas Polu. 2021. Proof artifact co-
training for theorem proving with language models.
In International Conference on Learning Representa-
tions.

Jianglong He, Shiv Vignesh, Deepak Kumar, Akshay
Uppal, et al. 2022. Linear programming word prob-
lems formulation using ensemblecrf ner labeler and
t5 text generator with data augmentations. arXiv
preprint arXiv:2212.14657.

Geoftrey Irving, Christian Szegedy, Alexander A Alemi,
Niklas Eén, Francois Chollet, and Josef Urban. 2016.
Deepmath-deep sequence models for premise selec-
tion. Advances in neural information processing
systems, 29.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou,
Timothée Lacroix, Jiacheng Liu, Wenda Li, Mateja
Jamnik, Guillaume Lample, and Yuhuai Wu. 2023.
Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. In The Eleventh In-
ternational Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net.

Moa Johansson. 2009. Automated discovery of induc-
tive lemmas.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Guillaume Lample, Timothee Lacroix, Marie-Anne
Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet.
2022. Hypertree proof search for neural theorem
proving. Advances in Neural Information Processing
Systems, 35:26337-26349.

Douglas B Lenat. 1977. Automated theory formation in
mathematics. In IJCAI, volume 77, pages 833-842.

Douglas Bruce Lenat. 1976. AM: an artificial intel-
ligence approach to discovery in mathematics as
heuristic search. Stanford University.

4474

https://openreview.net/forum?id=fg2ZFmXFO3
https://openreview.net/forum?id=fg2ZFmXFO3
https://openreview.net/forum?id=fg2ZFmXFO3
https://doi.org/10.48550/arXiv.2403.04571
https://doi.org/10.48550/arXiv.2403.04571
https://doi.org/10.48550/arXiv.2403.04571
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://openreview.net/pdf?id=SMa9EAovKMC
https://openreview.net/pdf?id=SMa9EAovKMC
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Roy L McCasland and Alan Bundy. 2006. Mathsaid: a
mathematical theorem discovery tool. In 2006 Eighth
International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pages 17-22.
IEEE.

Roy L McCasland, Alan Bundy, and Patrick F Smith.
2006. Ascertaining mathematical theorems. Elec-
tronic Notes in Theoretical Computer Science,

151(1):21-38.

Norman Megill and David A Wheeler. 2019. Metamath:
a computer language for mathematical proofs. Lulu.
com.

Omar Montano-Rivas, Roy McCasland, Lucas Dixon,
and Alan Bundy. 2012. Scheme-based theorem dis-
covery and concept invention. Expert systems with
applications, 39(2):1637-1646.

OpenAl. 2023. Gpt-4 technical report.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Man-
tas Baksys, Igor Babuschkin, and Ilya Sutskever.
2023. Formal mathematics statement curriculum
learning. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Stanislas Polu and Ilya Sutskever. 2020. Generative
language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Rindra Ramamonjison, Haley Li, Timothy T. L.
Yu, Shiqi He, Vishnu Rengan, Amin Banitalebi-
Dehkordi, Zirui Zhou, and Yong Zhang. 2022. Aug-
menting operations research with auto-formulation
of optimization models from problem descriptions.
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing: EMNLP
2022 - Industry Track, Abu Dhabi, UAE, December
7 - 11, 2022, pages 29-62. Association for Computa-
tional Linguistics.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing

Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Daniel Selsam, Matthew Lamm, Benedikt Biinz, Percy
Liang, Leonardo de Moura, and David L. Dill. 2019.
Learning a SAT solver from single-bit supervision.
In 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net.

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. 2017. Mastering the game of go without
human knowledge. nature, 550(7676):354—359.

Geoff Sutcliffe, Yi Gao, and Simon Colton. 2003. A
grand challenge of theorem discovery. In Proceed-
ings of the Workshop on Challenges and Novel Appli-
cations for Automated Reasoning, 19th International
Conference on Automated Reasoning, pages 1-11.

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen,
Yichun Yin, Jing Xiong, Enze Xie, Han Shi, Yujun
Li, Lin Li, et al. 2023. Dt-solver: Automated theo-
rem proving with dynamic-tree sampling guided by
proof-level value function. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12632-12646.

Mingzhe Wang and Jia Deng. 2020. Learning to prove
theorems by learning to generate theorems. Advances
in Neural Information Processing Systems, 33:18146—
18157.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng.
2017a. Premise selection for theorem proving by
deep graph embedding. Advances in neural informa-
tion processing systems, 30.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017b.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 conference on empirical meth-
ods in natural language processing, pages 845-854.

Daniel Whalen. 2016. Holophrasm: a neural automated
theorem prover for higher-order logic. arXiv preprint
arXiv:1608.02644.

Yuhuai Wu, Albert Q. Jiang, Jimmy Ba, and
Roger Baker Grosse. 2021. INT: an inequality bench-
mark for evaluating generalization in theorem prov-
ing. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus
Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. 2022. Autoformalization with large lan-
guage models. Advances in Neural Information Pro-
cessing Systems, 35:32353-32368.

Kaiyu Yang, Aidan M Swope, Alex Gu, Rahul Chala-
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan
Prenger, and Anima Anandkumar. 2023. Leandojo:

4475

http://arxiv.org/abs/2303.08774
https://openreview.net/pdf?id=-P7G-8dmSh4
https://openreview.net/pdf?id=-P7G-8dmSh4
https://doi.org/10.18653/V1/2022.EMNLP-INDUSTRY.4
https://doi.org/10.18653/V1/2022.EMNLP-INDUSTRY.4
https://doi.org/10.18653/V1/2022.EMNLP-INDUSTRY.4
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://openreview.net/forum?id=HJMC_iA5tm
https://openreview.net/forum?id=O6LPudowNQm
https://openreview.net/forum?id=O6LPudowNQm
https://openreview.net/forum?id=O6LPudowNQm

Theorem proving with retrieval-augmented language
models. In Thirty-seventh Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

A Appendix

A.1 Detailed proving process of theorem
“pm2.21dd”

1. In Metamath, a variable is denoted as a Greek
letter (e.g., ¢,1,x, or the identical "ph", "ps", "ch"
in Figure 3), representing a mathematical object
or concept. "—" denotes entailment between the
variables, and "-." denotes negation of the vari-
ables. The symbol "I-" means the following symbol
sequence is provable or a proof exists for it. For
example, "I- (ph -> -.ps)" in Figure 3 indicates that
¢ (indicated by "ph") yields not (indicated by "-.")
1 (indicated by "ps"), and it’s provable.

2. A hypothesis is denoted as "[hypothesis
name] $e [hypothesis] $." For example, in Figure 3,
"pm2.21dd.1" and "pm2.21dd.2" are two essential
hypotheses. Similarly, an assertion to be proved is
denoted as "[assertion name] $p [assertion] $." In
Figure 3, the conclusion of the theorem pm2.21dd
is "(ph -> ch)".

3. A theorem in general consists of several hy-
potheses (sometimes none) and one conclusion. In
the case in Figure 3, the theorem "pm?2.21dd" has
two hypotheses "pm2.21dd.1" and "pm?2.21dd.2"
and one assertion to be proved "pm2.21dd". The
theorem can be stated in natural language as fol-
lows: if ¢ deduces both v and —), then it deduces
X In other words, a contradiction implies anything.

4. Figure 3 show the proving process of the
theorem "pm?2.21dd" in the Metamath system. In
Figure 3, the symbol "$=" in the assertion statement
is followed by the proof of this theorem.

5. In the following line, "pm?2.65i" and
"pm2.21i" in parentheses are the axioms or proven
theorems that will be referred to the proof. They
are later denoted by F and G in the proof sequence,
respectively. In this case, variables F and G are
regarded as operators in the calculator, while vari-
ables A to E are operands in the calculator. The
sequence "ACABDEFG" is the inverse Polish ex-
pression of a proof.

6. The assignment of operands and operators has
the following rules: The symbol showing up first
in the theorem statement is assigned first. In this
case, A, B, and C denote ¢, v, and . After that are
the hypotheses: D denotes "pm2.21dd.1", and E
denotes "pm2.21dd.2". Finally are the references:
F for "pm?2.65i" and G for "pm2.21i".

7. The prover program handles the proof pro-
cess with the inverse Polish expression of the proof
sequence. This means that it maintains a proof
stack (initially empty) and uses operands and oper-
ators to push and pop the stack in turn. As shown
in 3, since the first 6 elements are operands, the
program simply pushes them into the stack. The
seventh element (red F shown in 3) is "pm2.65i",
which has four operators by its statement (2 sym-
bols ¢ and v, and 2 hypotheses "pm2.65i.1" and
"pm2.65i.2"). Therefore, the program pops four el-
ements from the stack, replaces the corresponding
symbols and hypotheses in the original statement
("Substitute:" in 3), gets the conclusion F —¢
("Apply:" in 3), and pushes it into the stack (proof
step 3 in 3). This process shows the only basic rule
"substitution" in Metamath. 8. Next, the program
pushes the eighth element "pm2.21i" denoted by
the red G, which has three operators. The program
processes it in a similar process and pushes the re-
sulting ¢ — 1 into the stack (proof step 4 in 3).
At this point, the proof sequence is processed, and
the only remaining elements in the stack agree with
the conclusion of the theorem, which means that
the theorem is successfully proved.

In Figure 6, the right part shows a brief proof of
the "pm?2.21dd" theorem. The first and second lines
of proof refer to two hypotheses of this theorem,
"pm2.21dd.1" and "pm?2.21dd.2", respectively. In
the third line of the proof, the theorem "pm?2.65i"
is referenced and the expression is shown in the
left graph. "pm2.21dd.1" and "pm?2.21dd.2" are
used respectively to replace the original hypothe-
ses "pm2.65i.1" and "pm2.65i.2" of the theorem
"pm2.65i", and derive the conclusion - —¢. That is,
if ¢ deduces both v and —), then ¢ is a false state-
ment. The proofs in the following lines 4-7 show
the process of deriving the conclusion - ¢ — x
from the original set of axioms, which can be sum-
marized as the theorem "pm2.21i", that false propo-
sitions derive everything. This case can also be
seen HERE ? for more information.

Zhttps://us.metamath.org/mpeuni/pm2.21dd.html

4476

https://us.metamath.org/mpeuni/pm2.21dd.html

A.2 Details of Dataset Construction

We construct the “wb” set by selecting the first
272 theorems and then split the theorem library I/
and problem set P at depth £ = 10 and k = 20
for training and testing. Similarly, we construct
the “wif” and “minimp” sets with 1, 284 and 2, 048
theorems, respectively. The problem set has depths
larger than k£ = 33, k£ = 38 for training, and k& =
39, k = 40 for testing.

A.3 Dataset Information

The details of the statistical information of all three
datasets are listed in Table 7. The resulting visual-
ization is shown in Figure 9.

A.4 Baseline Methods

In addition to our proposed MCTS+pvn trained
with self-play, we also evaluate three baseline meth-
ods. The random search policy, traditional Monte
Carlo tree search (MCTS), and a Byte Pair Encod-
ing (BPE) based statistical method to find theorems
given the proof in training theorem library IL.".

Random Search We explore the search space
by expanding the most recent state with randomly
selected actions, without considering their potential
outcomes or evaluating their quality.

Monte Carlo Tree Search MCTS applies Up-
per Confidence Bounds (UCB) algorithm to se-
lect expanded states and actions without explicit
policy probability. To obtain the value for each
state-action pair, MCTS perform simulations that
randomly walk to a terminal state, collect rewards
and propagate back to the state-action pair and
update all nodes’ value in this path. We perform
random walks in simulation to select the expanded
nodes rather than employing a policy-value net-
work. Specifically, we first expand the unexplored
sub-nodes. If all the sub-nodes have been explored,
we select the next node to expand according to the
PUCT score in Equation (4) in Section 4, where
7(als) of all available actions are set to the same,
and v(s,a) is determined by the visits times of
the node. During each node expansion, we obtain
the node value by randomly expanding the deepest
node until it reaches a terminal state. The terminal
state will return a reward which is backporpated to
all nodes in this path and update their value.

Byte Pair Encoding Byte Pair Encoding (BPE)
is an unsupervised subword tokenization algorithm
used in natural language processing. It starts with

a vocabulary of characters and subwords and iter-
atively merges the most frequent character or sub-
word pairs in the corpus, updating the vocabulary
accordingly. In ATG, we construct vocabulary from
the human-written theorems in training library I/,
each token in the proof text refers to the name of
an axiom, hypothesis, or theorem, and a proof ends
with a special token [FO.S]. To obtain a valid sub-
word, if the BPE-merged pair has an axiom or a
theorem as the second item, we include previous
tokens in the proof text and expand the merged
subword until it is a valid proof. We locate all such
pair in all training proof text and consider all re-
sulting subwords as a generated theorem 7'. The
algorithm terminates when the frequency of all to-
ken pairs is 1. Specifically, we use the full name of
axioms, hypotheses, and theorems as the minimum
elements (token) for grouping. Then we select the
most frequent pairs in all training proofs and merge
them into a new element (subword). Then we re-
place this pair with the new elements in all training
proofs and perform merging iteratively until all pair
occurrence is 1. To obtain a valid subword, if the
merged pair has an axiom or a theorem as the sec-
ond item, we include previous tokens in the proof
and expand the merged subword until it is a valid
proof. Note that the BPE method is a statistical
method rather than a search algorithm, and that the
source text is derived from human-written proofs,
we employ it as an approximation of human-level
performance.

A.5 Implementation Details of ATG

We evaluate all of our baseline approaches with a
maximum proof step length of 32 and generate 100
times in each episode, the generation ends until no
more valuable theorem is generated. All of the gen-
erations begin from an initial graph that only con-
sists of axioms and hypotheses in corresponding
datasets. Methods with MCTS simulate 100 times
for expanding the search tree and take a c value
0.3 to balance exploration and exploitation. We
collect (state, action, value) triplets from proofs
in the human written library L’ and combine data
generated by MCTS policy to train the policy/value
network in each episode. The training process con-
tains 10 epochs per episode and takes 128 samples
per batch. The learning rate is set to 3e — 4 and
we train our models with the Adam optimizer. We
also apply an early-stop mechanism at minimum
KL divergence between policy probabilities before
and after training.

4477

Depth Token References

Dataset . . .
min avg max min avg max min avg max

wb train library 1 6 9 4 24 48 2 8 12
wb train problem 10 13 16 18 34 44 5 8 10
wb test library 4 13 18 6 19 38 4 7 12
wb test problem 19 20 22 12 23 72 4 7 13
wif train library 1 22 32 4 24 78 2 8 17
wif train problem 33 39 48 7 2470 3 8 19
wif test library 23 34 37 8 25 58 3 9 21
wif test problem 38 42 48 10 35 o4 4 11 20
minimp train library 1 25 34 2 25 78 2 8 19
minimp train problem 35 40 48 7 28 90 4 10 24
minimp test library 24 35 38 8 24 58 2 9 21
minimp test problem 39 43 49 10 29 64 2 11 33

Table 7: Detailed statistics of wb, wif, minimp datasets in the ATG benchmark.

100 q 100

BN Depths B Depths
904 W= Tokens 90 4 W Tokens
B References B Reference
80 4 30
70 70 4
60 4 60

50 4

40

301

204

wb wif minimp wb wif minimp
Datasets Datasets
(a) Statistical information of the train theorem library. (b) Statistical information of the train problem set.

100 100

B Depths B Depths
90 4 W Tokens 90 1 W Tokens

N References N References
80 80 1
70 4 70 4

60 -

50 A

40

304

204

wb wif minimp wb wif minimp
Datasets Datasets
(c) Statistical information of the test theorem library. (d) Statistical information of the test problem set.

Figure 9: The average, min, max numbers of proof Depth, tokens and referred theorems of all three datasets.

4478

A.6 Implementation Details of ATP

We test two provers: the Holophrasm prover and
the GPT-f prover. Because different provers use
different versions of “set.mm’ libraries, the data
pre-processing and the training pipeline vary ac-
cordingly. The generated theorems are then for-
matted into standard Metamath language form as
augmented data. We further use the BPE method
to generate more theorems based on the “minimp”
dataset, and then randomly substitute the variables
in the theorems to construct an augmented theorem
sets with ~ 30k proof steps.

During evaluation, we follow the original
Holophrasm prover (Whalen, 2016) and the origi-
nal GPT-f prover (Polu and Sutskever, 2020) setups
and use the same data splits.

A.7 More Examples of Generated Theorems

Figure 10 provides more theorems generated by
MCTS with policy/value network on the “minimp”
dataset, these theorems are referred when proving
other theorems in downstream ATP tasks. Figure 11
shows more complex theorems generated by our
method. These theorems involve complex concepts
in propositional logic such as the distribution of
implication over biconditional and require as many
as dozens of proof steps.

4479

Episode 3

wph

1 wff o
2 wff - wn
3 F (=g - —9) > (9-9) ax-3

Generated theorem

(29 > @) > (9~ 9))

Episode 5
1 wff L wfal
2 wff ¢ wph
3 F(LY @) o= (Lo p) df-xor

Generated theorem

Episode 26

1 wff L

wfal
2 wffT wtru
3 F ((J_ VT) o o (L--=T)) df-an

Generated theorem

Episode 16

1 wph

wff ¢

2 wff i wps
3 wffo = wi
4 Fle »¥) = (9—=¥) id

Generated theorem

Episode 19

step expression

1 Flp-> @->x)
2 Fle->@->x0) -

hypol

(o= ¥) = (0> 1)) ax=2
3 Fll@g =) = (@ > 1)) ax-mp 1,2

Generated theorem

hypol F e~ @-x) =

assertion

(o =) = (9 = 0))

Figure 10: Some generated theorems are referred to in downstream ATP tasks.

assertion I (((¢Vy) = (po¥) = (p<o9P)

hypol F((@AYPAY) —0) =1

assertion F ((pAY) - (x— (z— (n - 0))))

assertion (p-o(poy) ok (@A) o (xeo9)

Figure 11: Example complex theorems generated by the
proposed MCTS+pvn.

4480

