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Abstract

Linguistic bias is a critical problem concerning
the diversity, equity, and inclusiveness of Nat-
ural Language Processing tools. The severity
of this problem intensifies in security systems,
such as speaker verification, where fairness
is paramount. Speaker verification systems
are biometric systems that determine whether
two speech recordings are of the same speaker.
Such user-centric systems should be inclusive
to bilingual speakers. However, Deep neu-
ral network models are linguistically biased.
Linguistic bias can be full or partial. Par-
tially cross-lingual bias occurs when one test
trial pair recording is in the training set’s lan-
guage, and the other is in an unseen target lan-
guage. Such linguistic mismatch influences the
speaker verification model’s decision, dissuad-
ing bilingual speakers from using the system.
Domain adaptation can mitigate this problem.
However, adapting to each existing language is
expensive. This paper explores cost-efficient
bias mitigation techniques for partially cross-
lingual speaker verification. We study the be-
havior of five baselines in five partially cross-
lingual scenarios. Using our baseline behav-
ioral insights, we propose EcoSpeak, a low-
cost solution to partially cross-lingual speaker
verification. EcoSpeak incorporates contrastive
linguistic (CL) attention. CL attention utilizes
linguistic differences in trial pairs to emphasize
relevant speaker verification embedding parts.
Experimental results demonstrate EcoSpeak’s
robustness to partially cross-lingual testing.

1 Introduction

Linguistic bias is a crucial problem that harms the
diversity, equity, and inclusiveness of Natural Lan-
guage Processing (NLP) tools. The severity of this
problem further increases in security systems, such
as speaker verification, where fairness is critical.
Speaker verification systems are biometric systems
that determine whether two speech recordings are

of the same speaker. The two input speech record-
ings form a trial pair. Positive or negative trial pairs
indicate whether the recordings are of the same
speaker. Speaker verification systems have appli-
cations in forensics, e-commerce, law, and access-
control mechanisms (Estevez and Ferrer, 2023).
These systems can be text-independent or text-
dependent (Wu and Liao, 2021). Text-independent
systems verify speakers without any constraint on
speech content. Such systems work by analyzing
the acoustic differences in trial pairs, consequently
saving users from memorizing passphrases. There-
fore, text-independent systems offer a better user
experience than text-dependent systems.

Deep Neural Network (DNN) models have
shown outstanding results in text-independent
speaker verification (Chung et al., 2018; Nagrani
et al., 2020, 2017). However, the embeddings ob-
tained from DNN models often entangle acoustic
and linguistic information (Zhou et al., 2021). Con-
sequently, DNN-based speaker verification mod-
els become linguistically biased (Lu et al., 2009;
Yang et al., 2022). Linguistic bias makes the model
consider irrelevant language information in embed-
dings while making decisions for speaker verifica-
tion, leading to performance degradation on unseen
target languages. Such a bias can be full or par-
tial. In the fully cross-lingual scenario, both the
test trial pair recordings are in the target language t
that is different from the source (or the training set)
language s. In contrast, partially cross-lingual is
another crucial scenario where one of the test trial
pair recordings is in s, and the other is in t

Most of the previous works focus on the fully
cross-lingual scenario. However, about 40% of the
global population is bilingual (Wu and Liao, 2021).
Therefore, addressing the partially cross-lingual
challenge is essential to enhance the usability of
speaker verification models. A viable solution to
this problem is domain adaptation (Lee et al., 2020;
Zhu and Chen, 2022; Chen et al., 2020; Wang et al.,
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2019; Rohdin et al., 2019; Tu et al., 2019; Xia
et al., 2019). However, adapting the model to each
of the 7,000 existing languages is expensive. Alter-
natively, we can train models on large-scale cross-
lingual datasets to enhance their generalizability to
unseen languages (Chojnacka et al., 2021). How-
ever, this approach incurs enormous computational
and storage costs. High computational cost leads
to high carbon emissions, which impacts the envi-
ronment (Schwartz et al., 2020; Xu et al., 2021).

In this work, we investigate cost-efficient tech-
niques to mitigate partially cross-lingual bias in
text-independent speaker verification. We propose
EcoSpeak, a low-cost solution to mitigate partially
cross-lingual bias. The EcoSpeak architecture in-
corporates a lightweight residual network, novel
contrastive linguistic (CL) attention, and the bias
corrector. Here, residual connections allow the
model to emphasize the low-level acoustic features
essential for speaker verification. Our proposed CL
attention mechanism utilizes linguistic differences
in trial pair recordings to generate attention weights
for speaker verification. The bias corrector mod-
ule penalizes the speaker verification probabilities
based on linguistic differences in trial pair record-
ings. We first study the behavior of five baselines
on five partially cross-lingual test sets created using
speech recordings in four low-resource languages.
Subsequently, we investigate the effectiveness of
EcoSpeak on these test sets without domain adapta-
tion. Furthermore, we explore low-cost fine-tuning
techniques to enhance the generalizability of EcoS-
peak for unseen low-resource languages.

We summarize our main contributions below:

1. We study the behavior of five baseline models
on five partially cross-lingual test sets for four
low-resource languages.

2. We propose EcoSpeak, a cost-efficient so-
lution for bias mitigation in partially cross-
lingual speaker verification.

3. We investigate the effectiveness of EcoSpeak
on partially cross-lingual test sets. Further-
more, we explore cost-efficient fine-tuning
strategies to enhance the model’s generaliz-
ability to unseen languages.

2 Related Works

Partially Cross-Lingual Bias: Training on large-
scale cross-lingual datasets mitigates partially
cross-lingual bias (Wu and Liao, 2021; Qin et al.,

2021). However, it is hard to find such cross-lingual
labeled datasets (Wu and Liao, 2021). Moreover,
this approach incurs enormous computational and
storage costs. Another viable option is multi-task
learning (Zhou et al., 2021). Multi-task learning
can make the model jointly learn speaker identities
and reduce the effect of linguistic bias. Further-
more, a fusion of multiple models can mitigate
linguistic bias (Qin et al., 2021; Thienpondt et al.,
2020). However, fusion would increase the sys-
tem’s inference cost. Notably, residual networks
are relatively more robust to linguistic differences
than many other models (Qin et al., 2021; Thien-
pondt et al., 2020). However, the reason still needs
to be investigated. In this work, we study the be-
havior of residual networks in the partially cross-
lingual scenario. To our knowledge, Thienpondt
et al. (2020) is the most closely related work to our
problem. In Thienpondt et al. (2020), the authors
address the partially cross-lingual scenario where
speakers speak Persian as their first language and
English as their second language (Zeinali et al.,
2019). They proposed subtracting a language com-
pensation offset if the utterances in the trial pair
are in different languages. Nevertheless, they fo-
cussed on closed-set speaker verification where the
test utterance belongs to the set of known speakers
within the training set. In contrast, we focus on
the open-set scenario where test trial pair record-
ings can belong to unknown speakers outside the
training set.

Green Speech Processing: The NLP com-
munity strives towards developing inclusive and
environment-friendly models (Schwartz et al.,
2020; Xu et al., 2021). However, speech processing
is expensive, requiring enormous computational
and storage resources. For instance, the training
set of the SpeakerStew consisted of 20,618,000 ut-
terances from 196,000 speakers (Chojnacka et al.,
2021). Similarly, the XLS-R model contains about
2B parameters. The training set of XLS-R con-
sisted of nearly half a million hours of speech
recordings (Babu et al., 2022). In Qin et al. (2021),
authors trained the model on speech recordings
from 21,795 virtual speakers and the actual train-
ing set speakers for partially cross-lingual bias mit-
igation. High computational costs lead to high
carbon footprints. Therefore, researchers have ex-
plored cost-effective bias mitigation techniques for
fully cross-lingual speaker verification (Sharma
and Buduru, 2022; Li et al., 2022). In this work, we
investigate cost-efficient bias mitigation techniques
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for partially cross-lingual speaker verification.

3 Proposed Approach

The remarkable success of the Deep Convolutional
Neural Network (CNN) based speaker recognition
models motivates us to investigate linguistic bias
in these models. These models consist of multi-
ple CNN layers (Nagrani et al., 2020; weon Jung
et al., 2020, 2022). Lower layers capture low-level
speech features, whereas higher layers capture high-
level speech features. Low-level speech features
contain mostly acoustic information, essential for
speaker verification (Lesenfants et al., 2019). On
the other hand, high-level speech features contain
more linguistic information (Nahum et al., 2008).
Therefore, deeper models can learn more linguistic
details during training and become biased. Thus,
to mitigate linguistic bias in speaker verification,
we propose EcoSpeak. This section describes the
architectural details of EcoSpeak.

Hypothesis: We know that residual connections
add lower layer output features to the higher layer
output features in a deep CNN model (He et al.,
2016). Consequently, low-level acoustic features
get added to the higher-level advanced represen-
tations. This summation allows the model to em-
phasize the low-level acoustic features essential for
speaker verification. Accordingly, we hypothesize
that residual connections help mitigate linguistic
bias by making the model focus more on low-level
acoustic information.

Figure 1: Architecture diagram for EcoSpeak.

Input: Firstly, we preprocess the trial pair

recordings to crop silent parts. We then compute
64-dimensional normalized log mel spectrogram
features of shape (b, 1, ti,m) as shown in Figure 1.
Here, b denotes the batch size, 1 indicates mono-
channel audio, ti denotes the time steps, and m is
the number of Mel bands (m=64). Since the du-
ration of input speech recordings may vary during
test time, the values of t1 and t2 may differ. Next,
we pass these features through the ResNet (Lite)
and the s-Detect model.
s-Detect: Partially cross-lingual trial pairs con-

tain one speech recording in the source language
s and the other speech recording in an unseen tar-
get language t. Thus, we use the s-Detect model
to determine whether the input speech recording
is in s. The model consists of three bidirectional
gated recurrent unit (GRU) layers with a hidden
size of 128 and a fully connected layer. As shown
in Figure 1, it returns the output probability and a
256-dimensional lidi embedding (d = 256).

ResNet (Lite): ResNet (Lite) is a lighter variant
of the ResNet-34 (He et al., 2016).1 The model
is pre-trained for speaker identification. Speaker
identification is a multi-class classification prob-
lem where the system accepts a speech recording
as input and determines the speaker’s identity from
the known speakers in the training set. We use the
pre-trained ResNet (Lite) in EcoSpeak to extract
d-dimensional speaker embeddings as shown in
Figure 1. First, we get emb1 and emb2 for the trial
pair recordings from the avgPool layer of ResNet
(Lite).2 Next, we compute the absolute difference
between these embeddings: x = |emb1 − emb2|.
Computing the difference of the trial pair embed-
dings enables EcoSpeak to focus on the discrimina-
tory information for speaker verification. Further-
more, computing absolute difference ensures that
the model’s output is unaffected by the input order,
as absolute difference is a commutative operation.

Contrastive Linguistic (CL) Attention: Recent
works have demonstrated the effectiveness of at-
tention in speaker verification (Desplanques et al.,
2020; weon Jung et al., 2020). We propose the con-
trastive linguistic (CL) attention mechanism for par-
tially cross-lingual speaker verification. CL atten-
tion utilizes the linguistic differences between the
trial pair recordings to generate attention weights.
The attention block receives x as input and lid1
and lid2 as prompt inputs. CL attention works as

1We compared two ResNet-34 variants and chose a robust
and lighter variant. Details are in the ablation study.

2Details of ResNet (Lite) layers is in Appendix (A).
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follows:

1. Generate attention weights: First, we com-
pute the absolute linguistic difference between
the trial pair recordings. We then pass the re-
sulting difference embedding through a fully
connected layer and apply ReLU to get the
CL attention weights, W att as shown below.

∆lid = |lid1 − lid2|
W att = ReLU(∆lidW T + blinear)

Here W and blinear are the weights and biases
of the fully-connected layer.

2. Apply attention: We apply attention weights
to the speaker embedding difference and get
the output of the CL attention as follows:

x′ = x+ tanh(θ1) ∗W att

Here θ1 is a learned parameter.

Bias Corrector: To perform speaker verifica-
tion, we feed x′ through fully connected layers, as
shown in Figure 1. We pass the resulting speaker
verification probabilities to the bias corrector. The
bias correction process involves two steps: lan-
guage verification and bias adjustment.

Language verification: We jointly train EcoS-
peak for speaker and language verification. Lan-
guage verification is the binary classification task
of determining whether the trial pair recordings are
in the same language. For this task, we pass ∆lid
through fully connected layers to get the language
verification probabilities p, as shown in Figure 1.

Bias adjustment: The decision of speaker verifi-
cation models is influenced by the linguistic similar-
ity in trial pair recordings. The speaker verification
model may favor the positive class if the trial pair
recordings are in the same language. On the other
hand, if the trial pair recordings are in different lan-
guages, the speaker verification model may favor
the negative class. Based on this intuition, EcoS-
peak incorporates a bias adjustment module, thus
ensuring fairness. If the language verification result
is positive, the bias corrector prevents EcoSpeak
from favoring the positive class while deciding on
speaker verification. For this, the bias adjustment
process adds a penalty to the negative class as fol-
lows: x′[i, 0] = x′[i, 0] + |θn|. If the language
verification result is negative, the bias corrector pre-
vents EcoSpeak from favoring the negative class
while deciding on speaker verification. For this,
the bias adjustment process adds a penalty to the

positive class as follows: x′[i, 1] = x′[i, 1] + |θp|.
Here θp and θn are learned parameters.

4 Experimental Setup

The datasets3 and baseline models4 used in this
study are publicly available. All sets have an equal
number of positive and negative trial pairs. In
our experiments, English is the source language
s, whereas Tamil, Telugu, Malayalam, and Kan-
nada are the low-resource target languages t.

4.1 Datasets

Pre-train ResNet (Lite): We used the VoxCeleb-2
dev set to train ResNet (Lite) for speaker identifica-
tion (Nagrani et al., 2020; Chung et al., 2018). The
dataset contains 1,092,009 utterances from 5,994
speakers. Furthermore, we evaluated the model
performance on the VoxCeleb-1 test set (Nagrani
et al., 2017). It contains 37,720 trial pairs. The
VoxCeleb datasets contain mostly English speech
utterances (Qin et al., 2021). Thus, English is the
source language s in our experiments.

Train s-Detect: We trained s-Detect using utter-
ances in English and five Indian languages: Hindi,
Tamil, Telugu, Malayalam, and Kannada.5 We
used the Indian-accented English data recorded for
the NPTEL 2020 lectures (AI4Bharat, 2020). We
obtained Hindi speech recordings from the Multi-
lingual and code-switching ASR Challenge Dataset
- sub-task1 (Diwan et al., 2021). In addition to the
OpenSLR datasets, we utilized the Tamil and Tel-
ugu conversational speech recordings available in
the Microsoft Speech Corpus (Microsoft, 2023).
We used Malayalam and Kannada speech record-
ings available in OpenSLR (He et al., 2020).

3VoxCeleb:https://www.robots.ox.ac.
uk/~vgg/data/voxceleb/, Indian-English
(NPTEL):https://github.com/AI4Bharat/
NPTEL2020-Indian-English-Speech-Dataset,
Hindi:http://openslr.org/103/, Tamil:http:
//openslr.org/65/, Telugu:http://openslr.org/66/,
Malayalam:http://openslr.org/63/, Kannada:https:
//openslr.org/79/, Microsoft speech corpus:https:
//www.microsoft.com/en-za/download/details.aspx?
id=105292, NISP:https://github.com/iiscleap/
NISP-Dataset

4VGG-M:https://github.com/Derpimort/
VGGVox-PyTorch, X-Vector:https://huggingface.
co/speechbrain/spkrec-xvect-voxceleb, ECAPA-
TDNN:https://huggingface.co/speechbrain/
spkrec-ECAPA-voxceleb, RawNet-2:https://github.
com/Jungjee/RawNet/tree/master/python/RawNet2,
RawNet-3:https://github.com/Jungjee/RawNet/tree/
master/python/RawNet3

5Details about the training setup are in Appendix (B).
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Test Set Positive Trial Pairs Negative Trial Pairs
tt− tt both target (tt) both target (tt)
ts− tt one target (t), one source (s) both target (tt)
ts− ts one target (t), one source (s) one target (t), one source (s)
tt− ts both target (tt) one target (t), one source (s)
ss− ss both source (ss) both source (ss)
ss− st both source (ss) one source (s), one target (t)
st− ss one source (s), one target (t) both source (ss)

Table 1: Brief description of the Low-Resource Language (LRL) Test Sets. Here, s represents the source language
(English), and t represents the target language (the speaker’s native language). The tt− tt test set is fully cross-
lingual, whereas ss− ss is the same language test set. The remaining five test sets are partially cross-lingual.

Cross-lingual Speaker Verification: We used
the NISP dataset for cross-lingual speaker verifica-
tion experiments (Kalluri et al., 2021). The dataset
consists of speech recordings from bilingual speak-
ers having Hindi, Tamil, Telugu, Malayalam, or
Kannada as their native language. These bilin-
gual speakers use English as their second language.
Thus, each speaker in the dataset has contributed
recordings in English and their native language.

4.2 Low-Resource Language Test Sets
Our study focuses on Tamil, Telugu, Malayalam,
and Kannada as the target low-resource languages
(LRL). We used NISP-LRL native speaker data
for cross-lingual testing. We consistently employ
the following notations to present our experimental
results:

1. s: The source language, i.e., English.
2. t: The target language, ie., the speaker’s native

language.
3. ts or st: Trial pair where one recording is

in English s and the other is in the speaker’s
native language t.

We created seven LRL test sets described by the
following notations:

1. tt − tt: All trial pair recordings are in the
speaker’s native language t.

2. ts − tt: Positive trial pair recordings are in
different languages ts, whereas negative trial
pair recordings are in the speaker’s native lan-
guage tt.

3. ts− ts: Each trial pair contains speech record-
ings in different languages ts.

4. tt − ts: Positive trial pairs contain both
recordings in the speaker’s native language
tt, whereas negative trial pair recordings are
in different languages ts.

5. ss− ss: All recordings are in English s.
6. ss−st: Positive trial pairs contain both record-

ings in English ss whereas negative trial pair
recordings are in different languages st.

7. st − ss: Positive trial pair recordings are in
different languages st, whereas negative trial
pair recordings are in English ss.

Table 1 presents a compact description of the
seven LRL test sets. Each LRL test set con-
tains 100,000 trial pairs. These sets consist of
25,000 trial pairs from native speakers of each low-
resource language. Speakers in negative trial pairs
have the same gender. Accordingly, we generated a
same language test set (ss−ss), fully cross-lingual
test set (tt− tt) and five partially cross-lingual test
sets (ts− tt, ts− ts, tt− ts, ss− st and st− ss).

4.3 Baselines
We studied the behavior of the following five base-
lines on the LRL test sets: RawNet-3, ECAPA-
TDNN, RawNet-2, X-Vectors, and VGG-M (weon
Jung et al., 2022; Desplanques et al., 2020; Ra-
vanelli et al., 2021; weon Jung et al., 2020; Sny-
der et al., 2018; Nagrani et al., 2020). The base-
lines were pre-trained for speaker identification.
They accept speech recordings as input and return
a speaker embedding. For speaker verification, we
input each trial pair recording to the baseline. We
compute the cosine similarity score from the ob-
tained embeddings to determine if the recordings
are of the same speaker. The X-Vector, ECAPA-
TDNN, and RawNet-3 models were trained on com-
bined VoxCeleb-1 and VoxCeleb-2 dev. VGG-M
and RawNet-2 were trained on VoxCeleb-1 dev and
VoxCeleb-2 dev, respectively.

4.4 Evaluation Metric
Equal Error Rate (EER) is the standard evaluation
metric for speaker verification systems (Hansen and
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Model tt− tt ts− tt ts− ts tt− ts ss− ss ss− st st− ss

VGG-M (Baseline) 11.40 26.15 22.42 9.47 10.35 7.90 28.06
X-Vector (Baseline) 6.75 20.38 17.43 5.85 6.92 5.25 22.19

ECAPA-TDNN (Baseline) 12.46 20.93 19.57 11.96 11.40 9.30 22.65
RawNet-2 (Baseline) 38.24 41.48 39.21 36.87 37.90 37.00 39.80
RawNet-3 (Baseline) 41.34 52.17 46.54 36.75 41.71 44.10 43.60

ResNet+ (Hypothesis) 10.72 13.55 12.27 9.81 9.51 9.55 12.08
EcoSpeak (Scheme-A) 8.54 13.88 12.80 7.64 7.70 7.37 13.66
EcoSpeak (Scheme-B) 7.70 12.01 12.65 8.09 7.23 7.61 11.87
EcoSpeak (Scheme-C) 7.31 9.32 11.16 9.06 6.81 8.18 9.65

Table 2: Table showing the EER (%) of baselines, ResNet+, and EcoSpeak on the LRL test sets. We have represented
each model’s best and worst-case performance using bold font. Observations: 1.) Baselines performed the worst in
ts - tt or st - ss. 2.) ResNet+ is stable compared to baselines. 3.) EcoSpeak (Scheme-C) performs better than other
models on most test sets. It performed the worst in ts - ts, which deviates from the worst-case of baselines.

Hasan, 2015). EER is the value of the False Match
Rate (FMR) and False Non-Match Rate (FNMR)
when they are equal. FMR refers to the propor-
tion of negative trial pairs incorrectly classified as
positive by the system. In contrast, FNMR is the
proportion of positive trial pairs incorrectly classi-
fied as negative by the system. EER is the value of
the FMR when it becomes equal to the FNMR at
a particular classification threshold. We used the
EER to demonstrate the efficacy of this work. A
lower EER indicates a better performance.

5 Experiments and Results

5.1 Baseline Behavioral Insights

The first step towards bias mitigation involves un-
derstanding the error patterns in baselines (Choe
et al., 2022). Therefore, we examined the perfor-
mance of baselines on the LRL test sets. As illus-
trated in Table 2, we observed elevated EER values
on ts − tt and st − ss. It indicates that a high-
linguistic similarity in negative trial pair recordings
(tt or ss) leads to performance degradation. This
observation suggests that high-linguistic similarity
makes the model favor the positive class. Like-
wise, a low-linguistic similarity in positive trial
pairs (ts or st) also leads to performance degrada-
tion. This observation suggests that low-linguistic
similarity makes the model favor the negative class.
Furthermore, we observed lower EER values on
the tt − ts and ss − st test sets. It indicates that
the baselines perform the best when positive trial
pair recordings have high linguistic similarity (ss
or tt) and negative trial pair recordings have low
linguistic similarity (ts or st). These observations
indicate that the linguistic similarity in the trial pair

influences the decision of baselines.
Key Observations:

1. We observed elevated EER values on ts− tt
and st − ss. Thus, baselines performed the
worst on these test sets. It indicates that lin-
guistic mismatch (ts or st) in positive trial
pair recordings and linguistic match (tt or ss)
in negative trial pair recordings causes per-
formance degradation. Accordingly, we clas-
sify Positive-ts, Positive-st, Negative-tt, and
Negative-ss as complex trial pair types.

2. We observed lower EER values on tt − ts
and ss − st. Thus, baselines performed the
best on these test sets. It indicates that lin-
guistic match (tt or ss) in positive trial pair
recordings and linguistic mismatch (ts or st)
in negative trial pair recordings leads to better
baseline performance. Accordingly, we clas-
sify Positive-tt, Positive-ss, Negative-ts, and
Negative-st as simple trial pair types.

5.2 Behavior of Residual Connections
Next, we investigated the impact of residual con-
nections on cross-lingual testing. For this, we eval-
uated ResNet+ on LRL test sets. ResNet+ con-
tains 64, 128, 256, and 512 channels for its first,
second, third, and fourth layers, whereas ResNet
(Lite) contains 32, 64, 128, and 256 channels. We
compared the absolute difference between the mod-
els’ highest and lowest EER scores on the LRL
test sets. Table 2 illustrates that we achieved an
EER difference of 4.04% (i.e., 13.55-9.51) using
ResNet+. This difference is significantly less than
that in most baselines. The EER differences for
VGG-M, X-vector, ECAPA-TDNN, and RawNet-
3 are 20.16%, 16.94%, 13.35% and 15.42%. It
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indicates that the ResNet+ is more stable than base-
lines on LRL test sets. Next, we compared the EER
values achieved using the RawNet models on the
VoxCeleb-1 and LRL test sets. We achieved EER
values of 3.67% and 1.11% on the VoxCeleb-1 test
set using RawNet-2 and RawNet-3. However, the
performance of RawNet models significantly de-
graded on the NISP-LRL test sets with more than
a 30% increase in EER values. In contrast, using
ResNet+, we achieved an EER score of 9.97% on
the VoxCeleb-1 test set. This value is closer to
the ResNet+ results on LRL test sets. However,
ECAPA-TDNN, RawNet-2, and RawNet-3 also
incorporate residual connections in their architec-
tures yet have demonstrated high linguistic bias on
LRL test sets. It indicates that residual connections
alone are not sufficient for bias mitigation.

Summary of Findings: ResNet+ is less linguisti-
cally biased than baselines. Thus, residual connec-
tions can help mitigate linguistic bias. However,
residual connections alone are insufficient for bias
mitigation.

5.3 Data Balancing Schemes

Focusing on the quality of training data rather
than quantity can help mitigate linguistic bias cost-
efficiently (Swayamdipta et al., 2020). Therefore,
to explore the impact of data balancing in partially
cross-lingual speaker verification, we investigated
three data balancing schemes for fine-tuning EcoS-
peak. These schemes involve training sets having
different distributions of simple and complex trial
pairs.

Methodology We created six trial pair types
for fine-tuning EcoSpeak: Positive-ts, Positive-tt,
Positive-ss, Negative-ts, Negative-tt, Negative-ss.
Here, positive and negative indicate whether trial
pair recordings are of the same speaker. The nota-
tions tt, ss, and ts indicate whether the trial pair
recordings are in the same (tt or ss) or different
languages (ts). Furthermore, our baseline behav-
ioral insights reveal that Positive-ts, Negative-tt,
and Negative-ss are complex trial pair types. In
contrast, Positive-tt, Positive-ss, and Negative-ts
are the simpler trial pair types. Accordingly, we
investigated the following data balancing schemes:

1. Scheme-A: In Scheme-A, we generate
200,000 examples for each trial pair type.

2. Scheme-B: In Scheme-B, we generate 250,000
and 150,000 examples for each complex and
easy trial pair type.

3. Scheme-C: In Scheme-C, we generate
300,000 and 100,000 examples for each com-
plex and easy trial pair type.

Accordingly, we created 1,200,000 trial pairs
for each scheme, thus obtaining separate training
sets for each scheme. We fine-tuned EcoSpeak on
the NISP-Hindi speaker data using these scheme-
specific training sets. Consequently, we got three
EcoSpeak models, one for each scheme. Further-
more, we evaluated the performance of these EcoS-
peak models on the LRL test sets without domain
adaptation. LRL test sets contain speech recordings
of native speakers of Tamil, Telugu, Malayalam,
and Kannada.

Observations: We compared the absolute dif-
ferences between the best-worst case EER values
of the three scheme-specific EcoSpeak models. As
illustrated in Table 2, we noticed absolute differ-
ences of 6.51% (13.88-7.37), 5.42% (12.65-7.23),
and 4.35% (11.16-6.81) using Scheme-A, Scheme-
B, and Scheme-C. Thus, we achieved the most
stable results using Scheme-C. The training set for
Scheme-C contains more examples from the com-
plex trial pair type. It suggests that appropriate data
balancing schemes can cost-efficiently aid bias mit-
igation. Furthermore, contrary to what we observed
in baselines, EcoSpeak (Scheme-C) performed the
worst in ts− ts (and not in ts− tt or st−ss). This
observation indicates that the performance trend of
EcoSpeak deviates from baselines.

5.4 Dataset for fine-tuning EcoSpeak

Due to data scarcity in low-resource target lan-
guages, finding appropriate datasets for fine-tuning
models is challenging. Therefore, we explored two
fine-tuning options for EcoSpeak:
1.) Fine-tuning on weakly related but diverse data.
2.) Fine-tuning on strongly related but small data.

Methodology: For this experiment, we chose
Tamil as the low-resource target language (t). We
utilized the LRL test sets to create Tamil-LRL test
sets. Tamil-LRL test sets include those LRL test
set trial pairs that contain speech recordings of only
Tamil native speakers. Thus, we got seven Tamil-
LRL test sets containing 25,000 trial pairs each.

NISP-Hindi is a diverse dataset (103 speakers),
but Hindi is weakly related to Tamil. NISP-Telugu,
NISP-Malayalam, and NISP-Kannada are small
(fewer speakers) datasets with speech recordings
from 60 speakers each. However, these LRLs are
strongly related to Tamil. Subsequently, we fine-
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Test Set EcoSpeak-Hindi EcoSpeak-Telugu EcoSpeak-Malayalam EcoSpeak-Kannada
tt− tt 8.31 9.70 9.98 10.36
ts− tt 10.25 14.57 13.44 12.97
ts− ts 11.42 15.94 15.78 14.34
tt− ts 8.86 10.51 11.61 12.43
ss− ss 6.26 8.18 9.05 9.85
ss− st 7.42 10.26 11.04 12.46
st− ss 8.94 12.63 12.49 11.17

Table 3: Table showing the EER values (%) on Tamil-LRL test sets. The EcoSpeak model fine-tuned on NISP-Hindi
native speaker data performed the best. NISP-Hindi is a diverse dataset, but Hindi is weakly related to Tamil.

Model #Parameters Size (MB) Time (sec) CO2 (kgCO2eq) Electricity (kWh)
RawNet-3 16,280,322 62.30 4000 0.46 0.73
ECAPA-TDNN 22,150,912 85.00 2195 0.23 0.36
RawNet-2 13,379,378 51.10 1360 0.13 0.20
VGG-M 17,909,219 68.40 1252 0.11 0.18
X-Vector 8,172,473 31.50 1014 0.09 0.14
EcoSpeak 6,660,233 25.50 1165 0.10 0.16

Table 4: Table comparing the cost of EcoSpeak with baselines. The model size and number of parameters reported
for EcoSpeak include the size and parameters of s-Detect. The time, carbon emissions, and electricity consumption
statistics reported in the table represent the inference cost on the tt− tt LRL test set.

tuned EcoSpeak on these datasets to get EcoSpeak-
Hindi, EcoSpeak-Telugu, EcoSpeak-Malayalam,
and EcoSpeak-Kannada models.

Observations: Table 3 illustrates the EER val-
ues we achieved on the Tamil-LRL test sets us-
ing EcoSpeak-Hindi, EcoSpeak-Telugu, EcoSpeak-
Malayalam, and EcoSpeak-Kannada. We ob-
served lower EER using the EcoSpeak-Hindi model
compared to other EcoSpeak models. Thus, the
EcoSpeak-Hindi model performed the best on
Tamil-LRL test sets. It indicates that fine-tuning
on a weakly related diverse dataset can be bet-
ter than fine-tuning on a strongly related limited
dataset. Overfitting on small datasets can reduce
the model’s generalization ability.

5.5 Cost Analysis

This work aims to investigate cost-efficient solu-
tions to partially cross-lingual speaker verification.
Therefore, we compared the costs associated with
the baselines and our proposed EcoSpeak. We
focussed on the model size, number of parame-
ters, and the inference costs (time, carbon emission,
and electricity consumption) of these models. Ta-
ble 4 illustrates that EcoSpeak has a lesser model
size and number of parameters than the baselines.
Furthermore, we compared the inference costs of
the EcoSpeak-Hindi model with the baselines on

the tt − tt LRL test set. Table 4 demonstrates
that EcoSpeak-Hindi takes less inference time than
most baselines. Additionally, we observed lower
carbon emissions and electricity consumption from
EcoSpeak-Hindi compared to most baselines when
tested on the tt − tt LRL test set. Table 4 shows
that EcoSpeak’s inference cost is comparable to the
X-Vector model. However, Table 2 demonstrates
that EcoSpeak is more stable than X-vector on the
LRL test sets. It is because EcoSpeak (Scheme-C)
shows an EER variation of 4.35% (i.e., 11.16-6.81)
on the LRL test sets. In contrast, X-Vector shows
an EER difference of 16.94% (i.e., 22.19-5.25) on
the LRL test sets. Therefore, our findings indi-
cate that EcoSpeak is a cost-efficient solution to
partially cross-lingual speaker verification.

5.6 Ablation Study

To analyze EcoSpeak results, we did an ablation
study, as shown in Table 5. Firstly, we observed
that ResNet (Lite) performs better than ResNet+ on
the LRL test sets. Furthermore, it is lighter than
ResNet+. In EcoSpeak, we chose ResNet (Lite)
to extract speaker embeddings from the trial pair
recordings. Next, instead of cosine similarity, we
used fully connected layers for speaker verification
in ResNet (Lite)+fc. We fed the absolute differ-
ence of the trial pair ResNet (Lite) embeddings
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Model tt− tt ts− tt ts− ts tt− ts ss− ss ss− st st− ss

ResNet+ 10.72 13.55 12.27 9.81 9.51 9.55 12.08
ResNet (Lite) 9.52 12.14 10.96 8.33 8.54 9.13 10.58

ResNet (Lite)+fc 11.16 14.72 13.87 10.67 10.57 10.29 13.76
CL Attention 7.47 9.29 11.70 9.67 6.94 8.48 9.88

EcoSpeak 7.31 9.32 11.16 9.06 6.81 8.18 9.65

Table 5: Ablation study results for EcoSpeak. Observation: CL attention mitigates linguistic bias.

Figure 2: Figure shows a negative correlation between
EcoSpeak’s language and speaker verification perfor-
mance. High language verification accuracy causes a
low EER in speaker verification and vice-versa.

to the fully connected layer. The fully-connected
layers were fine-tuned on the NISP-Hindi native
speaker data using Scheme-C. The poor perfor-
mance of ResNet (Lite)+fc indicates that data bal-
ancing alone is insufficient for bias mitigation. Still,
we fine-tuned the CL attention model and EcoS-
peak using Scheme-C, described in Section 5.3.

The CL attention model outperformed ResNet
(Lite) on most LRL test sets. Interestingly, we ob-
served significant improvements in the two most
challenging partially cross-lingual scenarios, ts−tt
and st − ss. It suggests that the CL attention
effectively emphasizes or de-emphasizes speaker
verification embeddings based on linguistic differ-
ences in the trial pair recordings. EcoSpeak in-
corporates the CL attention and the bias corrector.
It performed better than the CL attention model
on most LRL test sets. EcoSpeak performed the

worst on ts − ts. The reason is that EcoSpeak’s
performance in language verification affects its per-
formance in speaker verification, as evidenced by
Figure 2. EcoSpeak’s higher language verification
accuracy causes a lower EER score in speaker veri-
fication and vice-versa. The model performed the
worst for language verification on ts − ts. It jus-
tifies EcoSpeak’s worst-case speaker verification
performance on ts− ts.

6 Conclusions and Future Work

This paper investigates the behavior of five baseline
speaker verification models on five partially cross-
lingual test sets. Empirical results demonstrate
that a high linguistic similarity in negative trial pair
recordings and a low linguistic similarity in positive
trial pair recordings causes performance degrada-
tion. Furthermore, residual networks are relatively
robust to cross-lingual testing. Using these insights,
we proposed EcoSpeak, a low-cost solution to miti-
gate bias in partially cross-lingual speaker verifica-
tion. EcoSpeak incorporates residual connections,
contrastive linguistic attention, and the bias correc-
tor. Empirical results demonstrate the robustness
of our proposed model on partially cross-lingual
test sets. EcoSpeak’s performance trend deviates
from the baselines. It turns out that utilizing lin-
guistic differences to emphasize and de-emphasize
relevant speaker verification embedding parts can
mitigate partially cross-lingual bias.

Our insights can contribute to the development
of more robust domain-invariant architectures. Fur-
thermore, this work encourages the community to
explore greener approaches to expensive speech
processing. For instance, based on our empirical
results, we recommend leveraging diverse datasets
in a weakly related language for bias mitigation
in an unseen low-resource target language. Addi-
tionally, our proposed data balancing schemes can
save the cost of training on large-scale datasets. We
also recommend a detailed cost analysis to develop
environment-friendly and inclusive models.
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7 Limitations

This work explores cost-efficient techniques for
bias mitigation in partially cross-lingual speaker
verification. Our proposed approach has the follow-
ing limitations:

1. Correlation between speaker and language
verification performance: EcoSpeak’s per-
formance on the language verification task
affects its performance on the speaker verifi-
cation task. One way to address this limitation
is to use a more robust s-Detect model. It is
because EcoSpeak accepts s-Detect embed-
dings as prompt inputs for CL attention and
language verification. Therefore, having a
more robust s-Detect can enhance the speaker
verification performance of EcoSpeak.

2. More experimental validation for con-
trastive linguistic (CL) Attention: Our pro-
posed CL attention mechanism relies on the
intuition that the learned CL attention weights
shall correlate with the speaker verification
embeddings. Therefore, modulating the CL
attention weights with the speaker verifica-
tion embedding emphasizes those embedding
parts that are more influenced by linguistic
variations. However, CL attention is a rela-
tively new approach. In this study, we experi-
mented on five partially cross-lingual test sets
created for four low-resource languages. Still,
extensive experimental validation in more lan-
guages is required to validate the effectiveness
of CL attention.

3. Low-resource language datasets used to
train s-Detect: We did not explicitly fine-
tune EcoSpeak on the target low-resource
languages (Tamil, Telugu, Malayalam, and
Kannada). However, we used speech record-
ings from different datasets in the target low-
resource languages to train the s-Detect model.
Nevertheless, this approach is practical as it is
easier to find language identification datasets
than cross-lingual datasets of bilingual speak-
ers for speaker verification.

Linguistic bias is a complex problem to address
using a single bias mitigation technique. This work
offers a combination of low-cost bias mitigation
techniques in the form of EcoSpeak. In the fu-
ture, combining our proposed techniques with other
novel ideas can further aid bias mitigation.
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A ResNet (Lite) Architecture

Table 6 shows the details of ResNet (Lite).

Layer Input shape Output shape
conv1 [b, 1, 301, 64] [b, 32, 297, 60]
maxpool1 [b, 32, 297, 60] [b, 32, 149, 30]
layer1 [b, 32, 149, 30] [b, 32, 149, 30]
layer2 [b, 32, 149, 30] [b, 64, 38, 8]
layer3 [b, 64, 38, 8] [b, 128, 10, 2]
layer4 [b, 128, 10, 2] [b, 256, 3, 1]
avgpool [b, 256, 3, 1] [b, 256, 1, 1]
fc1 [b, 256] [b, 512]
fc2 [b, 512] [b, num_speakers]

Table 6: Architecture details of the ResNet (Lite)
speaker identification model.

B Training Setup

Firstly, we trained the ResNet (Lite) for speaker
identification on VoxCeleb-2 dev. It took about
40 minutes for the completion of one epoch. One
epoch caused 0.18 kgCO2eq carbon emissions and
consumed 0.61 kWh of electricity. We trained
the model for ten epochs. Secondly, we trained
the s-Detect model to detect the source language
(English). As described in Section 4.1, we com-
bined speech recordings from different datasets
to train s-Detect. We collected 23856, 24884,
20207, 1983, 3633, and 74563 speech recordings
in Hindi, Tamil, Telugu, Malayalam, Kannada, and
English. Next, we fine-tuned the s-Detect on the
NISP-Hindi speaker data so that the EcoSpeak-
Hindi model could adapt to the dataset-specific
variations of NISP. We combined the NISP-Hindi
speaker data with the s-Detect training set and used
mixed training to fine-tune s-Detect. Finally, we
used this adapted s-Detect to train the EcoSpeak-
Hindi model on the NISP-Hindi speaker data. We
fine-tuned EcoSpeak-Hindi for four Epochs to pre-
vent overfitting due to data limitations. We froze
the EcoSpeak’s ResNet (Lite) weights during fine-
tuning. We used the CrossEntropyLoss, Adam
optimizer, and a learning rate 0.0005. We fol-
lowed the same procedure to train the EcoSpeak-
Tamil, EcoSpeak-Telugu, EcoSpeak-Malayalam,
and EcoSpeak-Kannada models. We used one
NVIDIA A100 GPU. We also used Librosa for
pre-processing and feature extraction, Pytorch for
model training, and CodeCarbon for tracking car-
bon emissions and electricity consumption (McFee
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et al., 2015; Paszke et al., 2019).6

Dataset Test Set RC RAD
NISP-LRL tt− tt 10.11 8.16

ts− tt 13.26 12.91
ts− ts 11.96 12.08
tt− ts 9.15 7.78
ss− ss 8.70 7.88
ss− st 9.96 8.32
st− ss 11.30 11.30

NISP-Tamil tt− tt 12.38 10.72
ts− tt 14.98 15.29
ts− ts 13.47 14.69
tt− ts 11.14 10.24
ss− ss 8.94 8.11
ss− st 9.69 8.88
st− ss 12.39 12.66

NISP-Telugu tt− tt 9.61 7.41
ts− tt 10.81 9.83
ts− ts 10.07 9.58
tt− ts 8.98 7.15
ss− ss 10.10 9.22
ss− st 10.62 8.04
st− ss 8.71 8.46

NISP-Malayalam tt− tt 7.24 6.36
ts− tt 11.21 11.12
ts− ts 9.28 9.69
tt− ts 6.17 5.61
ss− ss 6.56 6.79
ss− st 7.68 7.58
st− ss 8.99 9.44

NISP-Kannada tt− tt 10.64 7.97
ts− tt 15.61 15.26
ts− ts 14.05 13.97
tt− ts 9.78 7.98
ss− ss 8.12 7.32
ss− st 10.55 8.50
st− ss 14.13 14.39

Table 7: EER (%) values on evaluating the RC and
RAD on different LRL test sets. The RAD model out-
performed RC on most test sets. It justifies our use of
the absolute difference in EcoSpeak.

C Absolute Difference in EcoSpeak

EcoSpeak uses the absolute difference operation to
compare trial pair embeddings (emb1, emb2) for
speaker verification. This section describes the
experiment that motivated us to use the absolute
difference. We compared the following models:

6https://pypi.org/project/codecarbon/

ResNet (Lite)-Concat: In the ResNet (Lite)-
Concat model (RC), we feed each trial pair
recording through the ResNet (Lite) to get 256-
dimensional embeddings (emb1, emb2). We
concatenate these embeddings to get a 512-
dimensional embedding. We feed this concatenated
embedding through two fully connected layers hav-
ing 512 units. Finally, we pass the resulting em-
bedding through a fully connected layer consisting
of two units for speaker verification. This model
occupies 22.4 MB of disk space.

ResNet(Lite)-AbsoluteDifference: In the
ResNet(Lite)-AbsoluteDifference (RAD) model,
we feed each trial pair recording through the
ResNet (Lite) to get 256-dimensional embeddings
(emb1, emb2). We compute the absolute differ-
ence of these embeddings to get a 256-dimensional
embedding. We feed this difference embedding
through two fully connected layers having 256
units. Finally, we pass the resulting embedding
through a fully connected layer consisting of two
units for speaker verification. This model occupies
20.9 MB of disk space.

Language-Specific LRL test sets: We created
separate test sets for each LRL under consideration.
Thus, we got Tamil-LRL, Telugu-LRL, Malayalam-
LRL, and Kannada-LRL test sets. These test sets
are the subsets of the original LRL test sets de-
scribed in Section 4.1. They include trial pairs of
native speakers of these languages. Thus, each test
set in Tamil-LRL, Telugu-LRL, Malayalam-LRL,
and Kannada-LRL contains 25,000 trial pairs.

Observation: We compared the performance of
RC and RAD on the LRL test sets (described in
Section 4.2) and the language-specific LRLs. Table
7 illustrates that we achieved lower EER values
using RAD than RC on most test sets. This obser-
vation motivated us to use the absolute difference
operation in EcoSpeak.

D Extensive Experimental Validation

Table 8, Table 9, Table 10 and Table 11 illus-
trates the performance of the baselines, ResNet+
and EcoSpeak on the Tamil, Telugu, Malayalam,
and Kannada LRL test sets described in Section
C. These tables validate our observations in Sec-
tions 5.1, 5.2, and 5.3. Table 12, Table 13 and
Table 14 demonstrate the result of the experiment
described in Section 5.4 on the Telugu, Malayalam,
and Kannada LRL test sets.
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Model tt− tt ts− tt ts− ts tt− ts ss− ss ss− st st− ss

VGG-M (Baseline) 11.25 31.65 24.68 8.35 8.99 6.72 31.72
X-Vector (Baseline) 6.18 26.18 21.13 4.86 5.18 4.20 24.61

ECAPA-TDNN (Baseline) 12.11 24.73 22.00 10.75 11.64 10.17 24.10
RawNet-2 (Baseline) 38.50 39.86 37.78 37.09 34.37 33.75 38.63
RawNet-3 (Baseline) 41.13 54.61 46.62 33.92 41.86 47.33 40.99

ResNet+ (Hypothesis) 12.90 17.47 14.26 10.10 9.24 10.08 14.00
EcoSpeak (Scheme-A) 9.82 16.35 13.94 7.40 6.80 6.37 13.18
EcoSpeak (Scheme-B) 8.76 14.41 14.09 8.06 6.69 7.14 12.44
EcoSpeak (Scheme-C) 8.31 10.25 11.42 8.86 6.26 7.42 8.94

Table 8: Table showing the EER (%) of baselines, ResNet+, and EcoSpeak on the Tamil-LRL test sets. We have
represented each model’s best and worst-case performance using bold font. Observations: 1.) Baselines performed
the worst in ts - tt or st - ss. 2.) ResNet+ is stable compared to baselines. 3.) EcoSpeak (Scheme-C) performs
better than other models on most test sets. It performed the worst in ts - ts, which deviates from the worst-case of
baselines.

Model tt− tt ts− tt ts− ts tt− ts ss− ss ss− st st− ss

VGG-M (Baseline) 9.90 23.53 20.94 8.51 12.56 10.31 25.67
X-Vector (Baseline) 6.90 17.54 15.46 6.22 7.92 5.27 21.80

ECAPA-TDNN (Baseline) 12.50 19.22 19.14 12.10 11.73 8.79 22.54
RawNet-2 (Baseline) 37.22 40.63 38.94 35.98 38.14 36.48 39.02
RawNet-3 (Baseline) 40.83 49.94 43.78 34.90 42.98 44.50 40.75

ResNet+ (Hypothesis) 10.45 10.41 11.61 10.63 12.40 10.61 10.52
EcoSpeak (Scheme-A) 7.82 11.43 11.20 6.82 8.32 7.42 11.25
EcoSpeak (Scheme-B) 6.45 9.18 10.34 6.27 7.59 6.63 9.24
EcoSpeak (Scheme-C) 6.42 7.09 9.30 7.82 7.40 7.38 7.76

Table 9: Table showing the EER (%) of baselines, ResNet+, and EcoSpeak on the Telugu-LRL test sets. We have
represented each model’s best and worst-case performance using bold font. Observations: 1.) Baselines performed
the worst in ts - tt or st - ss. 2.) ResNet+ is stable compared to baselines. 3.) EcoSpeak (Scheme-C) performs
better than other models on most test sets. It performed the worst in ts - ts, which deviates from the worst-case of
baselines.

Model tt− tt ts− tt ts− ts tt− ts ss− ss ss− st st− ss

VGG-M (Baseline) 10.09 22.63 18.90 8.18 9.92 7.29 24.18
X-Vector (Baseline) 6.83 16.76 14.30 5.71 7.34 5.85 18.88

ECAPA-TDNN (Baseline) 12.05 17.02 16.58 11.91 10.95 9.28 19.29
RawNet-2 (Baseline) 37.37 41.28 38.94 35.50 38.44 37.86 39.69
RawNet-3 (Baseline) 42.99 54.00 49.98 39.00 39.73 40.69 48.83

ResNet+ (Hypothesis) 8.88 12.42 11.06 8.74 8.19 8.74 11.14
EcoSpeak (Scheme-A) 7.97 12.93 12.17 8.10 8.06 7.70 13.41
EcoSpeak (Scheme-B) 6.98 11.38 12.08 8.12 8.26 8.23 11.90
EcoSpeak (Scheme-C) 6.78 9.89 11.51 8.90 6.96 8.27 10.10

Table 10: Table showing the EER (%) of baselines, ResNet+, and EcoSpeak on the Malayalam-LRL test sets. We
have represented each model’s best and worst-case performance using bold font. Observations: 1.) Baselines
performed the worst in ts - tt or st - ss. 2.) ResNet+ is stable compared to baselines. 3.) EcoSpeak (Scheme-C)
performs better than other models on most test sets. It performed the worst in ts - ts, which deviates from the
worst-case of baselines.
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Model tt− tt ts− tt ts− ts tt− ts ss− ss ss− st st− ss

VGG-M (Baseline) 11.63 23.70 20.02 10.12 8.68 5.46 27.74
X-Vector (Baseline) 6.38 21.14 16.80 5.76 5.92 5.10 21.67

ECAPA-TDNN (Baseline) 13.02 22.75 20.13 13.10 11.17 8.82 24.62
RawNet-2 (Baseline) 40.00 44.26 41.16 38.90 40.79 39.97 41.87
RawNet-3 (Baseline) 40.30 49.98 45.68 39.22 42.86 43.82 44.13

ResNet+ (Hypothesis) 10.49 13.19 11.65 9.63 8.06 8.73 12.06
EcoSpeak (Scheme-A) 8.65 14.31 13.21 8.07 7.71 7.90 15.68
EcoSpeak (Scheme-B) 8.43 12.67 13.54 9.78 6.49 8.50 13.31
EcoSpeak (Scheme-C) 7.73 9.94 12.04 10.58 6.51 9.65 11.58

Table 11: Table showing the EER (%) of baselines, ResNet+, and EcoSpeak on the Kannada-LRL test sets. We have
represented each model’s best and worst-case performance using bold font. Observations: 1.) Baselines performed
the worst in ts - tt or st - ss. 2.) ResNet+ is stable compared to baselines. 3.) EcoSpeak (Scheme-C) performs
better than other models on most test sets. It performed the worst in ts - ts, which deviates from that of baselines.

Test Set EcoSpeak-Hindi EcoSpeak-Tamil EcoSpeak-Malayalam EcoSpeak-Kannada
tt− tt 6.42 6.73 7.30 8.41
ts− tt 7.09 7.99 9.09 9.41
ts− ts 9.30 10.02 10.45 12.22
tt− ts 7.82 8.19 7.70 10.46
ss− ss 7.40 8.26 7.81 9.51
ss− st 7.38 7.20 7.87 10.02
st− ss 7.76 8.47 9.02 10.09

Table 12: Table showing the EER values (%) on Telugu-LRL test sets. The EcoSpeak model fine-tuned on NISP-
Hindi native speaker data performed the best on most test sets. NISP-Hindi is a diverse dataset, but Hindi is weakly
related to Telugu.
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Test Set EcoSpeak-Hindi EcoSpeak-Tamil EcoSpeak-Telugu EcoSpeak-Kannada
tt− tt 6.78 8.06 7.22 8.56
ts− tt 9.89 10.62 10.43 10.56
ts− ts 11.51 12.42 12.98 12.93
tt− ts 8.90 9.91 9.90 11.34
ss− ss 6.96 8.47 8.02 8.43
ss− st 8.27 10.63 9.11 11.30
st− ss 10.10 11.50 12.41 10.63

Table 13: Table showing the EER values (%) on Malayalam-LRL test sets. The EcoSpeak model fine-tuned on
NISP-Hindi native speaker data performed the best. NISP-Hindi is a diverse dataset, but Hindi is weakly related to
Malayalam.

Test Set EcoSpeak-Hindi EcoSpeak-Tamil EcoSpeak-Malayalam EcoSpeak-Telugu
tt− tt 7.73 8.20 8.73 8.79
ts− tt 9.94 10.81 11.94 8.60
ts− ts 12.04 13.02 14.08 11.11
tt− ts 10.58 9.46 11.03 10.62
ss− ss 6.51 6.30 6.98 7.51
ss− st 9.65 8.33 8.94 9.49
st− ss 11.58 12.98 12.78 10.84

Table 14: Table showing the EER values (%) on Kannada-LRL test sets. EcoSpeak-Hindi’s poor performance on
Kannada-LRL test sets is due to a lack of Kannada data for training s-Detect. Tamil, Telugu, and Kannada belong
to the Dravidian language family and hence have similarities. Therefore, EcoSpeak-Tamil and EcoSpeak-Telugu
performed better than EcoSpeak-Hindi on the Kannada-LRL test sets.
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