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Abstract
Knowledge Distillation (KD) is a predominant
approach for BERT compression. Previous KD-
based methods focus on designing extra align-
ment losses for the student model to mimic the
behavior of the teacher model. These methods
transfer the knowledge in an indirect way. In
this paper, we propose a novel Weight-Inherited
Distillation (WID), which directly transfers
knowledge from the teacher. WID does not
require any additional alignment loss and trains
a compact student by inheriting the weights,
showing a new perspective of knowledge dis-
tillation. Specifically, we design the row com-
pactors and column compactors as mappings
and then compress the weights via structural
re-parameterization. Experimental results on
the GLUE and SQuAD benchmarks show that
WID outperforms previous state-of-the-art KD-
based baselines. Further analysis indicates that
WID can also learn the attention patterns from
the teacher model without any alignment loss
on attention distributions. The code is available
at GitHub.

1 Introduction

Transformer-based Pre-trained Language Mod-
els (PLMs), such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLNET (Yang et al.,
2019), have achieved great success in many Natural
Language Process (NLP) tasks. These models are
pre-trained on massive corpus via self-supervised
tasks to learn contextualized text representations.
However, PLMs have high costs in terms of storage,
memory, and computation time, which brings chal-
lenges to online services in real-life applications.
Therefore, it is crucial and feasible to compress
PLMs while maintaining their performance.

Knowledge Distillation (KD), which trains a
compact student model by mimicking the behav-
ior of a teacher model, is a predominant method
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Approach Alignment Loss Hard Loss Task-AgnosticLogit Feature

DistilBERT ✓ ✓ ✓ ✓

TinyBERT (GD) ✓ ✓ ✗ ✓

PKD ✓ ✓ ✓ ✗

MiniLM ✗ ✓ ✗ ✓

MobileBERT ✓ ✓ ✓ ✓

WID (ours) ✗ ✗ ✓ ✓

Table 1: Comparison with previous state-of-the-art dis-
tillation methods. Logit and Feature denote whether
logit-based loss and feature-based loss are used for dis-
tillation. To the best of our knowledge, WID is the first
distillation method without any alignment loss and di-
rectly transfers the knowledge by weight inheritance.

for PLM compression. There are two settings for
KD in BERT compression: 1) task-specific, which
first fine-tunes the teacher PLMs on specific tasks
and then performs distillation, and 2) task-agnostic,
which distills PLMs in the pre-training stage. For
task-agnostic distillation, the student model can
be directly and generically fine-tuned on various
downstream tasks (Wang et al., 2020; Sun et al.,
2020). Hence, we evaluate the proposed weight-
inherited distillation (WID) under a task-agnostic
setting.

Previous KD-based methods mainly focus on de-
signing alignment losses to minimize the distance
between the teacher model and the student model.
We can further categorize these alignment losses
into 1) logit-based, which measures the distance
of logit distributions, and 2) feature-based, which
aims to align the intermediate features including
token embeddings, hidden states, and self-attention
distributions. However, selecting various loss func-
tions and balancing the weights of each loss are
laborious (Sun et al., 2019; Jiao et al., 2020). Mean-
while, the knowledge is embedded in the weights.
This gives rise to an intuitive thought: can we distill
the knowledge by directly inheriting the weights,
rather than aligning the logit distributions or inter-
mediate features?
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In this work, we propose Weight-Inherited Dis-
tillation (WID), which does not require any ad-
ditional alignment loss and trains the student by
directly inheriting the weights from the teacher. In
WID, we factorize the KD process into the compres-
sion of each weight matrix. Inspired by structural
re-parameterization in CNN compression (Ding
et al., 2021), we design row compactors and col-
umn compactors, and then view them as mappings
to compress the weights by row and column, re-
spectively. For the matrices to compress the row
only, such as the output layer for MLM task (the
column is always the size of vocabulary), we em-
ploy the row compactors exclusively to compress
them. Moreover, during training, we design a novel
alignment strategy to align the compactors due to
the residual connection in Transformer (Vaswani
et al., 2017). As shown in Table 1, WID is the only
method for task-agnostic distillation without any
alignment loss.

We conduct extensive experiments on down-
stream NLP tasks, including the GLUE and
SQuAD benchmarks. Experimental results demon-
strate that WID outperforms traditional KD-based
baselines. Further analysis shows that WID can
also learn high-level semantic knowledge such as
self-attention patterns via inheriting weights.

Our contributions can be summarized as follows:

• We propose Weight-Inherited Distilla-
tion (WID), revealing a new pathway to
KD by directly inheriting the weights via
structural re-parameterization.

• We design the compactor alignment strategy
and conduct WID for task-agnostic BERT
compression. Experiments on the GLUE and
SQuAD benchmark datasets demonstrate the
effectiveness of WID for model compression.

• We perform further analyses on how to get bet-
ter performance in BERT compression. Even
more, we find that WID is able to learn atten-
tion patterns from the teacher.

2 Preliminaries

2.1 Embedding Layer
In BERT (Devlin et al., 2019), the input texts
are tokenized to tokens by WordPiece (Wu et al.,
2016). The representations ({xi}|x|i=1) of the input
sequence are constructed by summing the corre-
sponding token embedding, segment embedding,

and position embedding. For the token embedding
layer in BERT, the weight is WT ∈ R|V |×d, where
|V | and d denote the sizes of the vocabulary and
the hidden state vector, respectively.

2.2 Transformer Layer
Transformer layers are adapted to encode the con-
textual information of input texts. The input vec-
tor ({xi}|x|i=1) are packed to H0 = [x1, · · · ,x|x|].
After that, the L-layer transformer computes the
encoding vectors following:

Hl = Transformerl(Hl−1), l ∈ [1, L]. (1)

The final output HL = [hL1 , · · · , hL|x|] ∈ R|x|×d

is employed as the contextualized representation
of {xi}|x|i=1. Each transformer layer consists of a
multi-head self-attention (MHA) sub-layer and a
feed-forward (FFN) sub-layer. In these two sub-
layers, the residual connection (He et al., 2016) is
employed, followed by Layer Normalization (LN)
(Ba et al., 2016).

MHA For the l-th transformer layer with A at-
tention heads, the output Ol,a of the attention head
a ∈ [1, A] is calculated as:

Ql,a = Hl−1WQ
l,a

Kl,a = Hl−1WK
l,a

Vl,a = Hl−1WV
l,a

(2)

Ol,a = Al,aVl,a,Al,a = softmax(
Ql,aK

T
l,a√

dk
)

(3)
where linear projection WQ

l,a,W
K
l,a,W

V
l,a ∈

Rd×dk and dk = d
A is the dimension of each head.

The final output of MHA sub-layer is as follows:

Ol = LN(Hl−1 + (||Aa=1Ol,a)W
O
l ) (4)

where WO
l ∈ Rd×d, LN is layer normalization and

|| denotes the concatenation operation.

FFN The l-th FFN sub-layer consists of an up
projection and a down projection, parameterized by
WU

l ∈ Rd×df , WD
l ∈ Rdf×d, and corresponding

bias bU
l ∈ Rdf , bD

l ∈ Rd:

FFN(Ol) = gelu(OlW
U
l + bu

l )W
D
l + bd

l . (5)

Typically, df = 4d. Finally, we obtain the output
of layer l by:

Hl = LN(Ol + FFN(Ol)). (6)
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2.3 Knowledge Distillation
Knowledge Distillation (KD) trains a compact stu-
dent model S by mimicking the behaviors of the
teacher model T . The losses can be categorized
into logit-based and feature-based.

For logit-based loss, the target is to minimize
the distance between logit distribution ps from the
student and pt from the teacher, which can be for-
malized as:

Llogit = H1(ps/τ,pt/τ), (7)

where τ is the temperature and H1 is the cross-
entropy loss or KL-divergence.

Feature-based loss aims to align the intermediate
features between the teacher and the student by:

Lfeature = H2(f
S(x), fT (x)), (8)

where H2 is the loss function such as Mean Square
Error (MSE) and f(x) denotes for the intermediate
output including hidden state vector H and atten-
tion distribution A.

As shown in Table 1, logit-based and feature-
based loss can be jointly employed for better dis-
tillation. However, balancing the weights of each
loss is laborious. For example, the overall loss of
PKD (Sun et al., 2019) is:

L = (1− α)Lhard + αLlogit + βLfeature, (9)

where Lhard is the loss on target tasks and α and
β are the hyper-parameters. PKD performs grid
search over α and τ , where α ∈ {0.2, 0.5, 0.7}
and τ ∈ {5, 10, 20}. After that, the best α
and τ are fixed, followed by a search of β ∈
{10, 100, 500, 1000}.

Meanwhile, selecting various loss functions is
also laborious. In PKD, Lfeature is defined as the
mean square loss between the normalized hidden
states for each layer. DistilBERT (Sanh et al., 2019)
adopts the cosine embedding loss for hidden states.
TinyBERT (Jiao et al., 2020) employs the mean
square loss for self-attention distributions, embed-
ding layer outputs, and hidden states.

3 Weight-Inherited Distillation

3.1 Structural Re-parameterization
As mentioned in Section 2, the PLMs (e.g., BERT)
consist of embedding layers and transformer layers.
To compress the BERT, we have to learn a mapping
from the larger weight in the teacher model to the
compact one. In terms of matrices, these mappings
can be categorized as:

Linear 
Layer !!

Row 
Compactor

Column
Compactor

Merge compactors and !!

B × CB× B → D× B C × C → C× E

Input Output

Compact
Layer !"
D × E

Input Output

Linear 
Layer !!

Row 
Compactor

Column
Compactor

Compress compactors 

B × CB× B C × C

Input Output

Linear 
Layer !!

B × C

Input Output

Add compactors then train

TL

Figure 1: Overview of compressing linear layer LT with
weight WLT ∈ RB×C to compact linear layer LS with
weight WLS ∈ RD×E via WID. Both row compactor
and column compactor are initialized as identity ma-
trices. After training, we compress the compactors and
merge them with the original layer. All the linear layers
in the teacher model are compressed simultaneously.

• column mapping only, such as the token em-
bedding matrix WT ∈ R|V |×d,

• row mapping only, such as the weight of out-
put layer for MLM task with size Rd×|V |,

• column and row mapping, such as up projec-
tion Wl,u ∈ Rd×df in FFN.

In WID, we adopt the re-parameterization trick and
design the row compactor for row mapping and col-
umn compactor for column mapping, respectively.

Figure 1 gives an example showing the process
of compressing the original weight WLT ∈ RB×C

to a compact weight WLS ∈ RD×E adopting both
row compactor and column compactor. First, we in-
sert the row compactor with weight Wrc ∈ RB×B

and the column compactor with weight Wcc ∈
RC×C before and after the linear layer LT from
the teacher model. All compactors are linear lay-
ers without bias and their weights are initialized
as identity matrices. For an arbitrary input X , the
re-parameterized teacher model produces identical
outputs as the original, since

XWLT = XWrcWLTWcc. (10)

Second, we train the re-parameterized teacher
model on the pre-training task. After training,
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Figure 2: Training and compression for column compactor. During the training process, we add weight penalty
gradients by columns and progressively select the mask to fuse the penalty gradients and original loss gradients.
After training, we compress the column compactor following the column mask.

the row compactor is compressed by reducing the
B − D rows, and the column compactor is com-
pressed by reducing C −E columns. The objects
are as follows:

Wrc ∈ RB×B → Wrc′ ∈ RD×B

Wcc ∈ RC×C → Wcc′ ∈ RC×E .
(11)

More details can be found in Section 3.2. Finally,
we merge the compressed compactors Wrc′ ,Wcc′

and the original teacher layer WLT to obtain the
compact layer for the student following:

WLS = Wrc′WLTWcc′ ∈ RD×E (12)

For the weights to compress the rows only, we
adopt the row compactor exclusively. Similarly, we
employ the column compactor exclusively for the
weights to compress the columns only.

3.2 Compactor Compression
The goal is to maintain the performance of the
teacher model as much as possible and compress
the compactors simultaneously.

Figure 2 presents the training and compression
process for the column compactor. To compress the
compactors, we add extra penalty loss to minimize
the norms of some columns. Given the column
compactor Wcc ∈ RC×C and original gradients
gccori ∈ RC×C from training tasks, the penalty gra-
dients gccpen ∈ RC×C are calculated as follows:

gccpen =
Wcc

||Wcc||2
(13)

where ||Wcc||2 denotes the Euclidean norm across
each column.

However, applying the gccori and penalty gradi-
ents gccpen to the same row/column leads to the gra-
dient competition (Ding et al., 2021). Therefore,
we choose some columns to reduce and apply the
penalty gradients gccpen, while the rest columns are
adopted to keep performance and updated with gccori.
Specifically, we pick top-k columns with lower
norm value based on the ||Wcc||2 and set the corre-
sponding value in our column mask M = {0, 1}C
to be 1. Later, the original gradients gccori and the
penalty gradients gccpen are fused as follows:

gccfused[:, i] =

{
gccpen[:, i], if M [i] = 1

gccori[:, i], if M [i] = 0
(14)

where 0 ≤ i ≤ C. We employ the fused gradients
gccfused to update the corresponding column com-
pactor. After training, we compress the column
compactor by column mask:

Wcc′ = Wcc[:, i], where M [i] = 0. (15)

Moreover, the process is similar for row com-
pactors. We calculate ||Wrc||2 for each row and
select the top-k rows with the lower norm value.

For stability and better performance, we choose
the rows/columns of the compactors progressively.
Concretely, we increase k by d for N steps until
reaching the desired size during the training stage.
Moreover, we also try the dynamic selection (Ding
et al., 2021) for mask and it makes no effect.
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Figure 3: Compactor merging process for a Transformer block. For the bias terms, we merge them with correspond-
ing column compactors. For beta and gamma in Layer Norm (LN), we adopt the previous column compactors
to update them. During training, the compactors in the same color are aligned. For each group of the aligned
compactors, we learn one of them and duplicate (or, flip) it for the rest compactors.

3.3 Compactor Alignment Strategy

To apply WID for BERT compression, we design
a novel compactor alignment strategy. Since each
dimension in a hidden representation h1 is con-
nected to the same dimension in another hidden
representation h2 through a residual connection,
the compactors before and after the h1 and h2
need to be aligned. As shown in Figure 3, the
compactors in a transformer block are divided into
three groups (same color, same group). The first
compactor before the Hl−1 and the first compactor
after the Hl are also aligned with groups in blue.
Therefore, the column compactor for the embed-
ding layer, the row compactor for the output layer,
and compactors in blue from each layer are all
aligned. Meanwhile, the groups in orange/green
can be different across layers since they are not ad-
jacent. For each group of the aligned compactors,
we learn one of them and duplicate (or, flip) it for
the rest. Please refer to Appendix B.2 for more
details.

4 Experiments

4.1 Task-Agnostic Distillation

We employ the uncased version of BERTbase as
our teacher model 1 and implement WID based
on TencentPretrain framework(Zhao et al., 2023).
BERTbase (Devlin et al., 2019) is a 12-layer trans-
former model (d=768, A=12, L=12), which con-
tains 110M parameters. For student models, we
compress the teacher model to various model sizes
for comparison, including WID55 (d=516, A=12,
L=12) with 55M parameters and WID11 (d=192,
A=12, L=12) with 11M parameters. We use the
documents of English Wikipedia and BookCorpus

1From https://huggingface.co/bert-base-uncased

(Zhu et al., 2015) for pre-training following De-
vlin et al. (2019). We use AdamW (Loshchilov
and Hutter, 2019) with β1 = 0.9, β2 = 0.99. The
compactors are trained with peak learning rate 5e-5
and the original linear layers with peak learning
rate 1e-6. For WID, we adopt the 2-norm and set
N=500, d=⌊(dt − ds)/16⌋. It costs about 64 hours
to train for 400,000 steps with a batch size of 960
on 8 A100 GPUs.

4.2 Downstream Tasks
Following previous PLM-based KD methods (Sanh
et al., 2019; Wang et al., 2020), we evaluate our
WID on the SQuAD v1.1 (Rajpurkar et al., 2016)
and GLUE benchmark (Wang et al., 2019). The
GLUE benchmark consists of CoLA (Warstadt
et al., 2019), SST-2(Socher et al., 2013), MRPC
(Dolan and Brockett, 2005), STS-B (Cer et al.,
2017), QQP (Chen et al., 2018), MNLI (Williams
et al., 2018), QNLI(Rajpurkar et al., 2016) and RTE
(Bentivogli et al., 2009). After task-agnostic distil-
lation, we fine-tune our compressed BERT WID55

and WID11 on these benchmarks adopting the grid
search and report the results on the development
sets. The result of MNLI is the score of MNLI-m.
More details about these datasets including dataset
sizes and metrics and the hyperparameters for fine-
tuning can be found in the Appendix A.

4.3 Baselines
For a fair comparison, we compare our WID with
the task-agnostic distillation baselines. These
baselines include: 1) DistilBERT (Sanh et al.,
2019), which distills the student by the combina-
tion of the original MLM loss, the cosine distance
for features, and the KL divergence for output log-
its. 2) TinyBERT (GD) (Jiao et al., 2020), which
aligns the attention distributions and hidden states
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Method FLOPs Params SST-2 CoLA MRPC QNLI QQP RTE STS-B MNLI SQuAD AVG

BERTbase 22.7B 110.1M 92.7 59.1 90.4 91.7 91.4 70.8 90.1 84.5 89.6/82.6 84.3

DistilBERT 11.9B 67.5M 91.3 51.3 87.5 89.2 88.5 59.9 86.9 82.2 86.2/78.1 80.1
MiniLM 11.9B 67.5M 92.0 49.2 88.4 91.0 91.0 71.5 - 84.0 -/- -
MiniLM v2 11.9B 67.5M 92.4 52.5 88.9 90.8 91.1 72.1 - 84.2 -/- -
TinyBERT (GD)† 11.9B 67.5M 92.9 44.1 89.5 90.7 91.0 73.7 89.6 83.8 84.0/74.2 81.3
TinyBERT (GD)‡ 10.4B 54.9M 92.3 47.0 87.3 90.8 90.9 69.7 89.0 83.3 85.4/76.2 81.2
WID55 (ours) 10.4B 54.9M 92.4 61.7 88.2 90.1 91.0 70.4 87.9 82.9 88.5/80.8 83.4

TinyBERT (GD)‡ 1.6B 11.3M 88.4 30.3 80.4 87.5 89.1 65.3 84.0 79.4 80.5/70.7 75.6
WID11 (ours) 1.6B 11.3M 88.8 44.2 81.9 85.4 89.5 60.3 84.5 78.4 81.2/72.4 76.7

Table 2: Comparison between our WID and various task-agnostic distillation methods. We compare the task-
agnostic distilled models without both data augmentation and task-specific distillation. † means that we fine-tune
the official weights. ‡ means that we reproduce the methods following the official code. Other results are taken
from corresponding papers. For MiniLM and MiniLM v2, the average reported scores are 81.0 and 81.7, and both
are lower than the 82.3 of WID.

for general distillation. 3) MiniLM (Wang et al.,
2020) and MiniLM v2 (Wang et al., 2021), which
align the attention matrix and values-values scaled
dot-product. We also reproduce the TinyBERT in
the same architecture as WID, following the of-
ficial code. For fair comparison, we employ the
same corpus and follow the official hyperparame-
ters. We do not compare with MobileBERT (Sun
et al., 2020) since its teacher is IB-BERTlarge (much
higher accuracy than BERTbase) and its compu-
tations (4096 batch size, 740,000 steps) is much
higher. Moreover, we also compare WID with task-
specific methods in Appendix C.1.

4.4 Main Results

We compare WID with other task-agnostic distilla-
tion methods in various model sizes. All the meth-
ods utilize the BERTbase as the teacher model. As
shown in Table 2, WID retains 98.9% and 90.9%
performance of BERTbase using only 49.2% and
10.2% parameters, respectively. In particular, in
the CoLA task, WID55 gets a higher score than
BERTbase. Compared to the baselines with 67.5M
parameters, WID55 gets comparable performance
with MiniLM and higher performance than Distil-
BERT with fewer parameters. Meanwhile, WID
outperforms the TinyBERT under the same archi-
tecture on GLUE benchmarks and SQuAD, show-
ing its superiority over the traditional KD methods
with logit-based loss and feature-based loss. With-
out CoLA, WID55 gets an average score of 85.8
and still outperforms the TinyBERT (GD) with an
average score of 85.0.

Meanwhile, we apply WID for generative PLM.
Please refer to C.4 for more details.

Larger Performance Gap Since the perfor-
mance gap between teacher and student has al-
ways been a crucial point and difficulty in KD,
we conduct experiments for smaller student mod-
els (11.3M parameters). We reproduce the task-
agnostic TinyBERT under the General Distilla-
tion (GD) as the baseline. As shown in Table 2,
we find that WID (average score: 76.7) still outper-
forms TinyBERT (average score: 75.6) when the
student model is about 10x smaller.

5 Analysis and Discussion

5.1 WID vs Pruning
Pruning (LeCun et al., 1989) aims to remove re-
dundant weights from a neural network to achieve
parameter-efficiency while preserving model per-
formance, including unstructured pruning which
sets weights to 0, and structured pruning which
removes components such as attention heads. Un-
structured pruning methods do not reduce the
model size. However, WID is very likely to be
confused with structured pruning methods.

Structured pruning methods aim to remove the
redundant units and then usually get sub-networks
without a pre-defined structure. However, WID
does not remove any parts of the original weights
from the teacher models but learns a student model
with a pre-defined structure. Meanwhile, the goal
of KD is to transfer the knowledge from teacher
models to student models. In WID, we design the
compactors as mappings to inherit knowledge from
teacher models, rather than to find sub-networks.
Hence, we consider WID as a KD method though
the compression process of compactors is similar
to pruning. More comparison between WID and
pruning methods can be found in C.2.
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Method SST-2 CoLA MRPC QNLI QQP RTE STS-B MNLI SQuAD AVG

WIDdim
55 92.4 61.7 88.2 90.1 91.0 70.4 87.9 82.9 88.5/80.8 83.4

WIDhead
55 92.0 61.6 88.2 89.4 91.0 70.8 87.6 82.6 87.3/79.4 83.0

WIDdim
11 88.8 44.2 81.9 85.4 89.5 60.3 84.5 78.4 81.2/72.4 76.7

WIDhead
11 89.6 46.2 83.1 86.1 89.5 62.1 85.3 79.0 81.7/72.9 77.6

Table 3: Comparison between dropping heads and reducing dimension of each head for WID55 with 55M parameters
and WID11 with 11M parameters.

Teacher Params SST-2 CoLA MRPC QNLI QQP RTE STS-B MNLI SQuAD AVG

BERTbase 110.1M 89.6 46.2 83.1 86.1 89.5 62.1 85.3 79.0 81.7/72.9 77.6
BERT55 54.2M 89.5 43.2 84.6 86.3 89.7 63.2 85.7 79.4 81.2/72.5 77.5
WIDhead

55 54.2M 89.9 46.2 84.8 86.5 89.5 64.6 84.7 78.8 82.1/73.5 78.1

Table 4: Comparison between different teacher models after they are compressed to WIDhead
11 . BERT55 means the

BERT model with same architecture as WIDhead
55 .

5.2 MHA: Dropping Heads or Reducing
Dimension

Multi-Head Attention (MHA) allows the model to
jointly attend to the information from different rep-
resentation subspaces (Vaswani et al., 2017). When
compressing the weights in MHA, there are two op-
tions, including 1) dropping heads, which reduces
the number of heads A, and 2) reducing dimension,
which reduces the size of each head dk. For Tiny-
BERT (Jiao et al., 2020) and MiniLM (Wang et al.,
2020), they keep A=12 and reduce dk due to the
constraint of attention-based loss. Our proposed
WID is more flexible since we do not employ any
alignment loss. Moreover, we can easily achieve
these two strategies by constraining the column
mask in MHA. For WID55 and WID11 reported in
Table 2, we reduce the size of each attention head
following TinyBERT for a fair comparison.

To further explore these two strategies, we con-
duct WID under these two settings and report
the scores on downstream tasks. In BERTbase,
we have A=12 and dk=64. The student mod-
els are selected as: WIDdim

55 (A=12, dk=43),
WIDhead

55 (A=8, dk=64), WIDdim
11 (A=12, dk=16),

and WIDhead
11 (A=3, dk=64). As shown in Table 3,

the dropping head strategy performs slightly worse
under 55M parameters and much better under 11M
parameters. For attention heads in WID55, both
43 and 64 are large enough to encode the textual
information in the representation subspace. Thus,
the WIDdim

55 with more attention heads gets slightly
better results. Similarly, the attention heads with
size 16 perform worse due to the limited represen-
tation subspace, leading to the poor performance

of WIDdim
11 .

5.3 Impact of Teacher Models

To study the impact of teacher models, we compare
the results of three teachers, including 1) BERTbase,
2) WIDhead

55 , which is compressed by BERTbase
adopting the dropping head strategy, 3) BERT55,
which shares the same architecture as WIDhead

55 .
Both BERTbase and BERT55 are downloaded from
the official repository 2. We compress these three
teachers to WIDhead

11 employing the dropping head
strategy. Table 4 shows the results of three teachers.
Some findings are summarized as follows:

(1) A smaller teacher can also teach a smart stu-
dent. Both BERTbase and BERT55 are pre-trained
on the MLM tasks. But the student from BERT55
gets an average score of 77.5, which is comparable
to 77.6 from the student of BERTbase. A similar
conclusion is also observed in Zhang et al. (2023).

(2) An educated teacher teaches better. The
WIDhead

55 is compressed by BERTbase adopting the
dropping head strategy. Compared to BERT55 un-
der the same architecture, WIDhead

55 can teach a
better student on both GLUE benchmarks and the
SQuAD task.

5.4 Looking into WID

We visualize the attention distributions between the
teacher BERTbase and the student WIDdim

11 with the
same input tokens. For more comparison, we also
pre-train BERT11 from scratch which shares the
same architecture as WIDdim

11 . As shown in Figure

2https://github.com/google-research/bert
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Figure 4: Attention distributions under same input tokens for BERTbase (upper), WIDdim
11 (middle), and BERT11 (bot-

tom). Our WID can learn the knowledge about attention distributions from the teacher without any alignment loss.

4, WID can learn the attention patterns in vari-
ous layers of the teacher model BERTbase, while
BERT11 can not. The results of more attention
heads can be found in Appendix C.5.

In WID, we do not use any alignment loss be-
tween the teacher and the student. However, the
compressed student model can still learn attention
patterns. This indicates that inheriting the weights
can also inherit high-level semantic knowledge.

6 Related Work

6.1 BERT Compression

Transformer-based Pre-trained Language Mod-
els (PLMs) can be compressed via Quantization
(Stock et al., 2021; Tao et al., 2022), Matrix De-
composition (Mao et al., 2020), Pruning (Xia et al.,
2022; Lagunas et al., 2021), and Knowledge Dis-
tillation (Jiao et al., 2020; Wang et al., 2020). We
refer the readers to Ganesh et al. (2021) for a com-
prehensive survey. In this paper, we focus on KD
for BERT compression.

6.2 Knowledge Distillation

KD aims to transfer the knowledge from the teacher
model to the student model (Hinton et al., 2015;
Wang et al., 2023; Wu et al., 2023). The distillation
methods can be directly divided into three main
categories: offline distillation, online distillation,
and self-distillation (Gou et al., 2021). For PLMs,
the majority of methods follow the offline distilla-
tion pattern where the teacher model is pre-trained
before distillation. Meanwhile, distillation meth-
ods for PLMs can be divided into task-agnostic,
which distills the PLM in pre-training stage, and

task-specific, which fine-tunes the teacher model
on specific tasks and then distills.

In this work, we focus on the task-agnostic dis-
tillation. Previous methods mainly focus on de-
signing extra matching losses for the student model
to mimic the teacher model. These losses mainly
include feature-based loss for features in interme-
diate layers and logit-based loss for output logits.
DistilBERT (Sanh et al., 2019) adopts the output
logit and embedding outputs of the teacher to train
the student. TinyBERT (Jiao et al., 2020) and Mo-
bileBERT (Sun et al., 2020) further employ the self-
attention distributions and hidden states for align-
ment loss. Such layer-to-layer distillation restricts
the number of student layers or requires an extra
mapping function. To address this issue, MiniLM
(Wang et al., 2020) proposes a new loss based on
the attention matrix and values-values scaled dot-
product. WD (Lin et al., 2021) employs a similar
idea to inherit the knowledge in parameters. How-
ever, WD initializes the weights of student models
randomly and still requires alignment losses.

Different from existing methods, WID does not
require additional alignment losses, thus avoiding
laborious selection for both loss functions and loss
weights.

7 Conclusion

This work proposes a novel Weight-Inherited Dis-
tillation (WID) method for task-agnostic BERT
compression. In WID, we factorize the compres-
sion process as weight mappings, and then design
the row compactors and column compactors for
row mappings and column mappings, respectively.
Empirical results on various student model sizes
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demonstrate the effectiveness of WID. Further anal-
ysis indicates that inheriting the weights can also
inherit high-level semantic knowledge such as at-
tention patterns. In future work, we would con-
sider reducing the extra memory cost by compactor
layers, such as compactor sharing. Moreover, em-
ploying WID on the large language model (LLM)
would be another interesting topic.
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Limitations

Our proposed WID inserts row/column compactors
to learn the mappings from the teacher model to
the student model. Thus, WID requires additional
computational time and memory. However, WID
still outperforms TinyBERT with fewer time costs.
As shown in Table 7, WIDdim

55 trained with 100k
steps achieves a higher score and saves more than
50% time costs compared to TinyBERT. However,
we believe that such a trade-off is valuable since a
faster and better compact student would save more
time on downstream tasks.
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A GLUE and SQuAD

A.1 Data Statistics
Table 5 shows the sizes of the train/development
set and the metrics for downstream tasks.

Task #Train #Dev Metric

SST-2 67k 872 Accuracy
QNLI 105k 5.5k Accuracy
MNLI 393k 20k Accuracy
QQP 364k 40k Accuracy
CoLA 8.5k 1k Matthews corr.
RTE 2.5k 276 Accuracy
STS-B 7k 1.5k Spearman corr.
MRPC 3.7k 408 Accuracy
SQuAD 87.6k 34.7k F1 & EM

Table 5: Data statistics of GLUE and SQuAD datasets.

A.2 Hyperparameters
We employ the grid search to fine-tune the GLUE
benchmarks and SQuAD.

GLUE The learning rate is searched in {1e-5, 2e-
5, 3e-5}. We set the search space for the training
batch size based on the size of the training set. For
large datasets including QNLI, MNLI, and QQP,
the batch size is searched in {32, 48}. For small
datasets including MRPC, RTE, CoLA, and STS-
B, the batch size is searched in {4, 6}. For SST-2,
the batch size is searched in {8, 16}. All tasks are
trained for 10 epochs.

SQuAD The learning rate is searched in {1e-5,
2e-5, 3e-5} and batch size is searched in {4,6,8}.
The training epochs are set to 3.

B Method Details

B.1 Algorithm
More details about the proposed WID can be found
in Algorithm 1.

B.2 Groups of Aligned Compactors
Specifically, we can divide all the compactors in
BERT into the following aligned groups:

• One group in blue: {CC for embedding layer,
blue compactors in each Transformer layer,
RC for output layer},

• L groups in orange: {orange compactors in
layer 1}; {orange compactors in layer 2}; ...
{orange compactors in layer L},

Algorithm 1 Weight-Inherited Distillation
Input: teacher model T with width dt
Params: k: number of rows/columns to compress, N : steps
to increase k, d: increment for k each time
Output: student model S with width ds
1: Add compactors for T to construct the re-parameterized

teacher model T̂ . Initialize the weights for compactors as
identity matrices.

2: k ← 0 ; M ← [ ]
3: for i = 0 to max training steps do
4: Forward a batch through T̂ , derive the gradients gori

for compactors to update
5: if i%N == 0 & k < dt − ds then
6: Calculate p-norm values
7: Select the top-k row/column with the lower norm

to get M
8: Get penalty gradients gpen following Eq. 13
9: gfused ← f(gori, gpen,M) following Eq. 14

10: k ← k + d
11: end if
12: Update the compactors with corresponding gfused and

original layers with gori
13: Apply the compactor aligning strategy
14: end for
15: Compress the compactors following Eq. 15
16: Merge the compactors and original layers following Eq.

12 to get compact layers for S
17: return S

• L groups in green: {green compactors in layer
1}; {green compactors in layer 2}; ... {green
compactors in layer L},

Where RC/CC denotes the row/column compactor
and {·} denotes a group. For the only one group
in blue, we calculate the column compactor for
the embedding layer and duplicate (or, flip) it for
the other compactors. For each group in orange,
we calculate the column compactor for the Value
projection and duplicate (or, flip) it for the rest three
compactors. For each group in green, we calculate
the column compactor for the Up-project and flip
it for the other one.

C Extensive Analysis

C.1 Comparison with Task-Specific
Distillation

We also compare WID with task-specific distil-
lation methods where the teacher model in task-
specific distillation methods is fine-tuned for the
task before distillation. For baselines, we select
BERT-of-Theseus (Xu et al., 2020), DynaBERT
(Hou et al., 2020) and MetaDistill(Zhou et al.,
2022). As shown in Table 6, WID also outper-
forms these task-specific methods on the GLUE
benchmarks.
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Method Type Params SST-2 CoLA MRPC QNLI QQP RTE STS-B MNLI AVG

BERTbase Teacher 110.1M 92.7 59.1 90.4 91.7 91.4 70.8 90.1 84.5 83.8

DynaBERT TS-KD 67.5M 92.7 54.6 85.0 90.6 91.1 66.1 88.6 83.7 81.6
MetaDistill TS-KD 67.5M 92.3 58.6 86.8 90.4 91.0 69.4 89.1 83.8 82.7
TinyBERT∗ TS-KD 67.5M 91.9 52.4 86.5 89.8 90.6 67.7 88.7 83.8 81.4
BlockPruning Pruning 77.0M 89.3 52.6 88.3 88.2 90.7 63.9 84.6 82.9 80.1
WID55 (ours) TA-KD 54.9M 92.4 61.7 88.2 90.1 91.0 70.4 87.9 82.9 83.4

CoFi Pruning 28.4M 90.6 35.6 82.6 86.1 90.1 64.7 83.1 80.6 76.6
WID11 (ours) TA-KD 11.3M 88.8 44.2 81.9 85.4 89.5 60.3 84.5 78.4 76.6

Table 6: Comparison among WID, task-specific distillation methods, and pruning methods on GLUE benchmarks
without data augmentation. TS-KD and TA-KD denote task-specific knowledge distillation and task-agnostic
knowledge distillation, respectively. ∗ means the results are taken from Zhou et al. (2022). Other results are taken
from the corresponding papers.

C.2 Comparison with Pruning
We try to compare WID with pruning methods
for BERT compression, including task-specific
CoFi (Coarse- and Fine-grained Pruning,(Xia et al.,
2022)) and BlockPruning(Li et al., 2020). As men-
tioned in Appendix C.1, the task-agnostic setting is
more difficult than the task-specific setting. How-
ever, as shown in Table 6, WID still achieves com-
parable results with less than 50% parameters com-
pared to CoFi, and achieves better performance
than BlockPruning with 28.7% fewer parameters.

C.3 Less Training Steps
In Table 2, we report the results of WIDdim

55 trained
for 400k steps. We re-implement TinyBERT and
train 3 epochs following the setting in Jiao et al.
(2020). We reduce the training steps for WIDdim

55
to 50k and 100k. All experiments are carried out
with 8 A100 GPUs. As shown in Table 7, WIDdim

55
trained with 100k steps can still outperform Tiny-
BERT and save more than 50% training time.

Model Steps Time Score

TinyBERT (GD) 450k 33h 81.27
WIDdim

55 50k 8h 80.78
WIDdim

55 100k 16h 81.65
WIDdim

55 400k 64h 83.08

Table 7: Comparison between TinyBERT and WID
trained with less steps on GLUE benchmarks.

C.4 WID for GPT Compression
To evaluate the performance of WID on the gener-
ative pre-trained language model, we train a GPT
model and compress it via vanilla KD and WID.
Due to the limited GPU memory, we train a GPT

teacher (12 layers and hidden size as 768) for 100k
steps. After that, we train a student model (12
layers and hidden size as 512) and compress the
teacher model into such a setting via vanilla KD
and WID. During distillation, we employ Book-
Corpus as training datasets and report the training
accuracy. For hyperparameters, the batch size is 64
and the learning rate is 1e-4. Figure 5 shows the
training process. We can conclude that WID still
works for generative pre-trained language models,
and can get better performance than vanilla KD.
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Figure 5: The training process for teacher GPT, vanilla
student GPT, and students via KD and WID.

C.5 Attention Distributions
We visualize the attention distributions for the
teacher BERTbase, pre-trained BERT55 and the stu-
dent WIDhead

11 under the same input tokens (input
sentence: "if the world harassed me, it will harass
you too.") in Figure 6, Figure 7 and Figure 8, re-
spectively. WID can effectively learn the attention
patterns from the teacher model while BERT11 is
much more different.
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Figure 6: The self-attention distributions for teacher model BERTbase.
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Figure 7: The self-attention distributions for BERT11.
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Figure 8: The self-attention distributions for our proposed WIDdim
11 .

28


