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Abstract

Emergent Large Language Models (LLMs) use
their extraordinary performance and powerful
deduction capacity to discern from traditional
language models. However, the expenses of
computational resources and storage for these
LLMs are stunning, quantization then arises
as a trending conversation. To address accu-
racy decay caused by quantization, two streams
of works in post-training quantization methods
stand out. One uses other weights to compen-
sate existing quantization error, while the other
transfers the quantization difficulty to other
parts in the model. Combining both merits, we
introduce Learnable Singular value Increment
(LSI) as an advanced solution. LSI uses Sin-
gular Value Decomposition to extract singular
values of the weights and make them learnable
to help weights compensate each other condi-
tioned on activation. Incorporating LSI with
existing techniques, we achieve state-of-the-art
performance in diverse quantization settings,
no matter in weight-only, weight-activation or
extremely low bit scenarios. By unleashing the
potential of LSI, efficient finetuning on quan-
tized model is no longer a prohibitive problem.

1 Introduction

Large language models (LLMs) have garnered sig-
nificant attention for their remarkable performance
across a wide range of downstream tasks and their
ability to exhibit emergent behavior (Bubeck et al.,
2023; Touvron et al., 2023). Furthermore, their
prowess in understanding natural language and de-
ductive reasoning can be extended to multimodal
domains through alignment training (Mu et al.,
2023; Xu et al., 2023; Zhang et al., 2023). Never-
theless, the training and upkeep of such LLMs are
highly resource-intensive, with many GPUs being
able to support only a single model or parts of one.
Quantization, as a central paradigm in this field,
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emerges as a solution that addresses both memory
footprint and computational challenges.

Quantization methods are typically divided into
two categories based on the quantization period.
Quantization-Aware Training (QAT) (Liu et al.,
2023) involves tuning the model during training
to optimize its compatibility with quantization. Al-
though QAT can yield superior results compared
to Post-Training Quantization (PTQ), the signifi-
cant computational costs associated with the train-
ing process are a notable challenge. Consequently,
PTQ methods have gained widespread acceptance
and become increasingly popular in recent times.

Within the PTQ field, there are various method-
ologies to explore. For instance, the GPTQ se-
ries (Frantar and Alistarh, 2022; Frantar et al.,
2023; Dettmers et al., 2023; Lee et al., 2023) em-
ploy unquantized weights to gradually offset the
quantization errors introduced by previously quan-
tized weights. In this paper, for the sake of con-
venience in reading, all references to "weight"
pertain to the weight matrices in the linear lay-
ers of the model. They achieve this by solv-
ing a Lagrange equation to obtain a new Hessian
matrix to update. On the other hand, methods
like SmoothQuant (Xiao et al., 2023) and Omni-
Quant (Shao et al., 2023) focus on altering the dis-
tribution of weights and activations to mitigate the
challenges of quantization. Meanwhile, through
extensive research and experiments, it has been re-
vealed that a significant portion of errors proposed
during the quantization process are caused by a
small number of outliers with distinctive weight
values. Hence, several studies (Dettmers et al.,
2023; Wei et al., 2022, 2023; Lee et al., 2023) con-
centrate on reducing or mitigating these outliers to
minimize the disruption caused by their presence.

After thorough research, we have summarized
the reasons for the success of previous methods.
For the GPTQ series, in most cases, the weights
obtained through manual calculation are not dif-
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ferent from those obtained by the simple uniform
quantization method, detailed in Sec 2.2. How-
ever, in some later stages of the quantization phase,
GPTQ can alter the inherent hierarchy of the orig-
inal weights, approximating the weights to other
quantization intervals, to achieve a globally opti-
mized solution. For methods like SmoothQuant,
the concept of transferring the difficulty of weight
quantization is relatively easy to understand. For
example, if the equation 1.3× 15.4 ≈ 20 is going
to be quantized through rounding, quantizing 1.3
to 1 would require changing 15.4 to 20 to maintain
the original value. However, if the two multipli-
ers in the equation are scaled to 4.3 × 4.7 ≈ 20
and then quantized, it would only be necessary to
quantize it to 4 × 5 to keep the original value un-
changed. In this way, the difficulty of quantization
is greatly simplified. Both types of methods have
their own advantages, but they cannot both enjoy
the benefits of the other. Additionally, approaches
like the GPTQ series have drawbacks such as long
quantization times.

In this paper, we demonstrate that a good quanti-
zation method performs: (1) Transformation of the
quantization difficulty of weights and activations;
(2) Hierarchical change of some weights to fit the
global optimum; (3) Data-free in the PTQ setting;
(4) A small amount of quantization time consump-
tion; (5) Inference efficiency (mixed-precision is
not allowed). Based on the requirements mentioned
above, we introduce a novel technique called Learn-
able Singular value Increment (LSI), which can ef-
fectively meet all the aforementioned requirements
simultaneously. Unlike QAT, LSI exclusively fo-
cuses on training singular values of the weights,
which constitute less than 0.1% of the total weights.
Through the incorporation of a smoothing tech-
nique, LSI further simplifies the quantization prob-
lem. Moreover, existing methods primarily focus
on aligning the performance of quantized models
with unquantized models. However, with LSI, we
have the capability to fine-tune quantized models
without compromising the overall capabilities of
these models themselves.

After conducting thorough experiments, we have
achieved state-of-the-art results across a wide range
of quantization settings, while marking a signifi-
cant breakthrough in the field of quantized model
fine-tuning. Our contributions encompass the fol-
lowing key points:

• Introduction of an innovative technique, LSI,

which promotes hierarchical organization of
model weights, facilitating their adaptation to
quantization settings without compromising
the inherent capacity of the model.

• Integration of LSI with established smoothing
techniques, effectively addressing the outlier
issue and determining optimal transformation
scales for quantization.

• Demonstrating the applicability of LSI in fine-
tuning quantized models under few-shot con-
ditions, with the fine-tuning results showing
significant improvements.

2 Related Works

2.1 Quantization Methods

Weight-Only Quantization. Previously proposed
methods have primarily focused on weight-only
quantization, where the emphasis is on converting
the weight matrices of the model into low-bit rep-
resentations. This approach allows for significant
reductions in computational resources when stor-
ing and distributing models. For instance, a model
with 30 billion parameters can be stored using a
memory of as little as 20GB. However, in this setup,
a significant portion of quantization errors arises
from high-magnitude activations, often referred to
as outliers. Many works (Dettmers et al., 2023;
Lee et al., 2023) have attempted to address this
issue through mixed precision quantization while
maintaining acceptable results. Nevertheless, this
approach can introduce hardware inefficiencies and
lead to increased inference time. Other methods,
such as AWQ (Lin et al., 2023), employ more so-
phisticated scaling strategies, dividing weights into
different channels, and exclusively incorporating
quantization scales and zero points.

Weight-Activation Quantization. Weight-
activation quantization involves the quantization of
both model weights and activations. In the widely
used self-attention setting, reducing the activation
precision from 16 bits to a lower level results in a
significant memory and time improvement, often
of a squared magnitude.

In many cases, residual networks are inter-
posed between layers, maintaining uniform and
flat weights but leading to imbalanced and occa-
sionally polarized activation. The quantization of
activation is notably more challenging than that of
weights, primarily because the outliers in activation
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are often substantially different from typical weight
values.

2.2 Quantization Techniques

Uniform Quantization. Although non-uniform
quantization usually outperforms uniform quanti-
zation, it falls short in the dependency of some
specialized devices (Guo et al., 2022). In contrast,
uniform quantization is a more practical and fea-
sible approach that can be efficiently executed on
regular hardware devices. Uniform quantization
discretizes a high-precision value into low-bit lev-
els. Typically, we use the uniform quantization
function Q to transform a float linear weight ma-
trix W (commonly used in LLMs) to k bits integer
matrix W̃ as follows:

W̃ = Q(W, k, sh, z) = Clamp(⌊W
sh

⌉+z, 0, 2k−1), (1)

where sh and z are corresponding shift and zero-
point, respectively.

Smooth. The smooth technique is a method
that involves transforming weights or activations
by transferring certain magnitudes between them
while maintaining their mathematical equivalence.
Given a magnitude factor represented as a scaling
matrix diag(sc), activations X, and the final output
Y, the transformation can be driven as:

Y = XW+B = [(X− δ)⊘ sc︸ ︷︷ ︸
X̃

] · [sc ⊙W︸ ︷︷ ︸
W̃

] + [B+ δW︸ ︷︷ ︸
B̃

]

(2)

where X̃,W̃ and B̃ are equivalent activation,
weight, and bias, respectively. ⊘ and ⊙ are ele-
mentwise division and multiplication, respectively.

3 Our Methods

3.1 Inspiration

Our inspiration is drawn from the idea of compress-
ing images into smaller sizes, where Singular Value
Decomposition (SVD) is employed, and from the
training method LoRA (Hu et al., 2021), which
focuses on training sub-matrices rather than the en-
tire weight matrix. In the context of quantization,
we can perceive a quantized model as a training
objective after quantization has been applied to
the original model. The goal of the training pro-
cess (quantization process) is to make the linear
weights in the model discrete enough to meet the
specified n-bit quantization setting. Building upon
this concept, our goal is to enable the model pa-
rameters to autonomously adapt to the quantization

Original Weight 
Distribution

Weight Distribution
After Trained on LSI

Figure 1: Weight Distribution Comparison between
original weights and weights trained after LSI.

process in a data-independent condition. In other
words, we aim to have the weights automatically
adjust to an appropriate magnitude that aligns with
the specified n-bit setting without training on large
datasets. We believe that by achieving this level of
self-adjustment, we can attain better results in the
context of quantization.

However, irrespective of how meticulously we
design the quantization strategy, quantization er-
rors are an inherent part of the process. It is cru-
cial to recognize that not all differences resulting
from quantization errors are detrimental. As men-
tioned in GPTQ (Frantar et al., 2023), when group-
wise updates are made to the Hessian matrix during
quantization, performance is nearly equivalent to
updating the Hessian matrix one element at a time,
as errors tend to compensate for each other through-
out the procedure.

Incorporating both of these fundamental insights,
the Learnable Singular Value Increment (LSI)
method emerges as a solution to address both train-
ing and performance issues in the context of quan-
tization. It is noteworthy that our approach differs
fundamentally from previous methods in the insight
into quantization. While other methods primarily
aim to reduce quantization errors, our approach
makes use of these errors as a constructive element
in the quantization process. We introduce weight
disturbance by LSI to directly cause some "errors"
to help the linear weights change their original
magnitude to get the global optimum while not dis-
turbing the original distribution that much. During
quantization, LSI organizes weights hierarchically,
grouping them into sets that closely resemble the
specified discrete weight values, as presented in
Fig. 1.
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3.2 Learnable Singular Value Increment (LSI)
We now drive LSI optimization beginning with
SVD. For a single linear layer, a weight matrix
Wa×b (we default a× b) can be decomposed into
three sub-matrices, Ua×a,Sa (only contain diag-
onal weights), Vh

a×b. Combining with uniform
quantization, we assume that when we fix U and
Vh, there exists an optimal sub-matrix S′ (full ma-
trix irrelevant to SVD) after QAT-like training. So
we can get

W̃ = U⊙ S′ ⊙Vh, (3)

which can largely satisfy the quantization setting
and result in the least quantization error through-
out the input. It means that given input X, the
output Y, the minimum quantization error Emin

conditioned on S′ can be expressed as:

Emin = Y −X⊙ W̃ = Y −X⊙U⊙ S′ ⊙Vh. (4)

In the equation provided above, once we iden-
tify the minimum error Emin and fix the quantiza-
tion method Q along with variables s and z, we
can make S′ solvable. However, It is important
to note that uniform quantization alone does not
yield the optimal solution. Our goal is to introduce
slight changes to the weight distribution, making
the weights hierarchical to better conform to the
uniform quantization setting. The change should
be aware of the input since not all weights share
the same importance during inference.

Training the entire weight matrix is computation-
ally intensive, and not all errors will have a negative
impact, as mentioned previously. In our method,
LSI introduces an additional variable called Learn-
able Singular value Increment I′ that is added on
the original singular value to slightly change the
weight distribution of original weight W. In this
setting, the quantized weight W̃ can be obtained
by:
Q(W, k, sh, z, I

′)

= Clamp(⌊U⊙ diag(S+ I′)⊙Vh

sh
⌉+ z, 0, 2k − 1),

W̃ = (Q(W, k, sh, z, I
′)− z)sh.

(5)

And we optimize the corresponding equation to
find the optimal I′ with linear function F :

argmin
I′

||F(W,X)−F(W̃,X))||. (6)

Otherwise, if we shift our focuses on S′ (the opti-
mal quantization sub-matrix), I′ is to make:
argmin

I′
||U⊙ S′ ⊙Vh −Q(W, k, sh, z, I

′)− z)sh||.
(7)

I′ is typically represented as a 1-D matrix, we can-
not solely rely on LSI to perfectly align and signifi-
cantly reduce errors. Instead, our approach delib-
erately introduces I′ as "errors" to facilitate minor
disturbances in original weight distribution to com-
pensate for each other from a global perspective.
It’s noteworthy that even if we train the quantized
model layer by layer, our method can still largely
achieve globally optimal results in the end. Due to
the introduction of weight perturbation, later layers
can largely compensate for the errors missed by
earlier layers, which can be seen in Table 7. This
simplifies the training procedure while working
towards the desired goal of error compensation.

In our experiments, however, we observed that
for the group-wise setting, where different and del-
icate scaling scales are applied to various groups,
LSI alone faces challenges in learning a set of op-
timal parameters that can balance all groups ef-
fectively. We will further discuss this issue in
Sec 4.4. To address this issue, we introduced an
additional small square matrix, around the dimen-
sions of 100 × 100 to 600 × 600, adding at the
beginning of the diagonal matrix, specifically on
the first n rows and the first n columns. This ad-
dition is made once the diag(S + I′) component
has been computed in Equation 5. We believe that
the most prominent values are influenced by the
most significant singular values, while the rela-
tively smaller singular values have less impact on
high-magnitude values. Therefore, the introduc-
tion of this additional square matrix helps achieve
a better balance in the group-wise setting.

3.3 Smooth and Clipping

Techniques like Smooth and Clipping are powerful
methods that find extensive use in various applica-
tions. Smooth is effective at transferring quantiza-
tion challenges to make the quantization of weights
more manageable, while Clipping is instrumen-
tal in addressing outlier issues. By incorporating
these techniques with recent advancements, such as
Learnable Weight Clipping (LWC) and Learnable
Equivalent Transformation (LET) proposed in Om-
niQuant (Shao et al., 2023), LSI can significantly
reduce quantization errors and achieve remarkable
performance gains.

In the linear layer, LET is to make diag(sc)
in Eq. 2 learnable. Additionally, in the atten-
tion operation, LET introduces learnable parameter
diag(sa) to smooth the query Q and key K, which
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can be represented as:

P = Softmax(QKT )

= Softmax((Q⊘ sa︸ ︷︷ ︸
Q̃

)(sa ⊙KT

︸ ︷︷ ︸
K̃T

)). (8)

On the other hand, LWC is to make upper and lower
boundaries in quantization function Q learnable in
Eq. 1 instead of fixed 2k.

4 Experiments

4.1 Settings
Quantization. In line with the methodology
outlined in (Shao et al., 2023), our experiments
cover both weight-only and weight-activation quan-
tization settings. For the weight-only compo-
nent, we employ channel-wise weight quantiza-
tion at INT4/INT3/INT2 bit levels. In the weight-
activation setting, we utilize quantization settings
of w6a6/w4a4, where ‘w’ and ‘a’ signify weight
and activation, respectively. In cases where groups
are divided, with each group having a distinct set of
quantization parameters, we use ‘g’ to represent the
group name. Furthermore, we adhere to the origi-
nal setup, keeping the Softmax part in float32, as
this helps mitigate excessive disturbance caused by
self-attention layers during the inference process.
We also inherit the enhanced acceleration nature
of OmniQuant in INT3/INT2 settings on CUDA.
Please see (Shao et al., 2023) for more details.

Training. Given that LSI effectively satisfies
both smoothing and shifting techniques, we ini-
tialize the scaling and shifting parameters using
well-trained parameters from (Shao et al., 2023).
We then train a set of LSI parameters based on this
initial setup. Singular values can introduce signif-
icant variations in the distribution of weights, so
we maintain a low learning rate at 2e-4. We em-
ploy the AdamW (Loshchilov and Hutter, 2019)
optimizer with a weight decay of 0 to optimize our
parameters. All the data used in our training was
collected from WikiText2 (Merity et al., 2017). No-
tably, the training process is quite fast, with larger
models requiring fewer epochs. For instance, in
the ‘w4a16g128’ setting, the OPT-30B model only
needs to be trained for 2 epochs on a dataset with
32 samples. All techniques proposed before were
included during the whole quantization procedures.
Additionally, without groups, we all set square ma-
trix dimension n = 200. But with group-wise
scaling, we test several dimensions to validate the
effectiveness of the increment square matrix, which

we will discuss in Sec 4.4. For the finetuning, we
select PTB (Marcus et al., 1994), where the per-
plexity of our baselines on it is significantly higher
than others. We only train the last two layers of
models with epochs around 10 to 40 on 128 PTB
samples, which is very fast to implement.

Models. We conduct evaluation on two popular
baselines for generalization, LLaMA(7-30B) (Tou-
vron et al., 2023), OPT(125M-66B) (Zhang et al.,
2022). For more details about our test results,
please see the supplementary materials.

Evaluation. Our evaluation for perplexity
is mainly focused on WikiText2 (Merity et al.,
2017), PTB (Marcus et al., 1994)), C4 (Raffel
et al., 2020). Furthermore, following previous
works, we also evaluate several zero-shot tasks
in weight-activation quantization setting, includ-
ing PIQA (Bisk et al., 2020), ARC (Clark et al.,
2018), and HellaSwag (Clark et al., 2018). Samples
of datasets we evaluated obey the GPTQ (Frantar
et al., 2023) settings. For accuracy tasks, lm-eval-
harness (Gao et al., 2021) is employed for all zero-
shot tasks.

Baselines. For weight-only quantization,
we choose previously state-of-the-art works,
GPTQ (Frantar et al., 2023), AWQ (Lin et al., 2023)
and recently advanced work OmniQuant (Shao
et al., 2023) as baselines. For weight-activation
quantization, both QAT and PTQ methods are
included, containing SmoothQuant (Xiao et al.,
2023), RPTQ (Yuan et al., 2023), QAT (Liu et al.,
2023) and Omniquant (Shao et al., 2023). Follow-
ing SmoothQuant (Xiao et al., 2023), we do not
change the per-channel quantization strategy for
weights and the per-tensor quantization strategy for
activation.

4.2 Weight-only Quantization Results

In this section, we mainly demonstrate the results
of the OPT series without group-wise scaling in
w3a16 and w4a16 settings on WikiText2, as shown
in Table 1, while w3a16 and w4a16 group-wise
results are shown in Sec 4.4. Our full results can be
found in the supplementary material. As exhibited
in these tables, prominent progress can be seen in
various settings. LSI provides effective and power-
ful solutions for the quantization of smaller LLMs
and w2 settings while helping further improve the
performance in more sophisticated settings.
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Table 1: WikiText2 perplexity of Weight-only quantization results in OPT models.

OPT / PPL↓ 125M 1.3B 2.7B 6.7B 13B 30B 66B
FP16 - 27.65 14.63 12.47 10.86 10.12 9.56 9.34

W2A16-g128

GPTQ (Frantar et al., 2023) 597.66 115.16 61.59 20.18 21.36 12.71 82.10
AWQ (Lin et al., 2023) 251.84 47.97 28.50 16.20 14.32 12.31 14.54
OmniQuant (Shao et al., 2023) 75.43 23.95 18.13 14.43 12.94 11.39 30.84
Ours 56.17 22.59 17.65 14.23 12.75 11.30 29.66

W2A16-g64

GPTQ (Frantar et al., 2023) 204.40 49.58 29.37 16.81 16.65 11.87 356.01
AWQ (Lin et al., 2023) 124.18 29.78 20.64 14.63 13.28 11.59 12.74
OmniQuant (Shao et al., 2023) 62.56 21.40 16.76 13.57 12.33 11.00 10.59
Ours 50.94 21.09 16.69 13.51 12.25 10.95 10.56

W3A16

GPTQ (Frantar et al., 2023) 53.05 21.17 16.83 15.09 11.73 10.30 14.42
AWQ (Lin et al., 2023) 69.43 28.01 263.10 15.13 20.09 35.74 4.5e3
OmniQuant (Shao et al., 2023) 35.66 16.68 13.80 11.65 10.87 10.00 9.83
Ours 32.19 16.24 13.44 11.46 10.66 9.96 9.79

W4A16

GPTQ (Frantar et al., 2023) 31.43 15.56 12.82 11.41 10.31 9.63 9.55
AWQ (Lin et al., 2023) 32.28 15.49 12.93 11.30 10.39 9.77 9.61
OmniQuant (Shao et al., 2023) 29.45 15.04 12.76 11.03 10.30 9.65 9.65
Ours 28.86 15.00 12.71 11.00 10.24 9.63 9.50

Table 2: Weight-activation quantization results of OPT Models. We report perplexity on three datasets: WikiText2
(WIKI), Pen Treebank (PT), and C4. RPTQ indicates the data from RPTQ ((Yuan et al., 2023)) paper, which
keeps the output of LN and SoftMax as 8-bit. RPTQ∗ represents reproducing RPTQ with our setting that quantizes
all activation into low-bit except keeping the softmax output at full precision. OPT-66B results can be found in
supplementary material.

OPT / PPL↓ OPT-6.7b OPT-13b OPT-30b
Task WIKI PT C4 WIKI PT C4 WIKI PT C4
FP16 - 10.86 13.09 11.74 10.13 12.34 11.20 9.56 11.84 10.69

W6A6

SmoothQuant (Xiao et al., 2023) 11.34 13.82 12.14 10.56 12.76 11.40 9.67 12.01 10.81
RPTQ (Yuan et al., 2023) 11.19 13.98 12.08 11.00 15.23 11.68 10.22 14.95 11.73
RPTQ∗ 10.96 13.24 11.86 10.25 12.60 11.31 9.60 12.23 10.83
OmniQuant (Shao et al., 2023) 10.96 13.20 11.81 10.21 12.47 11.27 9.62 11.92 10.76
Ours 10.91 13.19 11.80 10.19 12.45 11.27 9.60 11.93 10.75

W4A4

SmoothQuant (Xiao et al., 2023) 1.8e4 1.4e4 1.5e4 7.4e3 6.5e3 5.6e3 1.2e4 7.8e3 8.3e3
RPTQ (Yuan et al., 2023) 12.00 15.17 12.85 12.74 15.76 14.71 11.15 14.11 13.48
RPTQ∗ 17.83 25.10 19.91 16.45 23.01 16.80 11.50 14.87 12.81
OmniQuant (Shao et al., 2023) 12.24 15.54 13.56 11.65 15.89 13.46 10.60 13.75 11.89
Ours 11.82 14.86 13.10 11.10 15.16 12.81 10.29 13.32 11.64

4.3 Weight-Activation Quantization Results

In the context of weight-activation quantization, we
have successfully improved several metrics over
the original OmniQuant (Shao et al., 2023), as pre-
sented in Table 2, and achieved enhanced perfor-
mance across various tasks with the LLaMA fami-
lies, as shown in Table 3. Specifically, in W6A6 set-
tings, we generally observe slightly better results,
and in W4A4 settings, we significantly outperform
existing methods.

4.4 Ablation Study

In our extensive ablation studies, we investigated
the effectiveness of LSI and the impact of the addi-
tional increment square matrix. Table 4 indicates
that LSI is remarkably beneficial when the model
size is relatively small, and adjusting the value of
k indeed provides certain advantages. However, as
the volume of the models increases, particularly

with the influence of group-wise scaling, the ben-
efits brought by LSI and its corresponding matrix
diminish, and can even facilitate the overfitting
problem as observed in Table 5. Meanwhile, the in-
troduction of the adding matrix can result in some
affinity to some specific datasets, which may be a
kind of overfitting problem.

We posit that this diminishing impact might be
attributed to group-wise scaling, which discretizes
the entire weight matrix into different parts, result-
ing in incoherence within the weight matrix. This
implies that the compensation for quantization er-
ror is restricted to individual groups, disregarding
the integrated nature of the entire matrix. Consid-
ering the coherence of the weight matrix, singular
values influence the distribution of the entire weight
matrix rather than a singular part.

On the other hand, LSI alone can achieve com-
petitive performance, however, it suffers severely
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Table 3: Weight-activation quantization results of LLaMA Models. We report our perplexity results on WikiText2
and C4, along with accuracy (for multi-choices tasks, we report our accuracy norm) of 6 zero-shot tasks compared
with other baselines.(In W6A6 settings, layers in LLaMA can not train on LSI somehow)

LLaMA / Acc↑ #Bits Method Wiki C4 PIQA ARC-e Arc-c HS1 WG2 Avg.

LLaMA-7B

FP16 - - - 77.47 52.48 41.46 73.00 67.07 62.30
W4A4 SmoothQuant (Xiao et al., 2023) - - 49.80 30.40 25.80 27.40 48.00 36.28
W4A4 LLM-QAT - - 51.50 27.90 23.90 31.10 51.90 37.26
W4A4 LLM-QAT+SQ - - 55.90 35.50 26.40 47.80 50.60 43.26
W4A4 OmniQuant (Shao et al., 2023) 11.26 14.51 66.15 45.20 31.14 56.44 53.43 50.47
W4A4 Ours 11.02 13.77 67.90 47.43 31.91 57.51 56.27 52.20

LLaMA-13B

FP16 - - - 79.10 59.89 44.45 76.21 70.31 65.99
W4A4 SmoothQuant (Xiao et al., 2023) - - 61.04 39.18 30.80 52.29 51.06 46.87
W4A4 OmniQuant (Shao et al., 2023) 10.87 13.78 69.69 47.39 33.10 58.96 55.80 53.05
W4A4 Ours 10.68 12.84 69.69 47.43 33.61 62.37 59.59 54.54

LLaMA-30B

FP16 - - - 80.08 58.92 45.47 79.21 72.53 67.24
W4A4 SmoothQuant (Xiao et al., 2023) - - 58.65 35.53 27.73 35.56 48.06 41.11
W4A4 OmniQuant (Shao et al., 2023) 10.33 12.49 71.21 49.45 34.47 64.65 59.19 55.79
W4A4 Ours 10.20 12.12 72.90 49.45 36.43 65.98 60.22 57.00

1 ‘HS’ stands for HellaSwag.
2 ‘WG’ stands for WinoGrande.

Table 4: Weight-only quantization results of OPT Models (125m-2.7b) in W3A16g128 and W4A16g128 settings
with different k.

OPT / PPL↓ OPT-125m OPT-1.3b OPT-2.7b
Task WIKI PT C4 WIKI PT C4 WIKI PT C4
FP16 - 27.65 32.54 24.60 14.63 16.96 14.72 12.47 15.11 13.16

W3A
16g128

GPTQ (Frantar et al., 2023) 39.24 45.17 30.08 16.47 19.90 16.47 13.69 17.06 14.54
AWQ (Lin et al., 2023) 36.74 44.07 30.39 16.32 19.59 16.27 13.58 16.52 14.19
OmniQuant (Shao et al., 2023) 32.25 40.76 29.34 15.72 19.06 16.11 13.18 16.29 14.15
Ours k100 31.63 40.74 29.21 15.68 18.99 16.11 13.17 16.27 14.17
Ours k200 31.06 39.84 28.78 15.64 18.95 16.09 13.15 16.27 14.16

W4A
16g128

GPTQ (Frantar et al., 2023) 29.81 35.48 25.96 14.89 17.41 15.05 12.52 15.42 13.40
AWQ (Lin et al., 2023) 29.15 34.95 25.90 14.94 17.46 15.04 12.74 15.33 13.39
OmniQuant (Shao et al., 2023) 28.86 34.28 25.63 14.88 17.40 15.03 12.65 15.28 13.38
Ours k100 28.57 33.68 25.51 14.87 17.42 15.02 12.64 15.26 13.38
Ours k200 28.40 34.21 25.45 14.85 17.44 15.02 12.62 15.28 13.38

from bias. Without the transformation of quantiza-
tion difficulty, LSI obtains relatively good perfor-
mance through significant overfitting on a specific
dataset, as seen in Table 6.

4.5 Finetuning of LSI

As illustrated in Sec 4.4, LSI alone has a grave
problem of overfitting. After investigations, we
find that LSI can help bridge the gaps caused by
previous layers, which means that even only em-
ploying LSI in the last several layers, there are
still some overfitting problems. However, if we
use this property to quickly finetune a model on
a specific dataset, this weakness turns into an ad-
vantage. In finetuning part, we first employ LSI
to change the original weight distribution and then
transfer the quantization difficulty using smooth
techniques. Through our experiments, in nearly
all settings, employing LSI only on the last sev-
eral layers of a LLM can also result in improved
performance on a specific dataset without largely

compromising other abilities, as shown in Table 7.
To test the generalization of LSI finetuning, we pre-
pare OmniQuant and Round To Nearest (RTN) as
baseline quantization strategies and only employ
LSI in the last two layers. LSI can also satisfy other
baselines, as we have tried to use GPTQ baselines
and replace the last several layers quantized with
our techniques, it also works well.

4.6 Other Issues

Inference Speed. Overall, our method does not
introduce additional inference time. Because after
training, we integrate LSI into the original weights
to alter them, and then quantize them to the spec-
ified bit. For the introduced smooth technology,
only LWC will cause a minor delay in inference.
However, for LET, the transfer of weight scaling in
LET is integrated into the norm function of each
layer. After training, it directly scales the gain in
the Layernorm function of the original model, so
there will be no impact during inference. For de-
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Table 5: Weight-only quantization results of OPT Models (6.7m-30b) in W3A16g128 and W4A16g128 settings.
Here, we adopt k = 320 in OPT-6.7b, k = 450 in OPT-13b and k = 600 in OPT-30b

OPT / PPL↓ OPT-6.7m OPT-13b OPT-30b
Task WIKI PT C4 WIKI PT C4 WIKI PT C4
FP16 - 10.86 13.08 11.74 10.12 12.33 11.19 9.56 11.84 10.69

W3A
16g128

GPTQ (Frantar et al., 2023) 11.65 14.24 12.48 10.35 12.84 11.58 9.73 12.54 10.91
AWQ (Lin et al., 2023) 11.41 13.98 12.30 10.68 12.87 11.61 9.85 66.68 10.96
OmniQuant (Shao et al., 2023) 11.27 13.77 12.31 10.47 12.96 11.63 9.79 12.19 10.98
Ours k200 11.26 13.77 12.31 10.45 12.94 11.63 9.79 12.17 10.98
Ours k320-600 11.26 13.76 12.31 10.45 12.95 11.62 9.76 12.19 10.98

W4A
16g128

GPTQ (Frantar et al., 2023) 10.93 13.21 11.87 11.26 12.42 12.46 9.58 11.89 10.74
AWQ (Lin et al., 2023) 10.93 13.28 11.87 10.21 12.46 11.28 9.59 11.90 10.75
OmniQuant (Shao et al., 2023) 10.96 13.25 11.85 10.20 12.46 11.29 9.62 11.94 10.75
Ours k200 10.95 13.25 11.85 10.19 12.47 11.29 9.61 11.95 10.74
Ours k320-600 10.94 13.24 11.85 10.19 12.46 11.29 9.61 11.93 10.75

Table 6: LSI-only quantization results

PPL LLaMA-7b OPT-2.7b OPT-6.7b
Task WIKI C4 WIKI PT C4 WIKI PT C4

W3A16g128 GPTQ (Frantar et al., 2023) 6.55 7.85 13.69 17.06 14.54 11.65 14.24 12.48
Ours 6.25 7.91 13.70 17.35 14.82 11.75 14.87 13.05

W4A16 GPTQ (Frantar et al., 2023) 6.13 7.43 12.82 15.94 13.75 11.41 13.75 12.15
Ours 5.95 7.47 12.76 16.15 14.06 11.27 13.93 12.33

Table 7: Finetuning by LSI

PPL LLaMA-7b
Task PT WIKI C4

W3A
16g128

RTN 37.37 7.01 8.62
RTN w/ LSI 35.58 6.91 8.52
OmniQuant (Shao et al., 2023) 33.45 6.15 7.75
Omni w/ LSI 30.69 6.16 7.77

PPL LLaMA-30b

W4A16

RTN 17.15 4.57 6.34
RTN w/ LSI 17.06 4.55 6.32
OmniQuant (Shao et al., 2023) 16.48 4.25 6.11
Omni w/ LSI 16.46 4.26 6.12

tailed inference speeds, one can refer to (Shao et al.,
2023). Our inference speed is essentially identical
to theirs.

Best Results. Our best results were not obtained
by using OmniQuant’s parameters as the initializa-
tion. During the training process, we found that
random initialization followed by a longer training
period could potentially yield better results. How-
ever, due to the instability of random initialization
and the loss incurred by the extended quantization
time, we did not use random initialization in our
experiments.

5 Limitations

5.1 Overfitting Problem

Despite the introduction of additional parameters
constituting an extremely small portion compared
to the overall parameter volume, their significance
is substantial. Aligned with our philosophy, the re-
distribution of model weights should be cognizant

of activations, which leads to the overfitting prob-
lem. As demonstrated in our supplementary ma-
terial, there is a trade-off between achieving im-
provements in perplexity on one dataset and a cost
associated with the other.

In our experiments, we observed that LSI can
indeed significantly reduce the loss caused by quan-
tization. However, the elimination of loss does not
always guarantee a corresponding performance im-
provement. This phenomenon is further substanti-
ated through the training procedure, as discussed
in our supplementary material.

Generally speaking, LSI tends to achieve supe-
rior results by largely aligning with one dataset.
In the early stages, when the overall error is sub-
stantial, conforming to one dataset can substantially
enhance coherence and restore the original capacity
of the model. However, as errors gradually dimin-
ish, a boundary is encountered. Given that errors
are unavoidable in quantization settings, beyond
this boundary, LSI exhibits overfitting problems.

5.2 Hard to Train

As discussed in Sec 5.1, there is a boundary in
training. But for different models with different
volumes, these boundaries do not display a sta-
ble paradigm, so it is needed to train with differ-
ent epochs to gradually get closer to the optimal
performance. But in general, with model volume
growing, less training is needed. For example, in
the W4A16 setting, 5 epochs are needed to train
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the OPT-13B on a 128-sample dataset, while only
1 epoch is needed for OPT-30B on a 32-sample
dataset, which takes less than 1.5 hours. For more
details, please see our supplementary material.

On the other hand, when implementing only LSI,
the entire process becomes somewhat precarious.
As our goal is to align the quantized weight dis-
tribution, LSI can assist weights in stepping over
their original magnitude span. In this process, sig-
nificant fluctuations are quite common, and even
with the incorporation of smoothing techniques,
this phenomenon cannot be entirely avoided.

6 Conclusion

We introduce LSI to adjust model weights to con-
form to quantization settings. Through integration
with established techniques, our approach attains
state-of-the-art performance across diverse quanti-
zation settings. LSI imparts a hierarchical structure
to model weights, enhancing adaptability to quanti-
zation parameters without compromising training
efficiency. Leveraging attributes of LSI allows ef-
fective finetuning of a quantized model on various
datasets. Notably, during inference, LSI introduces
no additional parameters and preserves the hard-
ware efficiency inherited from OmniQuant.
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A Appendix

In this appendix, we provide further details as fol-
lows:

• Sec. A.1: Training procedure analysis of the
local sensitivity information, and when opti-
mal results can be achieved using Learnable
Single value Increment (LSI).

• Sec. A.2: Showcases the complete results for
OPT, LLaMA-1 models.

A.1 Training Procedure Analysis

In this section, our focus centers on elucidating the
training procedure for our techniques. Fig 2 illus-
trates that exhaustive training does not consistently
yield the optimal outcome. Notably, when trained
on OPT-30B, a mere 32 samples suffice; however,
even slight deviations within this range can in-
duce noteworthy disturbances in performance. This
poses difficulties in getting the optimal parameter.

LSI proves highly effective in mitigating quanti-
zation loss. Generally, LSI can achieve a reduction
ranging from 20% to 40%, surpassing the perfor-
mance of OmniQuant. Nevertheless, it’s crucial to
note, as emphasized in our paper, that the reduction
in loss does not necessarily translate to improved
overall performance.

A.2 Full Results

In this section, we provide a comprehensive pre-
sentation of our results across various datasets to
complement the main paper. Specifically, the re-
sults include:

• OPT-66B results on W4A4 setting (Table 8).

• Wiki perplexity with weight-only quantization
in the LLaMA families (Table 9).

Table 8: Weight-activation quantization results of
OPT-66B. We test the results that only use LSI in the
last several layers, and L refers to the layer number im-
plemented LSI. RPTQ∗ represents reproducing RPTQ
with our setting that quantizes all activation into low-bit
except keeping the softmax output at full precision.

OPT / PPL↓ OPT-66b
Task WIKI PT C4
FP16 - 9.34 11.36 10.28

W4A4

SmoothQuant (Xiao et al., 2023) 2.2e5 1.e5 1.8e5
RPTQ (Yuan et al., 2023) 12.23 18.87 15.93
RPTQ∗ 11.16 13.73 11.78
OmniQuant (Shao et al., 2023) 10.29 13.19 11.35
Ours L4 10.26 13.30 11.31
Ours 10.21 13.08 11.26

• PTB perplexity with weight-only quantization
in OPT families (Table 10).

• C4 perplexity with weight-only quantization
in OPT families (Table 11).

Figure 2: Training details about LSI on OPT-6.7B and
OPT-30B in the setting of W4A16g128. The magnitude
is not drawn in scale. Since OPT-30B is really sensitive
to train epochs, in the OPT-30B part, we make one train
epoch containing 24 samples, and we train it from 8
samples to 144 samples at the interval of 8 samples.
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Table 9: Weight-only quantization results of LLaMA-1 Models (7B-30B) in settings without group-wise scaling.
The LLaMA families exhibit insensitivity to scaling and weight distribution; only handling outliers can make
a noticeable difference. In OmniQuant, they solely employ LWC instead of LWC+LET, meaning all progress
is achieved through outlier elimination. In this context, we observed that LSI does not bring about significant
improvements in group-wise settings. For LLaMA-7B and LLaMA-13b, there is a slight increment with changes
around 0.01 degree of perplexity on average. However, for LLaMA-30B, the increment is nearly negligible.
Therefore, the implementation of LSI is not considered necessary in group-wise scaling on LLaMA families. But we
also release our checkpoint of LLaMA-7b and LLaMA-13b on those settings, so anyone can check for examination.

LLaMA / PPL↓ LLaMA-7B LLaMA-13B LLaMA-30B
Task WIKI C4 WIKI C4 WIKI C4
FP16 - 10.86 11.74 10.12 11.19 9.56 10.69

W2A16
GPTQ (Frantar et al., 2023) 2.1e3 689.13 5.5e3 2.5e3 499.75 169.80
OmniQuant (Shao et al., 2023) 15.47 24.89 13.21 18.31 8.71 13.89
Ours 12.91 17.90 9.08 12.36 8.45 11.96

W3A16

GPTQ (Frantar et al., 2023) 8.06 9.49 6.76 8.16 5.84 7.29
AWQ (Lin et al., 2023) 11.88 13.26 7.45 9.13 10.07 12.67
OmniQuant (Shao et al., 2023) 6.49 8.19 5.68 7.32 4.74 6.57
Ours 6.38 8.17 5.65 7.33 4.69 6.58

W4A16

GPTQ (Frantar et al., 2023) 6.13 7.43 5.40 6.84 4.48 6.20
AWQ (Lin et al., 2023) 6.08 7.52 5.34 6.86 4.39 6.17
OmniQuant (Shao et al., 2023) 5.86 7.34 5.21 6.76 4.25 6.11
Ours 5.84 7.32 5.20 6.75 4.24 6.11

Table 10: PTB perplexity of Weight-only quantization results in OPT models.

OPT / PPL↓ 125M 1.3B 2.7B 6.7B 13B 30B 66B
FP16 - 32.54 16.96 15.11 13.08 12.33 11.84 11.36

W2A16
g128

GPTQ (Frantar et al., 2023) 655.17 130.88 61.36 25.24 20.46 15.15 323.23
AWQ (Lin et al., 2023) 263.88 71.87 43.15 19.49 17.61 14.92 19.33
OmniQuant (Shao et al., 2023) 126.49 34.33 25.28 18.92 16.74 14.51 139.17
Ours 92.60 32.26 24.39 18.71 16.44 14.27 116.21

W2A16
g64

GPTQ (Frantar et al., 2023) 245.28 55.61 36.12 19.45 17.02 14.05 88.92
AWQ (Lin et al., 2023) 143.18 41.19 25.08 18.00 15.83 14.92 15.72
OmniQuant (Shao et al., 2023) 112.10 30.36 22.63 17.58 15.70 13.98 13.51
Ours 81.40 29.17 22.51 17.55 15.55 13.90 13.47

W3A16

GPTQ (Frantar et al., 2023) 34.05 27.39 15.94 13.75 13.71 12.54 21.16
AWQ (Lin et al., 2023) 80.73 33.20 224.11 18.46 35.45 66.68 3.4e3
OmniQuant (Shao et al., 2023) 45.29 20.42 17.08 14.23 13.49 12.54 11.71
Ours 40.56 19.85 16.65 14.02 13.42 12.48 11.69

W4A16

GPTQ (Frantar et al., 2023) 37.75 18.23 15.94 13.75 12.58 11.98 11.58
AWQ (Lin et al., 2023) 38.74 18.35 15.70 13.59 12.72 12.06 11.58
OmniQuant (Shao et al., 2023) 34.94 17.80 15.52 13.41 12.62 11.95 11.86
Ours 34.83 17.74 15.43 13.37 12.55 11.95 11.73

Table 11: C4 perplexity of Weight-only quantization results in OPT models.

OPT / PPL↓ 125M 1.3B 2.7B 6.7B 13B 30B 66B
FP16 - 24.60 14.72 13.16 11.74 11.19 10.69 10.69

W2A16
g128

GPTQ (Frantar et al., 2023) 597.66 60.88 33.83 18.55 16.34 12.89 598.81
AWQ (Lin et al., 2023) 168.35 38.38 26.41 16.48 14.73 12.98 15.42
OmniQuant (Shao et al., 2023) 80.10 27.33 21.11 16.67 14.92 13.12 73.83
Ours 64.17 25.76 20.61 16.28 14.66 13.00 66.25

W2A16
g64

GPTQ (Frantar et al., 2023) 133.51 31.31 23.23 16.24 14.48 12.24 58.60
AWQ (Lin et al., 2023) 90.19 27.34 20.01 15.20 13.90 12.43 13.31
OmniQuant (Shao et al., 2023) 64.01 23.71 19.16 15.44 14.16 12.80 12.13
Ours 56.22 23.53 19.03 15.31 13.97 12.75 12.10

W3A16

GPTQ (Frantar et al., 2023) 37.75 19.45 13.75 15.67 12.28 11.34 13.68
AWQ (Lin et al., 2023) 55.73 24.56 154.49 15.84 23.71 55.01 3.8e3
OmniQuant (Shao et al., 2023) 32.17 17.10 14.93 12.78 12.13 11.37 10.82
Ours 30.20 16.71 14.59 12.56 12.14 11.38 10.79

W4A16

GPTQ (Frantar et al., 2023) 27.12 15.57 13.75 12.15 11.36 10.80 10.50
AWQ (Lin et al., 2023) 27.64 15.65 13.71 12.04 11.42 10.83 10.41
OmniQuant (Shao et al., 2023) 26.36 15.28 13.58 11.97 11.41 10.80 10.63
Ours 26.02 15.26 13.52 11.94 11.37 10.79 10.47
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