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Abstract

Noting that world knowledge continuously
evolves over time, large language models
(LLMs) need to be properly adjusted by per-
forming the "knowledge editing", which in-
volves updating outdated information or cor-
recting false information. To achieve reliable
and "massive" editing capabilities in terms
of generalization and specificity, this paper
proposes a unified knowledge editing method
called in-COntext retrieval-augmented Mass-
Editing Memory (COMEM), which combines
two types of editing approaches: parameter up-
dating and in-context knowledge editing (IKE).
In particular, COMEM incorporates retrieval-
augmented IKE, a novel extension of IKE de-
signed for massive editing tasks, based on
an updating-aware demonstration construction.
Experimental results on the zsRE and Counter-
Fact datasets demonstrate that COMEM out-
performs all existing methods, achieving state-
of-the-art performance. Our code is avail-
able at https://github.com/JoveReCode/
COMEM.git.

1 Introduction

Large language models (LLMs), owing to their vast
stored amount of world knowledge, have demon-
strated the remarkable abilities in understanding
and generating natural languages, as well as achiev-
ing state-of-the-art performance in a wide range
of natural language processing (NLP) applications
(Touvron et al., 2023; OpenAI, 2023; Petroni et al.,
2020). Given demands to enhance controllabil-
ity for LLMs in knowledge manipulation (Onoe
et al., 2022; Dhingra et al., 2022; Liška et al.,
2022) and content generation (Zhao et al., 2023; Ji
et al., 2023; Lazaridou et al., 2021; Agarwal and
Nenkova, 2022; Gallegos et al., 2023), there has
been recently increasing studies on the “knowledge
editing” task, which aims to explicitly provide the
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“editing” mechanism, such as revising knowledge
or correcting false information in LLMs, in a con-
trollable, scaled, and effective manner. In particu-
lar, this paper addresses the “massive” editing task,
as discussed in (Meng et al., 2022b), because LLMs
often encounter the issue of massive edits, which
require updating more than hundreds or thousands
of facts, given the huge knowledge space.

Approaches for knowledge editing in LLMs have
been categorized into two main types: parameter
updating and in-context knowledge editing (IKE).
Parameter updating adjusts the local parameters
or specific layers in LLMs using a gradient-based
method to generate desired targets given edit re-
quests (Cao et al., 2021; Mitchell et al., 2022a;
Meng et al., 2022a,b; Li et al., 2023). In the mas-
sive editing task, the advantage of parameter up-
dating is inherited from LLMs; the knowledge is
stored implicitly in the LLM’s parameters and the
inference step for knowledge lookup is simply con-
ducted in a generative manner based on the decoder,
without requiring the maintenance of an external
memory or searching over a set of edits. However,
parameter updating may lead to under-editing prob-
lems because some edits and their relevant facts are
interrupted by other edits, thereby being stored in
a somewhat blurred manner. Furthermore, as noted
by Zheng et al. (2023), parameter updating may
cause side effects such as catastrophic forgetting or
over-editing of out-of-scope knowledge.

On the other hand, motivated by the ability of
in-context learning (ICL) (Brown et al., 2020; Wei
et al., 2023), IKE guides LLMs to generate desired
targets in a given context by prepending specific
edit-related prompts consisting of relevant demon-
strations. IKE has been shown to effectively per-
form knowledge editing based on demonstration
formatting and organization strategies (Zheng et al.,
2023), without modifying the model parameters.
In the setting of the massive editing task, however,
IKE may require an additional retrieval step to find
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the relevant facts given the test query, which is not
required in parameter updating. Additionally, IKE
performance largely relies on the construction of
demonstrations, possibly leading to a risky situ-
ation when the demonstrations are not optimally
suited for some test prompts or contexts.

The goal of knowledge editing is to satisfy
both generalization and specificity, however, trade-
off exists between these properties. Pursu-
ing a reliable massive editing ability for more
stably satisfying generalization and specificity,
this paper proposes a unified knowledge edit-
ing method called in-COntext retrieval-augmented
Mass-Editing Memory (COMEM), which com-
bines parametric updating and IKE, specifically
consisting of two components:

• MEMIT for parameter updating, which
takes a set of massive edits and directly ap-
plies MEMIT (Meng et al., 2022b) to update
the provided knowledge in LLMs.

• Retrieval-augmented IKE, which generates
IKE (Zheng et al., 2023) to handel massive
edits, by memorizing all the edit requests with
their relevant demonstrations from the set of
training edits. Unlike the original IKE (Zheng
et al., 2023), we further propose updating-
aware demonstration construction, motivated
by the fact that “copy”-type demonstrations
may not be much necessary because it is ex-
pected that the use of MEMIT somehow ex-
hibits the basic editing capability, thus likely
obtaining the proper level of generalization
and specificity. By removing copy types,
we could add other types of demonstrations,
which are shown to be helpful in further im-
proving the final editing performances under
the combined setting.

Our contributions are summarized as follows. 1)
We propose COMEM, a novel knowledge editing
approach that combines parameter updating and
IKE to guide the model towards stable generaliza-
tion and specificity for massive editing; 2) We ex-
tensively apply IKE to the massive editing setting
and present the retrieval-augmented IKE, further
proposing an updating-aware demonstration that is
optimal under COMEM; 3) The proposed COMEM
shows state-of-the-art performances on the zsRE
and CounterFact datasets.

2 Related Work

2.1 Parameter Updating for Knowledge
Editing

Parameter updating methods can be categorized
into two types: hypernetwork-based methods and
attribution-based methods.

For the hypernetwork-based method, the Knowl-
edge Editor (Cao et al., 2021) trains a hypernet-
work that predicts parameter changes during in-
ference for updating the target fact and retaining
other unrelated knowledge. MEND (Mitchell et al.,
2022a) uses a hypernetwork to convert the initial
fine-tuning gradient into a simplified representation
using low-rank decomposition. SERAC (Mitchell
et al., 2022b) offers a higher-capacity solution by
incorporating a semi-parametric editing approach
with a retrieval augmented counterfactual model.
It stores the edits in a separate memory and learns
to reason with them to influence the predictions of
the base model.

For attribution-based methods, (Dai et al., 2022)
explores how LLMs store factual knowledge, intro-
duces the concept of knowledge neurons, and uti-
lizes knowledge neurons for precise factual knowl-
edge editing (updates and erasures) without resort-
ing to fine-tuning. ROME (Meng et al., 2022a) is a
pioneering study that attempts to locate the model
parameters associated with the target factual knowl-
edge and rewrites the key-value pairs in the MLP
module with newly computed vectors. However,
all of these methods suffer from significant efficacy
and generalization deterioration when the required
editing volume is increased. MEMIT (Meng et al.,
2022b) further improves ROME to enable massive
knowledge editing by spreading the weight changes
over multiple model layers.

2.2 In-Context Learning for Knowledge
Editing

In-context learning (Dong et al., 2022) is a tech-
nique that emerged with the advent of LLMs, where
the model learns by observing and incorporating
contextual information (Liu et al., 2022; Brown
et al., 2020). This involves temporarily adapting
or updating a model’s parameters based on the pro-
vided prompts or demonstrations (Lu et al., 2022;
Rubin et al., 2022) in a run, leading to an improve-
ment in model performance.

(Si et al., 2023) pioneered the use of in-context
learning to update knowledge in LLMs. They
demonstrated that incorporating various types of

2334



demonstration significantly enhanced the success
rate of knowledge editing. IKE (Zheng et al., 2023)
further extended ICL-based knowledge editing to
different language models with fewer side effects.

Both parameter updating and ICL-based meth-
ods have their own editing capabilities and comb-
ing them in a complementary manner likely leads
to a significant improvement in the performance
of massive knowledge editing tasks. To this end,
this study integrates these parameter updating and
ICL-based methods in a unified manner and aims to
provide a more stable editing capability for massive
knowledge editing.

3 Task Definition

Suppose that S is a set of real-world entities or
concepts,Mθ is an autoregressive language model
with the parameter θ and E = {ei}Ni=1 a set of new
facts to be injected intoMθ, where ei = (si, ri, oi)
is the i-th edit, i.e. a triple that consists of a sub-
ject si ∈ S, a relation ri, an object oi ∈ S. For
simplicity in notation,Mθ(x) represents the result
generated by the language model Mθ given the
input prompt x, defined as follows:

Mθ(x) = argmax
y∈S

PMθ
(y|x) (1)

where PMθ
(y|x) is the generative probability of y,

given a prefix x.
The objective of the massive knowledge editing

is to ensure efficacy, generalization, and specificity
for “all” edits in E . Formally, for ei ∈ E , let I(ei)
represent the edit scope of ei, which is the set of
in-scope examples, and let O(ei) = U − I(ei)
represent the set of out-of-scope examples, where
U is the universal set of knowledge 1. For example,
if ei is “Fox News was created in Canada,” an
in-scope example in I(ei) could be “Fox Soccer
News originated in Canada,” and an out-of-scope
example in O(ei) could be “iOS 6 was created by
Apple.” Efficacy, generalization, and specificity are
defined as follows:

• Efficacy, which is satisfied for the i-th edit if
oi =Mθ(xi) where xi is the prefix prompt,
roughly defined as [si, ri] for the i-th edit 2 .

• Generalization, which is satisfied for the i-th
edit if o =Mθ(x) for all in-scope examples
(s, r, o) ∈ I(ei) and x = [s; r].

1The terminologies related to edit scope are based on those
in (Mitchell et al., 2022b; Zheng et al., 2023)

2Here, [si, ri] refers to the natural language format con-
sisting of si and ri.

• Specificity, which is satisfied for the i-th edit
if o =Mθ(x) for all out-of-scope examples
(s, r, o) ∈ O(ei) and x = [s; r].

4 Method

Figure 1 depicts the overall structure of our pro-
posed COMEM for injecting a set of edits E into the
language modelMθ, which combines parameter
updating method and IKE. Formally, suppose that

T =
{
etj

}M

j=1
is a set of “training” edits in a train-

ing set, and each training edit etj is pre-associated
with Dt(etj) = (Dc(etj),Du(etj),Dr(etj)), a set of
demonstrations of three types, copy, update, and
retain, denoted as Dc(etj), Du(etj), and Dr(etj), re-
spectively3. COMEM consists of editing (i.e., train-
ing) and inference steps as follows:

• Editing step: Given a set of requested edits
E , COMEM performs the editing step:

Mθ∗ = PU (E ,Mθ)

e′1 · · · e′k = NeighborEdits (ei, T ) (2)

D(ei) = ConstructDemo
(
Dt(e′j)

k
j=1

)

where PU is the parameter updating method
of knowledge editing that injects a set of ed-
its E to the language modelMθ and returns
the language model with the updated parame-
ter θ∗, NeighborEdits is the retrieval function
that returns the top-k training edits that are
the most similar to the given requested edit
ei, and ConstructDemo is the demonstration
construction component that selects a subset
of the demonstrations in the top-k training
edits, based on the updating-aware selection
criteria.

• Inference step: Given a testing prompt x =
[s; r], COMEM performs the inference step:

D(x) = GetDemo(x,D(ei)Ni=1)

y = Mθ∗([prompt (D(x)) ;x]) (3)

where D(ei)Ni=1 is a pre-constructed set of
demonstrations corresponding to E , GetDemo
returns a set of online few-shot demonstra-
tions for IKE, prompt (D(x)) is the prompt-
ing function that linearizes the selected few-
shot demonstrations D(x) using a proper

3Here, the demonstration types of copy, update and retrain
correspond to the “requested,” “paraphrased,” and “neighbor-
hood” prompts in the dataset, respectively.
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Figure 1: An overall illustration of COMEM: Given a set of massive edits E the parameter-updated language model
is first obtained by using MEMIT (in Section 4.1), and the retrieval-augmented IKE is subsequentially performed (in
Section 4.2) to combine the effects of parameter updating and IKE in a complementary manner. During the editing
step, retrieval-augmented IKE constructs updating-aware demonstrations consisting only of update and remain
types, based on a set of neighbors in the training edits of each requested edit ei. During the inference step, the test
query (s, r) is provided, COMEM retrieves the requested edit stored during the editing step by matching with (s, r),
obtain its associated demonstrations, which are concatenated with the test prompt of (s, r) being fed intoM∗, and
then finally predicts the target objects as required in E , while retaining other non-edited knowledge (i.e., "iOS 6 was
created by Apple").

prompting template, [prompt (D(x)) ;x] is
the concatenated prompt that consists of the
demonstrations and testing prompt x, and y
is the predicted object returned by COMEM
given x.

4.1 Parameter Updating Method: MEMIT
For PU, the parameter updating method, we em-
ploy the MEMIT proposed by (Meng et al., 2022b),
which involves rewriting local model parameters
across a range of layers. The detailed description
of MEMIT is presented in Appendix A.

4.2 Retrieval Augmented In-Context
Knowledge Editing

Given the parametric updated modelMθ∗, we per-
form the retrieval-augmented IKE, which consists
of NeighborEdits and ConstructDemo for the edit-
ing step, and GetDemo for the inference step.

4.2.1 Updating-aware Demonstration
Construction

Unlike IKE, which employs 32 demonstrations for
“copy,” “update,” and “retain” with a ratio of 1:3:4
(where a copy-type demonstration duplicates a new
edit request or fact exactly, update-type demon-
strations use paraphrased expressions for the query

part, and retain-type demonstrations specify the
query and answer parts from an unrelated fact, as
shown in Appendix F), we propose updating-aware
demonstration construction for ConstructDemo in
our COMEM setting. Here, IKE is subsequently
applied to the parameter-updated language model
Mθ∗, rather than being used solely as a standalone
editing method.

The underlying assumption is that once param-
eter updating is applied, Mθ∗ is likely equipped
with a proper level of editing capabilities, in terms
of efficacy, generalization, and specificity. When
applying IKE onMθ∗, the language model is up-
dated to somehow handle properly in-scope and
out-of-scope examples, unlike the original setting
of IKE in the study by (Zheng et al., 2023) based
on the fully unedited status.

In a preliminary experiment, we found that the
use of copy-type demonstrations did not improve
editing capabilities under the COMET setting. We
present the experimental results in Section 6.2,
where we gradually reallocated the demonstrations
from copy-type to retain-type, showing incremental
performance improvements. Furthermore, increas-
ing the number of copy-type demonstrations has
no advantages in performance.
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Because the effect of ICL is limited by the maxi-
mum input length of the language model, we would
like to construct more impactful demonstrations by
adding non-copy-type demonstrations from more
training edits which are similar to the current given
edit.

The updating-aware demonstration construction
consists of NeighborEdits and ConstructDemo.
Dense Retrieval for Finding Neighbor Edits

We use dense retrieval for NeighborEdits based
on the cosine similarity between the training edit
eTj and the given requested edit ei. More pre-
cisely, suppose Msent represents an additional
sentence encoder, where Msent(s) ∈ Rd is the
sentence vector for a given sentence s. For no-
tation convenience, given an edit e = (s, r, o),
Msent(e) =Msent([s; r; o]) where [s; r; o] is the
natural language format that concatenates s, r, and
o using a proper verbalizing template. The simi-
larity between e = (s, r, o) and e′ = (s, r, o) is
defined as follows:

sim(e, e′) = cos(Msent(e),Msent(e
′)) (4)

For a given edit ei ∈ E , NeighborEdits (ei, T ) is
defined as follows:

top-k
{
(etj , sim(ei, e

t
j))

}M

j=1
(5)

where top-k is the operator for selecting the top-k
elements given a set of pairs of objects and their as-
sociated similarities. ForMsent, we deploy the pre-
trained sentence encoder (Reimers and Gurevych,
2019).
Constructing Demonstration of Update and Re-
tain Types

Once we have {e′1 · · · e′k} ∈ T using

NeighborEdits, ConstructDemo
(
Dt(e′j)

k
j=1

)

construct a set of demonstrations by selecting
m update and n remain-type demonstrations
in Du(e′j) and Dr(e′j), respectively for e′j . As
a result, we have k(m + n) demonstrations
for each requested edit ei, and N × k(m + n)
demonstrations in D in total for the massive edit
request in E .

4.2.2 Retrieval-augmented Inference Step
Given a test prompting q = (s, r), we first need
to obtain its corresponding eq = (s, r, o) ∈ E .
We devised a three-step search process comprising
matching and retrieval. Firstly, 1) match both the
subject s and relation r part of q in in E . If matched,
it returns the matched fact as the corresponding eq.

Otherwise, goes to the second step: 2) match the
subject s in the memory. if a fact can be “uniquely”
matched, the matched fact becomes the required eq.
If there exist multiple facts matched, goes to the
third step: 3) perform the dense retrieval by rank-
ing a set of the subject-matched facts. The best-
matched fact is the query-matched fact eq. Other-
wise, it returns the “null”, i.e., Ret(q) = eq = ∅.
For any queries that failed to match its eq, we also
perform dense retrieval on the whole editing re-
quests set E to assign the top-1 ranked fact as eq.

After obtain the eq, GetDemo returns the set of
the associated k(m + n) demonstrations for eq,
defined as follows:

GetDemo(x,D(ei)Ni=1) = D(eq) (6)

The resulting demonstrations are further concate-
nated with the test prompt q to finally predict an
output by COMEM.

5 Experiments

5.1 Dataset and Metrics
We first evaluate COMEM on Zero-Shot Rela-
tion Extraction (zsRE, Levy et al. (2017)) dataset
with 10,000 knowledge edits following (Cao et al.,
2021; Mitchell et al., 2022a; Meng et al., 2022b).
After processing the data format, each test sample
has one factual statement and its paraphrase, and
one natural question that is irrelevant to the factual
statement (see the example in Appendix E).

In this dataset, the metric Efficacy measures the
editing accuracy:

E[o∗ = argmaxPM∗((s, r))]. (7)

Paraphrase measures the same accuracy on para-
phrase prompt (i.e., in-scope examples):

E[o∗ = argmaxPM∗((s, r))], (8)

where p(·) denote the paraphrase of prompt. Speci-
ficity is the model’s maximum probability accuracy
for unrelated questions that should not be edited
(i.e., out-of-scope examples).

E[o = argmaxPM∗((s, r))], (9)

where u(·) denote the editing-irrelevant statement.
The Score is the harmonic mean of these three
metrics and reflects the integrated performance of
the model.

We also test our method on the CounterFact
dataset (Meng et al., 2022a) following (Meng

2337



Figure 2: Illustration of retrieval augmented IKE for constructing updating-aware demonstrations. Given the
requested edit ei, dense retrieval is initially performed to identify the top-k neighbor edits in the training sets, which
are most similar to the ei. Demonstrations of m update and n retrain-types for each neighbor edit are then selected
to create k(m + n) demonstrations for D(ei). During the inference step, a new query (s, r) is provided and the
retrieval is performed by selecting eq = (s, r, o) where the subject and relation elements are matched. Finally,
D(eq) are provided as online demonstrations for a query (s, r).

et al., 2022a,b; Zheng et al., 2023), which contains
21,919 samples, each containing factual statements,
two paraphrases of the statements, and 10 neigh-
bor prompts irrelevant to the fact. The detailed
format is presented in Appendix E. Similar to the
metrics of Efficacy, Paraphrase and Specificity of
zsRE, the Efficacy Score (ES), Paraphrase Score
(PS), and Neighborhood Score (NS) are computed
for editing accuracy. We also report the mean dif-
ference (magnitude) terms: Efficacy Magnitude
(EM), Paraphrase Magnitude (PM), and Neigh-
borhood Magnitude (NM), which measure the
significance of editing. A detailed definition is pro-
vided in Appendix C. The aggregated Score (S) is
the harmonic mean of ES, PS, and NS.

Implementation details are provided in Ap-
pendix B.

5.2 Baselines
We use the GPT-J (6B) (Wang and Komatsuzaki,
2021) and GPT-NeoX (20B) (Black et al., 2022)
models, commonly used in related works as back-
bone models, and compare COMEM with existing
knowledge-editing works:

• FT, the naive GPT-J model fine-tuned on the

edit facts using early stop to prevent over-
fitting and weight decay to prevent forgetful-
ness following (Meng et al., 2022b).

• MEND (Mitchell et al., 2022a), a learning
based method that predicts weight changes
using hyper-networks.

• ROME (Meng et al., 2022a), a direct paramet-
ric updating method that rewrites key-value
pairs in MLP layers, edits single knowledge
at a time, and must be performed iteratively
for multiple edits.

• MEMIT (Meng et al., 2022b), parametric up-
dating method that can edit massive amounts
of knowledge simultaneously, and scale up to
thousands of knowledge edits for the GPT-J
(6B) or larger models.

• IKE (Zheng et al., 2023), a pure In-Context
Learning based method that use three kinds
of designed demonstrations (“copy,” “update,”
and “retain”) as prompt to steer the language
models prediction.

• PMET (Li et al., 2023) is an optimized para-
metric multiple knowledge editing work that
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simultaneously optimizes the hidden states of
multi-head self attention (MHSA) and feed-
forward network (FFN) layers and precisely
updates the FFN weights.

6 Results and Discussion

In this section, we present the experimental results
for massive knowledge editing tasks on the zsRE
(Levy et al., 2017) and CounterFact (Meng et al.,
2022a) datasets, comparing COMEM with the re-
cently proposed baselines. Additionally, we con-
duct discussions and analyses based on ablation
studies.

6.1 Main Results
Results on zsRE. Table 1 presents the comparison
results of COMEM and other baselines in terms
of the Efficacy, Paraphrase, and Specificity met-
rics. As shown in the table, COMEM achieves the
best results on all metrics and exhibits significant
improvement in the aggregated Score (harmonic
mean of Efficacy, Paraphrase and Specificity). Mas-
sive knowledge editing methods, such as MEMIT
(Meng et al., 2022b) and PMET (Li et al., 2023)
can provide a relatively strong editing capability
across all metrics of Efficacy, Generalization (in
Paraphrase), and Specificity, while leaving room
for further improvements. The pure IKE (Zheng
et al., 2023) can also achieve the best scores for
Efficacy and Paraphrase, but shows relatively weak
Specificity, comparing to MEMIT.
Results on CounterFact. Table 2 shows the com-
parison results of COMEM and baseline methods in
terms of accuracy (ES, PS, and NS) and magnitude
terms (EM, PM, and NM) on this dataset. It can
be observed that the proposed COMEM achieves
the best overall performance. For the results based
on GPT-J, similar to the cases of zsRE, MEND
(Mitchell et al., 2022a) and ROME (Meng et al.,
2022a) are weak in terms of Efficacy and Gener-
alization of massive knowledge editing, whereas
MEND achieved the best Neighborhood Score. In-
terestingly, the fine-tuned model performs well in
terms of Efficacy and Generalization but also dete-
riorates severely in Specificity. There are no signif-
icant differences between the parameter updating
methods (Meng et al., 2022b; Li et al., 2023) and
IKE (Zheng et al., 2023) in terms of Efficacy, in-
cluding COMEM. However, there are still consider-
able gaps in the Generalization of parametric meth-
ods compared to IKE and COMEM. IKE shows

strong performances of Efficacy and Generaliza-
tion, but is weak in Specificity.

The pure IKE method exhibits a drop in Speci-
ficity with massive editing compared to fewer edits
as it achieves better Neighborhood Score on 2,000
edits test (77.0 on the original CounterFact in the
IKE’s paper (Zheng et al., 2023) and 67.6 on the
filtered CounterFact4 in our test). Besides the sig-
nificant impact brought by unfiltered conflicting
samples, this performance drop is primarily caused
by that the retrieval corpus size diminishes as more
data samples are allocated to the test set, result-
ing in a smaller retrieval search space, and that
IKE heavily relies on the quality of demonstrations
constructed from the retrieved neighbors.

We further tested COMEM on a larger model,
GPT-NeoX 20B, which shows noticeable improve-
ments in Generalization and Specificity compared
to MEMIT and PMET, this also indicates that
COMEM can effectively scale to larger language
models. The trade-off between “edit”-wise metrics
(Efficacy and Generalization) and “retain”-wise
metric (Specificity) can also be observed from the
comparison of COMEM* (without parameter up-
dating) and COMEM settings. Performing ICL
editing on on a model without parameter updates re-
sults in lower Generalization but higher Specificity
compared with that parameter-updated model.

Remarkably, COMEM leverages both the foun-
dational editing capability of the parameter up-
dating method and the augmentation capabilities
of IKE, thereby achieving state-of-the-art perfor-
mance. Examples of selected edits are presented in
Appendix G.

6.2 Demonstration Analysis for Parametric
Updated Model

In this section, we demonstrate that a parametric
updated model does not need additional "Efficacy
Demonstrations" but requires more for Specificity
in the In-Context Learning stage.

We first keep the number of total demonstrations
fixed and redistribute "copy" to "retain" demonstra-
tions, since IKE lost some Specificity under 10,000
edits setting. Table 3 demonstrates that this redistri-
bution improved the Neighborhood Score without
compromising Efficacy and Generalization, leading
to an overall improvement in performance.

4We use the CounterFact dataset which filtered to remove
the samples that violate multiple knowledge editing paradigm
as described in Section 4.3, the filtered dataset is also referred
to as multi-CounterFact.
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Method Score ↑ Efficacy ↑ Paraphrase ↑ Specificity ↑
GPT-J 26.4 26.4 25.8 27.0
FT 42.1 69.6 64.8 24.1
MEND 20.0 19.4 18.6 22.4
ROME 2.6 21.0 19.6 0.9
MEMIT 50.7 96.7 89.7 26.6
IKE 40.6 99.3 99.9 18.6
PMET 51.0 96.9 90.6 26.7
COMEM 60.6 98.1 96.0 34.9

Table 1: Performance comparison of GPT-J (6B) with 10,000 knowledge edits on the zsRE dataset. Column-wise
best are in bold, second best are underlined.

Method Score Efficacy Generalization Specificity
S ↑ ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑

GPT-J 20.47 14.66 -7.40 15.06 -7.50 83.97 7.65
FT 63.54 99.91 98.24 88.14 48.65 38.67 -8.22
MEND 25.23 17.61 -12.19 20.10 -11.34 80.83 12.55
ROME 49.92 49.36 -0.03 49.51 -0.09 50.92 0.09
MEMIT 85.71 99.10 87.85 88.33 38.02 73.59 4.64
IKE 84.88 99.98 92.86 96.29 67.37 66.88 25.19
PMET 86.20 99.50 - 92.80 - 71.40 -
COMEM 88.09 99.87 94.88 96.42 71.00 73.14 35.87
GPT-NeoX 23.33 16.63 -9.1 17.77 -8.17 81.94 8.85
MEMIT 82.00 97.20 - 82.20 - 70.80 -
PMET 84.30 98.40 - 89.40 - 70.30 -
COMEM* 87.11 98.06 90.24 89.55 56.69 76.48 42.05
COMEM 87.21 98.00 86.16 91.37 62.84 75.46 39.72

Table 2: Performance comparison of GPT-J (6B) and GPT-NeoX (20B) with 10,000 knowledge edits on the
CounterFact dataset. COMEM* represents the results obtained without parameter updating in the GPT-NeoX model.
Column-wise best are in bold, second best are underlined.

We then test weather the "copy" demonstrations
still have significance for the parametric updated
models and found that further increase the num-
ber of "copy" demonstrations do not improve the
overall performance, as strong Efficacy have been
pre-provided by parameter updating, the results as
shown in Table 3.

6.3 Ablation on zsRE

We conduct ablation experiments on zsRE to
demonstrate the necessity of using Parametric Up-
dating and IKE-based input augmentation and to
examine the impact of using different numbers of
neighbors (i.e., the number of demonstrations) on
the editing performance.

Table 4 show that without the parameter updat-
ing method, the model struggles in showing the ef-
fectiveness on Generalization and Specificity. With-
out IKE, the use of the parameter updating leads to

C/U/R S ↑ ES ↑ PS ↑ NS ↑
4/12/16 83.53 99.99 98.64 63.43
2/12/18 84.25 99.99 98.51 64.70
0/12/20 84.80 99.98 98.53 65.70
2/12/20 84.84 100 98.61 65.71
4/12/20 84.78 100 98.54 65.63
8/12/20 84.78 100 98.52 65.64

Table 3: Various demonstration distributions applied for
parametric updated model. The demonstration format
used in this test is adopted from IKE, where C, U, and
R denote the number of "copy", "update", and "retain"
demonstrations.

the degradation of the overall editing performance ,
particularly in Generalization.

As we increase the number of nearest neigh-
bors k to construct IKE demonstrations, the perfor-
mances improve, although the Efficacy and Gen-
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eralization reach optimal performance only when
k = 8.

Method S ↑ ES ↑ PS ↑ NS ↑
- w/o PU 46.8 100 99.9 22.7
- w/o ICL 50.7 96.7 89.7 26.6
- k = 8 57.3 99.7 97.6 31.2
- k = 16 59.4 99.8 97.6 33.1
- k = 24 60.6 98.1 96.0 34.9

Table 4: Ablation study on zsRE. k denotes the number
of the neighbors, w/o PU and w/o ICL correspond to
the runs without parameter updating (w/o PU) method
and IKE, respectively. The run of w/o PU is performed
under the setting of k = 24. ES, PS, and NS refer to
the model’s Efficacy, Generalization, and Specificity,
respectively.

6.4 Ablation on CounterFact
Table 5 presents an ablation study on CounterFact.
Both the parameter updating method and IKE are
effective for Specificity, but suffer from a notable
drop in Generalization; Parameter updating pro-
vides slightly better Efficacy and Generalization
than IKE.

In contrast to the results on zsRE, IKE achieves
the best Neighborhood Score on CounterFact.
The results are mainly because the CounterFact
dataset can provide a greater number of retrain-
type demonstrations (i.e., neighborhood prompts)
to improve Specificity.

COMEM improves Generalization significantly
and Efficacy slightly, while COMEM leads to a
slight decease in Specificity. Increasing the num-
ber of demonstrations will likely help to regain
Specificity without compromising other aspects.

Method S ↑ ES ↑ PS ↑ NS ↑
- w/o PU 85.29 99.60 85.64 74.31
- w/o ICL 85.71 99.10 88.33 73.59
- k = 3 85.72 99.95 96.43 68.39
- k = 4 87.08 99.93 96.43 71.05
- k = 5 88.09 99.87 96.42 73.14

Table 5: Ablation study on CounterFact. Similar to
the zsRE dataset, k is the number of nearest neighbors
used for ICL demonstration construction, the test of
without introducing parametric updating (w/o PU) was
conducted under the setting of k = 5.

6.5 Demonstration Analysis on Query Prompt
We also observed that pre-appending a new knowl-
edge demonstration before the query sequence

(used in IKE) tends to excessively bias the model
towards predicting new facts, resulting in a notable
deterioration in Specificity, as shown in Table 6.
Hence, for any query prompt, we utilize the orig-
inal sequence without any additional context. Ta-
ble 9 in Appendix F provides an example of our
demonstration.

Method S ↑ ES ↑ PS ↑ NS ↑
zsRE
- w/ Pre 56.1 99.7 99.2 30.0
- w/o Pre 60.6 98.1 96.0 34.9
CounterFact
- w/ Pre 86.28 99.28 97.03 69.48
- w/o Pre 88.09 99.87 96.42 73.14

Table 6: Comparison of pre-appending the new knowl-
edge demonstration before the query prompt or not.

7 Conclusion

In this study, we proposed COMEM, a unified
framework of parameter updating and IKE for mas-
sive knowledge editing tasks. Extensive experi-
ments on the zsRE and CounterFact datasets show
that COMEM led to state-of-the-art overall per-
formance, outperforming most existing knowledge
editing methods. Further analysis confirmed that
the use of our designed updating-aware in-context
learning demonstration pattern boosted the model
generalization without compromising its high effi-
cacy and specificity.

In future work, we aim to explore how to pa-
rameterize in-context learning demonstrations into
the language model to avoid the decrease in infer-
ence efficiency caused by lengthy input prompts,
ultimately striving for more concise and efficient
knowledge editing.

Limitations

Our work optimizes based on In-Context Learning
after parametric rewriting, yet ICL cannot achieve
permanent or long-term model knowledge updates.
This means that currently the optimized part cannot
avoid lengthy demonstration inputs, and concate-
nating such demonstrations every time the model
restarts is inefficient. Therefore, achieving perma-
nent or long-term optimal knowledge editing per-
formance requires exploring methods to parameter-
ize the ICL demonstrations. This would also allow
the final model to operate without lengthy input
prompts, thereby enhancing inference efficiency,
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which is one of our future directions. Addition-
ally, current models primarily operate on data sam-
ples in tuple form like (subject, relation, object),
whereas real-world natural language comes in more
diverse and complex forms. Exploring weather the
current work can generalize to universal text for-
mats is also an important future task.
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A Detailed Process of MEMIT

The MLP weights in a Transformer (Vaswani et al.,
2017) are W , which can be operated as a key-
value store, where WK ≈ V , K = [k1|k2|...]
and V = [v1|v2|...]. Given the requested edits E =
{(si, ri, oi)}, language modelMθ, layers to edit
L = {L1, L2, ..., Ll}, and pre-cached covariance
constant CL of k computed from Wikipedia sam-
ples (Meng et al., 2022a). For each (si, ri, oi) ∈ E ,
a target vector zi is computed using:

zi ← hLl
i + δi, (10)

where δi is optimized by:

δi ← argmin
δi

1

P

P∑

j=1

ξi

ξi = − logPM(h
Ll
i +=δi)

[oi|xj ⊕ (si, ri)] (11)

For each editing layer L ∈ L, the hidden state is
updated by:

hLi ← hL−1
i + aLi +mL

i (12)

where a and m denote the "attention" and "MLP"
contributions computed from previous layers in the
Transformer (Vaswani et al., 2017) model, respec-
tively. On the current layer, for each (si, ri, oi) ∈
E , the MLP key is updated as:

kLi ← kLi =
1

P

P∑

j=1

k(xj + si) (13)
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where xj represents random prefixes that aid gener-
alization across contexts. The distributed residual
ϕ over remaining layers is computed as

ϕL
i ←

zi − hLl
i

l − idx(L) + 1
(14)

where idx(L) denote the number index of L. Thus
in this layer kL = {kLi } and ϕL = {ϕL

i }.
To update the MLP weights in the editing lay-

ers, for each layer L ∈ L, the adding weight is
computed as:

∆L ← ϕLkL
T
(CL + kLkL

T
)−1, (15)

Finally, in the current layer L the MLP weights are
updated as

WL ←WL +∆L, (16)

After the above updating is performed on all the
editing layers, the parameter updated modelMθ∗

can be obtained.

B Implementation Details

We use GPT-J (6B) (Wang and Komatsuzaki, 2021)
and GPT-NeoX (20B) (Black et al., 2022) as back-
bone language models to ensure the maximum num-
ber of comparable cases with related work. During
the parametric editing process, we edit the MLP
weights in layers [3, 4, 5, 6, 7, 8] of GPT-J and lay-
ers [21, 22, 23, 24, 25] of GPT-NeoX.

For the zsRE (Levy et al., 2017) dataset, we
extract 10,000 samples as the test set to perform
massive knowledge editing and use the sentence-
transformer toolkit to retrieve k nearest neighbors
from the remaining set (172,282 samples) of data.
The best result was obtained by setting k = 24,
resulting in 48 demonstrations for each test sam-
ple, where each neighbor provides one paraphrase
prompt (m = 1) and one irrelevant prompt (n = 1)
used for the demonstration construction. In our
experiments, larger k values result in the input
sequence length of most samples exceeding the
maximum input lengths of GPT-J (6B). We first
run parametric updating on the test set following
(Meng et al., 2022b), and then use the edited model
to perform In-context Learning.

We tested IKE (Zheng et al., 2023) on zsRE with
the same demonstration setting as in their paper: re-
trieving top 32 nearest neighbors and assigning the
usage of factual statement, paraphrase prompt, and
neighborhood prompt for “copy,” ”update,” “retain”

demonstrations with a ratio of 1:3:4. Because other
baselines were tested by the previous works on this
dataset, we present statistics from their respective
studies (Meng et al., 2022b; Li et al., 2023).

For the CounterFact (Meng et al., 2022a) dataset,
the original dataset comprises 21,919 samples,
however, there are some samples that share the
same prefix (s, r) used for editing other new facts,
thereby being conflicted each other. After filtering
these conflicted edits, the resulting dataset com-
prises a total of 20,877 samples as in (Meng et al.,
2022b). Given that each data sample in this dataset
includes 2 paraphrase prompts (m = 2) and 10
neighborhood (irrelevant) prompts (n = 10), the In-
Context Learning prompt consists of k ∗ 12 demon-
strations. Hence, under our optimal setting, the
number of demonstrations for each test sample is
60.

To obtain precise results and the magnitude term
of the baselines, we rerun IKE (Zheng et al., 2023)
on the filtered dataset for 10,000 samples under the
same setting as in their paper, and retested other
baselines based on (Meng et al., 2022b)’s reposi-
tory. However, for the PMET (Li et al., 2023), we
failed to reproduce the experiment because of GPU
limitations; thus, we directly adopted their results
in this study.

All our experiments were conducted on NVIDIA
A6000 GPUs.

C Detailed Definition of Evaluation
Metrics on CounterFact

Accuracy Terms:
Efficacy Score (ES):

E[PM∗(o∗|(s, r)) > PM∗(o|(s, r))], (17)

Paraphrase Score (PS):

E[PM∗(o∗|p(s, r)) > PM∗(o|p(s, r))], (18)

Neighborhood Score (NS):

E[PM∗(o∗|u(s, r)) < PM∗(o|u(s, r))]. (19)

Magnitude Terms:
Efficacy Magnitude (EM):

E[PM∗(o∗|(s, r))− PM∗(o|(s, r))], (20)

Paraphrase Magnitude (PM):

E[PM∗(o∗|p(s, r))− PM∗(o|p(s, r))], (21)

Neighborhood Magnitude (NM):

E[PM∗(o|u(s, r))− PM∗(o∗|u(s, r))]. (22)
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D Extended Comparison of Performance
with In-Context Learning Knowledge
Editing

For a more detailed comparison with the pure In-
Context Learning method, we tested the perfor-
mance of IKE (Zheng et al., 2023) under the same
number of demonstrations as in our experiments
(k = 3, 4, 5). Due to the change in the number of
demonstrations, we attempted to maintain the ratio
of demonstrations (1:3:4) used for “copy,” “update”
and “retain” in IKE as much as possible to allocate
the additional demonstrations.

The results are summarized in Table 7. COMEM
is slightly inferior in Efficacy and Paraphrase
Scores, but exhibits a noticeable advantage in
Neighborhood Score. A higher aggregated score
S indicates that the proposed COMEM has a better
overall performance.

Method dn S ↑ ES ↑ PS ↑ NS ↑
IKE 36 85.32 100 96.30 67.68
COMEM 36 85.72 99.95 96.43 70.58
IKE 48 86.22 100 97.22 68.93
COMEM 48 87.08 99.93 96.43 71.05
IKE 60 87.14 99.98 97.32 70.68
COMEM 60 88.09 99.87 96.42 73.14

Table 7: Comparison of COMEM with IKE under the
same demonstration quantity. dn denote the number of
total demonstration, where 36, 48, 60 correspond to our
experiments with k = 3, 4, 5.

E Data Structure

Structure of CounterFact dataset:
{

"case_id": 0,
"requested_rewrite": {

"prompt": "The mother tongue of is",
"target_new": “str": "English",,
"target_true": "str": "French",,
"subject": "Danielle Darrieux"

},
"paraphrase_prompts": [

"Danielle Darrieux, a native",
"Danielle Darrieux spoke the language"

],
"neighborhood_prompts": [

"The native language of Montesquieu is",
"The native language of Raymond Barre is",
"Jacques is a native speaker of",
. . . (10 prompts in total)

],
"attribute_prompts": [

"The mother tongue of Douglas Adams is",
. . . (10 prompts in total)

],
"generation_prompts": [

"Danielle Darrieux’s mother tongue is",
. . . (10 prompts in total)

]
}
Structure of processed zsRE dataset:
{

"case_id": 0,
"requested_rewrite": {

"prompt": "What university did {} attend?",
"subject": "Watts Humphrey",
"target_new":

"str": "Illinois Institute of Technology"
"target_true":

"str": "<|endoftext|>"
},
"paraphrase_prompts": [

"What university did Watts Humphrey take
part in? "

],
"neighborhood_prompts": [

"prompt":
"nq question: who played desmond doss

father?",
"target": " Hugo"

]
}

F Example of ICL Demonstration

Table 8 shows examples of IKE’s ICL demonstra-
tions, and Table 9 displays our demonstrations.

Type Demonstration

copy
New Fact: Sky Football was created in Canada
Prompt: Sky Football News was created in Canada

update
New Fact: Sky Football was created in Canada
Prompt: Sky Football News originated in Canada

retain
New Fact: Sky Football was created in Canada
Prompt: iOS 6 was created by Apple

append Fox News was created in Canada

query
New Fact: Fox News was created in Canada
Prompt: Fox News was created in?

Table 8: Single example of IKE’s (Zheng et al., 2023)
demonstration.
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Type Demonstration

paraphrase
New Fact: Sky Football was created in Canada
Prompt: Sky Football News originated in Canada

neighborhood
New Fact: Sky Football was created in Canada
Prompt: iOS 6 was created by Apple

append Prompt: Fox News was created in Canada.
query Prompt: Fox News was created in?

Table 9: Single example of our demonstration.

G Output Examples of Model Outputs

Table 10 presents the output examples of GPT-J and
COMEM, where GPT-J stores the original unedited
knowledge and COMEM is post-edited. Blue font
represents new editing knowledge, yellow font in-
dicates original knowledge, red font denotes incor-
rectly predicted or ambiguous answers, and green
font indicates successful retention of knowledge
unrelated to the editing target. It can be observed
that the unedited GPT-J is generally capable of out-
putting original knowledge but occasionally fails
to generate correct answers. COMEM is successful
in generating new edited knowledge without affect-
ing other unedited knowledge and tends to provide
concise answers directly.

2346



Model Type Content or Output

Prompt
New Knowledge The mother tongue of Danielle Darrieux is English.
Old Knowledge The mother tongue of Danielle Darrieux is French.

GPT-J
(before
editing)

Fact The mother tongue of Danielle Darrieux is ___. The correct answer is: French.

Paraphrase
Danielle Darrieux, a native French.
Danielle Darrieux spoke the language ___. A. French B. English C. Spanish D. Italian

Neighborhood
(unrelated)

The native language of Montesquieu is French. Prompt: The native language
Maurice Genevoix, speaker of French.

Generation
Danielle Darrieux’s mother tongue is ___. 1. 2. 3. 4.
Where Danielle Darrieux is from, people speak the language of ___. The answer is: French.

COMEM
(after
editing)

Fact The mother tongue of Danielle Darrieux is English.

Paraphrase
Danielle Darrieux, a native English.
Danielle Darrieux spoke the language English.

Neighborhood
(unrelated)

The native language of Montesquieu is French.
Maurice Genevoix, speaker of French.

Generation
Danielle Darrieux’s mother tongue is English.
Where Danielle Darrieux is from, people speak the language of English.

Table 10: Outputs of models on the CounterFact dataset.
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