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Abstract
CLIP-based classifiers rely on the prompt con-
taining a {class name} that is known to the
text encoder. Therefore, they perform poorly
with new classes or the classes whose names
rarely appear on the Internet (e.g., scientific
names of birds). For fine-grained classifica-
tion, we propose PEEB—an explainable and
editable classifier to (1) express the class name
into a set of text descriptors that describe the
visual parts of the class; and (2) match the
embeddings of the detected parts with their
textual descriptors in each class to compute
a logit score for classification. In a zero-shot
setting where the class names are unknown,
PEEB significantly outperforms CLIP, achiev-
ing a 10-fold increase in top-1 accuracy. Com-
pared to part-based classifiers, PEEB not only
achieves state-of-the-art (SOTA) accuracy in
the supervised-learning setting—88.80% and
92.20% accuracy on CUB-200 and Dogs-
120 , respectively—but also the first to en-
able users to edit the text descriptors to form
a new classifier without any re-training. Com-
pared to concept bottleneck models, PEEB is
also the SOTA in both zero-shot and supervised
learning settings.

1 Introduction

Fine-grained classification (Wah et al., 2011;
Van Horn et al., 2015) is a long-standing computer-
vision challenge. Furthermore, it is also important
to explain how SOTA classifiers make a decision,
e.g., which bird traits make a model think a given
bird is Painted Bunting? (Fig. 1)

First, many bird classifiers claim to be explain-
able (Chen et al., 2019; Donnelly et al., 2022) by
comparing the input image with a set of learned,
part prototypes (Fig. 1b) or natural-language con-
cepts (Fig. 1a). Yet, such prototypes are feature
vectors and therefore not editable by users. Tex-
tual concepts are often compared against entire
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   back: vibrant green coloring
   beak: conical, silver-gray
   belly: rich red hue
   ...
   throat: bright red plumage

(a) textual concept explanations
operate at the image level

(c) PEEB explanations pair up each detected object part with a textual descriptor

Input image
   
   green back
   long, pointed beak
   yellow or red belly
    ...
   vibrant red throat

Text descriptors

(b) part-based prototypes represent
image patches and not editable by humans

Part prototypesInput image

Painted bunting
0.72

Figure 1: Existing explanations are either (a) textual but
at the image level; or (b) part-level but not textual. Com-
bining the best of both worlds, PEEB (c) first matches
each detected object part to a text descriptor, then uses
the part-level matching scores to classify the image.

image for classification and it is unknown what im-
age details match a given descriptor (Menon and
Vondrick, 2023; Yang et al., 2023). Third, most
vision-language classifiers need the prompt to have
a known {class name} (like a special code instead
of an expressive, natural description) that matches
the input image (Roth et al., 2023). Fourth, most
classifiers require either training-set images in a
supervised-learning setting or demonstration im-
ages in a zero-shot setting (Xian et al., 2018; Zhu
et al., 2018). This requirement is impractical when
building a classifier for a novel species whose pho-
tos do not yet exist in the database.

To address the above four problems, we pro-
pose PEEB, a Part-based image classifier that is
Explainable and Editable via a natural-language
Bottleneck. PEEB classifies images by ground-
ing the textual descriptor of object parts provided
by humans or GPT-4 (no images needed) to de-
tected parts in the image (Fig. 1c). While PEEB
leverages CLIP’s encoders (Radford et al., 2021), it
uses no class names (e.g., Indigo Bunting) in the
prompt. In contrast, CLIP-based models (Radford
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et al., 2021; Pratt et al., 2023; Menon and Vondrick,
2023) rely so heavily on the known class names
that their accuracy drops significantly when the
names are removed or replaced by less-common
ones (Sec. 5.1).

For birds , we first define the parts of interest
for identifying a bird. We take the 15 parts defined
in CUB (Wah et al., 2011) and reduce them to
12 by merging similar parts, e.g. left wing and
right wing are merged into wings. Using GPT-4
(OpenAI, 2023), we construct a textual descriptor
to describe each bird part of every species (see
Appendix C). Next, PEEB localizes the 12 bird
parts in the image and computes their matching
scores with corresponding text descriptors (Fig. 2).
The sum of the 12 dot products between the paired
visual and textual part embeddings would be the
unnormalized distance (logits) between the input
image and every class for classification (Fig. 3).
For dogs , we use a similar procedure.

To our knowledge, all existing public bird-image
datasets (listed in Table A4) are limited in size (less
than 100K images per dataset) and in diversity (less
than 1,500 species per dataset), impeding large-
scale, vision-language, contrastive learning. There-
fore, for our pre-training, we construct Bird-11K,
an exceptionally large dataset of bird images, com-
prising ∼290,000 images spanning across ∼11,000
species—essentially, all known bird species on
Earth (Sec. 3). Bird-11K is constructed from seven
existing bird datasets and ∼55,000 new images that
we collect from the Macaulay Library. Similarly,
we build Dog-140, a large-scale dataset of 206K
dog images. Our main findings are:1

1. CLIP-based classifiers rely mostly on class
names in the prompt: The CUB accuracy of
M&V model (Menon and Vondrick, 2023)
drops drastically from 53.78% to 5.89% and
5.95% after class names are removed or re-
placed by scientific names (Sec. 5.1).

2. Our pre-trained PEEB outperforms CLIP-
based classifiers by +8 to +29 percentage
points (pp) in bird classification across CUB-
200, NABirds-555, and iNaturalist-1486
(Sec. 5.2).

3. PEEB allows defining new classes in text at
test time (Fig. 2) without any further training.
Besides explainability and editability, PEEB

1Code & data: https://github.com/anguyen8/peeb

outperforms text concept-based methods in
both the generalized zero-shot (Sec. 5.3) and
zero-shot setting (Sec. 5.4).

4. Compared with explainable CUB classifiers,
PEEB scores an 88.80% top-1 accuracy, on
par with the best CUB-200 classifiers (81–
87% accuracy) that are trained via supervised
learning and often not editable (Sec. 5.5).

5. PEEB is applicable to multiple domains. On
Stanford Dogs-120, PEEB scores 92.20%,
substantially outperforming explainable mod-
els and on-par with SOTA black-box models
(Sec. 5.6).

2 Related Work

Ante- vs. post-hoc explanations It is common
to build fine-grained classifiers based on CNNs
(He et al., 2016) or ViTs (He et al., 2022a). Al-
though high-performing, these models do not ad-
mit an ante-hoc explanation interface (Gunning
et al., 2021) and therefore rely on post-hoc inter-
pretability methods, which tend to offer inaccurate
and unstable, after-the-fact explanations (Rudin,
2019; Bansal et al., 2020). PEEB’s textual part-
descriptors form an ante-hoc, natural-language ex-
planation bottleneck that enables users to observe
and edit the object attributes that contribute to each
final prediction. By editing text descriptors, users
can re-program the model without any further re-
training (Fig. 2).
Prototypical Part Networks Like the explain-
able classifiers that learn part prototypes (Nauta
et al., 2021; Donnelly et al., 2022; Nauta et al.,
2022; Chen et al., 2019), PEEB also operates at the
object-part level. However, there are two major dif-
ferences. First, the textual part descriptors in PEEB
are human-understandable and editable. In contrast,
a part prototype (Chen et al., 2019) is not directly
editable or interpretable to users, and often inter-
preted by showing the nearest training-set image
patches. Second, PEEB predicts a contextualized
embedding for each object part and its spatial in-
formation can be viewed by inputting to the Box
MLP (see Fig. 3) for bounding-box visualization.
Text-based Concept Bottlenecks Like PEEB,
(Chen et al., 2020; Zhu et al., 2018; Rao et al.,
2023; Paz-Argaman et al., 2020) also match visual
part embeddings to text embeddings. Yet, they (1)
do not use CLIP and instead rely on TF-IDF text
features; (2) require a trained bird-part detector to
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crown: dark blue, sleek
0.48

forehead: brilliant blue plumage
0.55

nape: blue, blending with crown
0.64

eyes: alert, dark eyes
0.82

beak: sharp, pointed
0.83

throat: distinct black patch
0.30

breast: vivid blue hue
0.40

belly: pristine white
0.62

back: midnight blue
0.01

wings: blue with small white square
0.57

legs: thin, black legs
0.61

tail: blue-tinted for some females
0.43

crown: dark blue, sleek
0.48

forehead: brilliant blue plumage
0.55

nape: blue, blending with crown
0.64

eyes: alert, dark eyes
0.82

beak: sharp, pointed
0.83

throat: rusty
0.43

breast: vivid blue hue
0.40

belly: pristine white
0.62

back: midnight blue
0.01

wings: blue with black tips
0.74

legs: thin, black legs
0.61

tail: blue-tinted for some females
0.43

(a) Input image (b) Indigo Bunting 0.0331 (c) Eastern Bluebird 0.0445 (d) Example 
Indigo Bunting

PEEB

Explainable
Editable 
Bottleneck

Figure 2: Given an input image (a) from an unseen class of Eastern Bluebird, PEEB misclassifies it into Indigo
Bunting (b), a visually similar blue bird in CUB-200 (d). To add a new class for Eastern Bluebird to the 200-class
list that PEEB considers when classifying, we clone the 12 textual descriptors of Indigo Bunting (b) and edit
(- -▸) the descriptor of throat and wings (c) to reflect their identification features described on AllAboutBirds.org
(“Male Eastern Bluebirds are vivid, deep blue above and rusty or brick-red on the throat and breast”). After the
edit, PEEB correctly predicts the input image into Eastern Bluebird (softmax: 0.0445) out of 201 classes (c).
That is, the dot product between the wings text descriptor and the same orange region increases from 0.57 to 0.74.

detect 7 bird parts. In contrast, PEEB relies on
CLIP, which admits easy text editability, and OWL-
ViT, which serves as an open-vocabulary object-
part detector that generalizes to many domains.

Recent vision-language models (VLMs) claim to
be interpretable as they use textual concepts in the
prompt. Yet, some works that rely on class-wise dif-
ferential captions (Esfandiarpoor and Bach, 2023)
or learned concept weights (Yang et al., 2023;
Panousis et al., 2023; Oikarinen et al., 2023; Yuk-
sekgonul et al., 2023) do not generalize to unseen
classes. The most recent, similar work to PEEB
might be LaBo (Yang et al., 2023), which; however,
operates at the image level instead of patch level,
and does not generalize to unseen classes.

Many CLIP-based classifiers (Han et al., 2023b;
Pratt et al., 2023; Menon and Vondrick, 2023) rely
heavily on having seen class names in the prompt
and thus are neither explainable nor editable to
users. Unlike CLIP-based models, PEEB reveals
what image details are being used for classification
by matching descriptors to corresponding visual
object parts (e.g. a bird’s beak in Fig. 3).

Attribute-based Classifiers Attribute-Label Em-
bedding (ALE) approaches (Akata et al., 2015;
Yuksekgonul et al., 2023) employ a fixed set of
attributes and train an attribute-to-label weight ma-
trix for zero-shot classification. Several studies
(Samuel et al., 2021; Xu et al., 2020; Hanouti and
Le Borgne, 2023) highlight its effectiveness on

datasets like CUB, SUN (Xiao et al., 2010), and
AWA (Xian et al., 2019). Yet, in practice, ALE re-
quires tabular data annotations for every new class
in the dataset (e.g., 312 attributes per CUB species),
editing the weight matrix, and model re-training.
In contrast, to add an unseen class to PEEB, users
would only need to describe its 12 bird parts in
natural language.

3 Datasets

3.1 Test classification benchmarks
We test PEEB on three bird classification
datasets: CUB-200 (2011), NABirds-v1 of 555
classes (2015), and iNaturalist (2021) which has
1,486 bird classes. For dog images, we test
PEEB on Stanford Dogs-120 (2011).

3.2 Bird-11K dataset construction
We combine labeled images from 7 distinct
datasets and an extra ∼55K images (10,534 classes)
from Cornell’s Macaulay Library, to form a unified
Bird-11K dataset2 (Appendix D.1) for large-scale
pre-training. To the best of our knowledge, Bird-
11K, comprising 440,934 images spanning 11,183
classes, is the first bird dataset to encompass al-
most all species on Earth. Since PEEB learns to
match visual parts with textual descriptors, it re-
quires that bird images be distinctly visible and

2We do not redistribute the published datasets but release
a script for reconstructing Bird-11K on Github.
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sufficiently large for accurate part localization and
matching (see Appendix E.3 for ablation studies).
However, small and “hard-to-see” bird images in
Bird-11K make the dataset noisy and the training
complex. Thus, we harness OWL-ViTLarge (Min-
derer et al., 2022) to detect a bird in all images us-
ing the prompt “bird” and filter out images where
the detected bird’s bounding box is smaller than
100 × 100 pixels. We find OWL-ViT’s bird detec-
tions to be fairly accurate—its mean Intersection
over Union (IoU) between the predicted bird boxes
and ground-truth boxes on CUB dataset is 0.91.

As class labels from different sources are
either general (e.g. Cardinal) or fine-grained
(e.g. Yellow vs. Northern Cardinal), we re-
tain only the fine-grained species for more diverse
training and exclude all general classes to avoid
label ambiguity. Following these filtering steps, the
refined Bird-11K dataset retains 294,528 images
across 10,811 classes (Table A4).

For each species in Bird-11K, we generate a
set of part-based descriptors using GPT-4 (Ap-
pendix C). These generated descriptors (see Fig. 4)
may not be 100% accurate but discriminative
enough to help GPT-4V reach 69.40% accuracy
on the CUB-200 test set (Table 3). That is, in the
same prompt, we feed each test image x along with
the 200 CUB classes’ part-based descriptors and
ask GPT-4V to select a matching class label for x
(details in Appendix F.1).

3.3 Dataset splits for contrastive pre-training
There are two common settings in the zero-shot
learning literature—standard zero-shot (ZSL) and
generalized zero-shot (GZSL).

ZSL is a stricter setup where a model is only
tested on the classes unseen during any prior train-
ing. We ensure test-set classes from datasets (e.g.,
CUB-200 or NABirds-555) are not seen during pre-
training. For example, to test on CUB under ZSL,
we exclude all 200 CUB classes and their images
from our pre-training on Bird-11K.

Following the ZSL literature, we use the CUB
split proposed by Akata et al. (2015) and two
harder splits: Super-Category-Shared/Exclusive
(SCS/SCE) by Elhoseiny et al. (2017). For exam-
ple, in ZSL on CUB, we exclude all CUB classes
in Bird-11K for pre-training and finetune only on
the corresponding training set given by a ZSL split.

GZSL is closer to the real-world setup where
models are tested on both seen & unseen classes.
CLIP’s “zero-shot” tests technically fall under

GZSL as its Internet-scale training set might ac-
tually have images from the test classes. To test
PEEB under GZSL, we exclude the test sets of
CUB, NABirds, and iNaturalist, and directly evalu-
ate the Bird-11K-pretrained models without further
finetuning.

4 Method

4.1 Backbone: OWL-ViT object-part detector

OWL-ViT is an open-vocabulary detector that de-
tects objects and parts in an image given a text
prompt, even if the model is not explicitly fine-
tuned to detect those concepts. OWL-ViT consists
of four networks (Fig. 3): (1) a ViT-based image
encoder, (2) an architecturally identical text en-
coder, (3) a bounding-box regression head called
Box MLP, and (4) and a Linear Projection. Box
MLP is a three-layer Multilayer Perceptron (MLP)
with GELU activations (Hendrycks and Gimpel,
2016) after each of the first two layers. Linear Pro-
jection maps the visual and text embeddings to the
same space (see Fig. 1 in (Minderer et al., 2022)).

4.2 PEEB classifier

Architecture PEEB (Fig. 3) has five networks: an
image encoder, a text encoder, a Linear Projection,
a Part MLP, and a Box MLP.

We introduce Part MLP to map the visual and
textual part embeddings to the same space for com-
puting dot products (logits) for classification (Ð→
in Fig. 3). This design allows PEEB to easily ex-
tend the number of classes without any re-training.
Except for Part MLP, all components are adopted
from the OWL-ViT framework. Details of all com-
ponents are in Appendix A.
Inference Given an input image, we first use the
12 generic part names to select the visual part em-
beddings based on cosine similarity. These selected
visual part embeddings are then simultaneously fed
into both Part MLP and Box MLP.

Box MLP predicts the bounding box from each
part embedding. We compute a dot product to mea-
sure the similarity between each embedding output
from Part MLP and a corresponding part-descriptor
embedding. For classification, a class logit is the
sum of the 12 dot products, which essentially com-
putes the similarity between the 12 parts in the
image and the 12 text descriptors of each class.
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Visual Part
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"back: vibrant green coloring",
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Figure 3: During inference, 12 visual part embeddings with the highest cosine similarity with encoded part names are
selected (a). These visual part embeddings are then mapped (Ð→) to bounding boxes via Box MLP. Simultaneously,
the same embeddings are forwarded to the Part MLP and its outputs are then matched (b) with textual part descriptors
to make classification predictions (Ð→). Fig. A1 shows a more detailed view of the same process.

4.3 Training strategy

Trainable networks In preliminary experiments,
we find training only Part MLP (while keeping all
other networks frozen) to result in poor accuracy.
Therefore, we train Part MLP from scratch and also
finetune the image encoder, Linear Projection, and
Box MLP. We finetune all OWL-ViT components
from their original weights. In contrast, our pro-
posed Part MLP starts from random weights. Our
training has two phases: (a) 2-stage pre-training
on the large-scale Bird-11K dataset and (b) finetun-
ing on downstream tasks. More hyperparameter
details are in Appendix A.8.
Objectives We aim to train PEEB to classify im-
ages well while maintaining the ability to detect
object parts. This translates into three training ob-
jectives: (1) Train the Part MLP contrastively us-
ing a symmetric cross-entropy (SCE) loss (Radford
et al., 2021) to maximize the similarity between
region-text pairs while minimizing the similarity
for negative pairs; (2) Train the Linear Projection
using a SCE loss to mimic OWL-ViT’s behaviors
(i.e. the similarity matrix) for part selection; and
(3) Train Box MLP to predict bounding boxes with
DETR losses (Zheng et al., 2021) i.e. a linear com-
bination of ℓ1 corner-to-corner distance loss and
GIoU loss (Rezatofighi et al., 2019).

All three losses are described in Appendix A.10.
A challenge when jointly minimizing all three
losses above is that PEEB’s validation loss im-

proves significantly slowly perhaps because of
some tension between the two SCE losses and the
DETR detection loss. To overcome this challenge,
we split the pre-training phase into two stages: (1)
first, train the image encoder and Part MLP for
classification using the SCE loss; then (2) train
the Linear Projection and Box MLP using the 2nd
and 3rd loss so they can adapt their weights to the
updated image encoder. We always keep the text
encoder frozen since we want to preserve its gener-
alizability to the descriptors of unseen objects.

4.3.1 2-stage pre-training on Bird-11K

Stage 1: Contrastive learning The image en-
coder and Part MLP are jointly trained using a SCE
loss, which allows PEEB to learn to map the vi-
sual parts to corresponding text descriptors. In this
stage, we use a pre-trained OWL-ViTLarge to select
12 part embeddings per input image (i.e., teacher
forcing) to ensure the selection of part embeddings
is meaningful and consistent while the embeddings
themselves are updating (see Fig. A2).
Stage 2: Learning to detect from a teacher After
the image encoder is modified in Stage 1, we then
train the Linear Projection and Box MLP jointly.
We use the OWL-ViTLarge as the teacher to train
both components. Using SCE loss, we train the
Linear Projection such that the similarity matrix
between the part-names and visual parts matches
those of the teacher (Fig. A3, 1a–c, 2a–c). Given
the absence of human-annotated boxes for object
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parts, we train Box MLP to predict the same boxes
as the predictions by OWL-ViTLarge using DETR
losses (Fig. A3, 2d). In this Stage 2, the image
encoder is frozen while Part MLP is not involved.

After 2-stage training, PEEB can perform zero-
shot classification and generate explanations.

4.3.2 Finetuning on classification tasks
We finetune the pre-trained PEEB on downstream
tasks (CUB, NABirds and iNaturalist for birds and
Dogs-120 for dogs) to further improve its accuracy.
In this phase, to adapt to a downstream task, all
components except the text encoder are trained
jointly and the loss for Part MLP is changed from
SCE (contrastive) to CE (classification) while the
other two losses (DETR) are kept intact.

5 Experiments & Results

We conduct extensive experiments to evaluate
PEEB on multiple bird datasets (CUB, NABirds,
iNaturalist) and on GZSL (Secs. 5.1 and 5.3), ZSL
(Sec. 5.4) and also supervised learning settings. We
also find PEEB to perform well on dog image
classification on Dogs-120 (Sec. 5.6).

5.1 CLIP-based classifiers rely mostly on
{class names} (not descriptors)

M&V show that inserting extra GPT-3-generated
descriptors into CLIP’s prompts increases its accu-
racy on many tasks (Menon and Vondrick, 2023).
Yet, it is unknown how important these expressive
descriptors are compared to the class names. To
answer this question, we conduct two experiments
on all three models: CLIP, M&V, and our PEEB.
Experiment 1 We evaluate the role of expressive
descriptors to CLIP-based models and to PEEB by
measuring the drop in CUB-200 accuracy of each
model when the descriptors are randomized.

For M&V and PEEB, we randomize the descrip-
tors by swapping each descriptor with another from
an arbitrary class (examples in Fig. 4).
Experiment 2 We test the dependence of models
on class names by measuring the accuracy drop
when they are replaced by scientific names (e.g.,
Painted Bunting→ Passerina ciris) on CUB,
NABirds, and iNaturalist.
Results When random descriptors are used, M&V
accuracy drops marginally by -0.9 pp (Table 1;
53.70% → 52.88%), showing that descriptors actu-
ally play a minimal role in model predictions. In-
stead, CLIP and M&V mostly rely on class names
(e.g., 53.78% → 7.66%; Table 2)—their accuracy

drops drastically when class names are replaced by
scientific names, which are less common.

In contrast, the expressive part descriptors play
a major role in PEEB whose accuracy decreases
significantly to near random-chance (64.33% →
0.88%; Table 1) when the descriptors are random-
ized. Indeed, in PEEB, the textual descriptors serve
as editable and interpretable model parameters that
can be refined and extended by humans to account
for new classes (Fig. 2).

Table 1: Top-1 test accuracy (%) on CUB-200 when us-
ing original, correct (a) vs. randomized, wrong descrip-
tors (b). See Fig. 4 for an example of the descriptors.

CLIP (2021) M&V (2023) PEEB

With class names ✓ ✓ ✗ ✗

(a) Original descriptors 52.02 53.78 5.89 64.33

(b) Randomized descriptors n/a 52.88 0.59 0.88

Table 2: In the GZSL setting, PEEB outperforms CLIP
and M&V by a large margin, from +8 to +29 pp in top-1
accuracy (see Sec. 5.3). PEEB is also ∼10× better than
the other two models when class names are replaced by
scientific names. As PEEB does not use class names,
its accuracy remains unchanged when class names are
changed into the scientific ones.

Acc (%) CUB-200 NABirds-555 iNaturalist-1486

CLIP (2021) 52.02 (5.95) 39.35 (4.73) 16.36 (2.03)

M&V (2023) 53.78 (7.66) 41.01 (6.27) 17.57 (2.87)

PEEB (ours) 64.33 (64.33) 69.03 (69.03) 25.74 (25.74)

5.2 Pre-trained PEEB outperforms
CLIP-based classifiers in GZSL

The dependence on class names (Sec. 5.1) suggests
that CLIP was exposed to these names during train-
ing. Thus, for a fair comparison, we compare PEEB
with CLIP-based classifiers in the GZSL setting.
Experiment We train PEEB on Bird-11K using
the two-stage pre-training (described in Sec. 4.3.1),
and then test it on CUB, NABirds, and iNaturalist
without any finetuning. That is, PEEB’s contrastive
pre-training is at the part level and therefore the
model has not seen the species labels of images.
Results PEEB outperforms both CLIP and M&V
on all three datasets by huge margins of around
+10, +28, and +8 pp on CUB-200, NABirds-555
and iNaturalist-1486, respectively (see Table 2).
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Original Descriptors (a) Randomized, wrong descriptors (b)
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M
&

V
(M

en
on

an
d

Vo
nd

ri
ck

,2
02

3)

0.367

0.360

0.364

0.366

0.363

0.366

0.359

bright blue, white, and black plumage

crest on its head

chunky bird with a full, rounded tail

black band around the neck and head
black, bristle-like feathers covering the
nostrils
blue wings and tail with black banding and white
tips
large, black beak.

0.361
0.326
0.357
0.372
0.363
0.364
0.370
0.364
0.360

bird species
also known as Oriental turtle dove or Rufous
turtle dove
medium-sized dove
predominantly grey or brown body
black and white striped patch on the neck
dark, slender bill
long, rounded tail with a white border
black eyes surrounded by a pale eye-ring
pinkish or reddish legs and feet

Blue Jay 0.6899 (c) Least Tern 0.0611 (d)
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B
(o

ur
s)

0.871
0.871
0.809
0.876
0.869
0.842
0.828
0.854
0.828
0.857
0.869
0.868

crown: bold blue crest
forehead: vibrant blue hues
nape: transitional blue and white feathers
eyes: curious black orbs
beak: sturdy black bill
throat: white/gray frontal feathering
breast: blended blue and white plumage
belly: white/gray underbelly
back: striking blue feathers
wings: brilliant blue with black bands
legs: strong gray limbs
tail: long, blue, fan-like appendage

0.639
0.502
0.531
0.497
0.721
0.434
0.492
0.423
0.738
0.783
0.441
0.128

crown: deep blue head crest
forehead: small blue patch
nape: blue and smooth
eyes: dark, rounded, expressive
beak: short, sturdy, black
throat: sky-blue feathers
breast: bright blue feathers
belly: light blue-gray plumage
back: vibrant blue feathers
wings: vivid blue with black edges
legs: strong, grayish-black
tail: slender, blue with black tips

Figure 4: With original descriptors, M&V (Menon and Vondrick, 2023) correctly classifies the input image into
Blue Jay (a). Yet, interestingly, when randomly swapping the descriptors of this class with those of other classes
(b), M&V’s top-1 prediction remains unchanged, suggesting that the class names in the prompt (e.g., “A photo of
{class name}”) have the most influence over the prediction (not the expressive descriptors). In contrast, PEEB
changes its top-1 prediction from Blue Jay (c) to Least Tern (d) when the descriptors are randomized.

5.3 PEEB is superior to text descriptor-based
classifiers in GZSL on CUB-200

The advent of CLIP (2021) by OpenAI enabled
a class of image classifiers that match the input
image with pre-defined textual prompts that may
include class names or descriptors of the classes.
Yet, in contrast to PEEB, these descriptors often
describe the entire image and are also matched
(via dot product) with the entire image instead of
image regions. Here, we compare PEEB with these
methods in the GZSL setting on CUB-200.
Experiment We repeat the same experiments in
Sec. 5.2. As these bird classifiers (listed in Table 3)
were reported on CUB only (not NABirds or iNat-
uralist), our comparison is on CUB.
Results PEEB exhibits superior GZSL perfor-
mance, outperforming recent text concept-based
approaches by +3 to +10 pp (Table 3b). Compared
to prior methods, PEEB is the only one to detect
visual object parts and match them with text de-
scriptors. Furthermore, attribute-based classifiers,
e.g., (Yuksekgonul et al., 2023) require re-training
to adapt to new classes or datasets (e.g., NABirds
or iNaturalist) in the same domain. In contrast, to
apply PEEB to NABirds or a new class, no train-
ing is required—it is necessary to only edit its text
descriptors (see Fig. 2). Interestingly, PEEB is
2nd-best model, only after GPT-4V (64.33% vs.

69.40%), which is given the same textual part de-
scriptors as PEEB for all 200 CUB classes and
asked to select a matching class for each image.

Table 3: PEEB achieves SOTA CUB-200 accuracy
among the text descriptor-based classifiers in GZSL.
* 1-shot learning. † k-means with k = 32.

Method Acc (%) {c} Textual descriptors

(a) Vision-language models with class names {c} in the prompt
CLIP (2021) 52.02 ✓ Image-level
M&V (2023) 53.78 ✓ Image-level
FuDD (2023) 54.30 ✓ Image-level
Han et al. (2023b) 56.13 ✓ Image-level

(b) Vision-language models with text bottlenecks and no class names {c}
LaBo (2023) 54.19† ✗ Image-level
Yan et al. (2023) 60.27* ✗ Image-level, attribute-based
PEEB (ours) 64.33 ✗ Part-level

GPT-4V (2023) 69.40 ✓ Part-level

(c) Concept-Bottleneck Models with attribute-based, non-textual bottlenecks
CBM (2020) 62.90 ✗ Attribute-based, tabular data
PCBM (2023) 61.00 ✗ Attribute-based, tabular data

5.4 PEEB generalizes to traditional ZSL
Since PEEB outperforms modern vision-language
models in GZSL (Sec. 5.3), we are motivated to
further compare PEEB with SOTA approaches in
the traditional ZSL setting (where the test classes
are excluded from all prior training).
Experiment We evaluate PEEB on two common
ZSL splits: (a) the CUB split (Akata et al., 2015);
and (b) the Super-Category-Similar/Exclusive (SC-
S/SCE) splits (Elhoseiny et al., 2017) on CUB and
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NABirds. The SCS (Easy) and SCE (Hard) splits
are designed to test two generalization levels (gen-
eralizing to close vs. distant unseen species).

Aligned with ZSL conventions, we exclude all
species that exist in CUB or NABirds from the pre-
training and then finetune PEEB using the train/test
splits by Akata et al. and Elhoseiny et al.. We
randomly take ∼10% of the training set as the vali-
dation set and choose the checkpoints based on the
lowest validation loss.

Table 4: PEEB consistently outperforms other vision-
language methods under Harmonic mean and especially
in the hard split (SCE) by (+5 to +15) points, highlight-
ing its generalization capability on ZSL.

Methods CUB NABirds
Seen Unseen Mean Seen Unseen Mean

(a) Data split by Akata et al. (2015)

CLORECLIP (2023a) 65.80 39.10 49.05
n/a

PEEB (ours) 80.78 41.74 55.04

(b) SCS/SCE splits by Elhoseiny et al. (2017)

SCS SCE Mean SCS SCE Mean
(Easy) (Hard) (Easy) (Hard)

S2GA-DET (2018) 42.90 10.90 17.38 39.40 9.70 15.56
GRZSL (2018) 44.08 14.46 21.77 36.36 9.04 14.48
ZEST (2020) 48.57 15.26 23.22 38.51 10.23 16.17
CANZSL (2020) 45.80 14.30 21.12 38.10 8.90 14.43
DGRZSL (2021) 45.48 14.29 21.75 37.62 8.91 14.41
DPZSL (2023) 45.40 15.50 23.11 40.80 8.20 13.66
PEEB (ours) 44.66 20.31 27.92 28.26 24.34 26.15

Results By a large margin, PEEB outperforms
CLORECLIP , a SOTA CUB method in the (2015)
split, on both seen and unseen classes (Table 4a).
On the (2017) splits, PEEB is the SOTA in the Hard
set on both CUB and NABirds datasets (Table 4b).
That is, PEEB is better in generalizing to distant,
unseen classes. This may be because PEEB decom-
poses both the image and the text descriptors into
part-level features, which can re-combine to match
an arbitrary unseen class (as illustrated in Fig. 2).

Interestingly, on both CUB and NABirds, PEEB
is competitive but not SOTA on the Easy sets (Ta-
ble 4b; Easy)—those classes that are close to the
training-set classes and thus considered easier to
identify. Overall, considering the harmonic mean
over both Easy and Hard accuracy scores, PEEB is
the SOTA on both CUB and NABirds.

5.5 Finetuning the pre-trained PEEB on
CUB-200 yields a competitive explainable
classifier in supervised learning

After finding that PEEB performs well in both
GZSL (Sec. 5.3) and ZSL settings (Sec. 5.4), here
we test finetuning the pre-trained PEEB on CUB-

200. That is, we compare PEEB against SOTA
explainable classifiers in the supervised learning
setting to gain insights into our method’s adaptabil-
ity to downstream tasks.
Experiment To understand the impact of pre-
training and image resolution, we test finetuning
three different PEEB variants: (1) PEEB initialized
from OWL-ViTB/32 without pre-training on Bird-
11K; (2) PEEB initialized from OWL-ViTB/32 with
pre-training (described in Sec. 5.2); and (3) PEEB
initialized from OWL-ViTB/16 with pre-training.
We take each PEEB model and finetune all com-
ponents on CUB-200, for 30 epochs with a batch
size of 30, a learning rate of 2 × 10−5. Detailed
hyperparameters are in Table A2.
Results Without pre-training, PEEB reaches
77.80% top-1 accuracy on CUB-200. Yet, first
pre-training on Bird-11K and then finetuning on
CUB yields 86.73%, the best among all explain-
able classifiers (Table 5b–c). Besides, pre-training
PEEB from the higher-resolution OWL-ViTB/16 re-
sults in a further gain of +2.07 (86.73%→ 88.80%),
which is intuitive since fine-grained classification
is known to benefit from higher resolutions.

For a complete assessment, we compare and find
PEEB to underperform SOTA standard, black-box
classifiers by a few points (Table 5a).

Table 5: PEEB is a state-of-the-art, explainable CUB-
200 classifiers in the supervised learning.

Methods Model size Backbone Acc (%)

(a) SOTA black-box classifiers
Base (ViT) (2021) 22M DeiT-S (2021) 84.28
ViT-Net (2022a) 26M DeiT-S 90.10

(b) Concept-bottleneck classifiers
CBM (Koh et al., 2020) 11M ResNet-18 80.10
CPM (Panousis et al., 2023) 155M ViT-B/16 72.00
CDM (Oikarinen et al., 2023) 155M ViT-B/16 74.31
LaBo (Yang et al., 2023) 427M ViT-L/14 81.90

(c) Part-based, explainable classifiers
ProtoPNet (2019) 22M DeiT-S 84.04
ProtoTree (2021) 92M ResNet-50 82.20
TesNet (2021) 79M DenseNet-121 84.80
Deformable ProtoPNet (2022) 23M ResNet-50 86.40
ProtoPFormer (2022) 22M DeiT-S 84.85
PEEB (ours) 155M

pre-training + finetuning only 155M OWL-ViTB/32 77.80
pre-training + finetuning 155M OWL-ViTB/32 86.73
pre-training + finetuning 155M OWL-ViTB/16 88.80

5.6 Applying PEEB to dog identification
We have found that our pre-training dataset con-
struction and PEEB performs well for bird identi-
fication. By design, our method is not specific to
birds but is instead applicable to any fine-grained
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0.659

0.441

0.392

0.702

0.657

0.596

head:  round and well-proportioned with a slightly domed skull

ears:  long, silky, and set low, framing the face with a feathered appearance

muzzle:  square, proportionate to the head with a black or brown nose

body:  compact and well-proportioned, slightly longer than it is tall

legs:  moderate length with richly feathered fur, providing a sense of
elegance

tail:  docked in some regions, but naturally it's long, carried happily
but never much above the level of the back, with abundant feathering

Our prediction: Alaskan Malamute  0.199
because of the following...

0.305

0.000

0.421

0.000

0.107

0.365

head: round with a slightly domed skull and a distinct stop

ears: set high on the head, long and feathered, hanging down close to
the cheeks

muzzle: square and proportionate to the head with a black nose

body: compact and balanced, with a deep chest and well sprung ribs

legs: straight and well-boned with moderate feathering, ending in small,
compact, cat-like feet

tail: docked to two-thirds of its original length, carried level with
the back, and adorned with moderate feathering

Top-2 prediction: Cairn Terrier  0.016
but we rejected it because...

Figure 5: PEEB classifies this Dogs-120 image into Alaskan Malamute (softmax: 0.199) due to the matching
between the image regions and associated textual part descriptors. In contrast, the explanation shows that the
input image is not classified into Cairn Terrier mostly because its ears and body regions do not match the text
descriptors, i.e., dot products are 0.000 and 0.000, respectively. See Appendix G for more qualitative examples.

classification domains assuming that the object is
decomposable into parts. Here, we show that our
method performs well on dog image classification
as well.

Pre-training dataset construction First, we de-
fine a set of six dog parts that humans use to iden-
tify dog species. We use all 4 dog parts defined
by PartImageNet (He et al., 2022b)—head, body,
legs, and tail—and two more parts—muzzle and
ears—based on our manual image examination.

We combine ImageNet-21K and Stanford Dogs-
120 into Dog-140, our large-scale pre-training
dataset spanning 140 dog species (details in ap-
pendix D.2). For each class, we prompt GPT-4
to get the descriptors for 6 parts. For each image
in Dog-140, we run OWL-ViTLarge to detect the
corresponding boxes for 6 pre-defined parts.

Experiment Following the supervised learning
experiment in Sec. 5.5, we first we pre-train PEEB
(initialized from OWL-ViTB/32) on Dog-140 and
then further finetune it on Dogs-120.

Results Finetuning PEEB on Dogs-120 from
OWL-ViTB/32 without pre-training on Dog-140 re-
sults in a 74.17% top-1 accuracy on Dogs-120 (Ta-
ble 6b). In contrast, pre-training on Dog-140 only
without finetuning results in much better Dogs-120
accuracy of 87.38%. That is, our contrastive pre-
training helps model generalize (in a GZSL setting)
while directly finetuning on Dogs-120 perhaps
yields an overfitting model. Yet, pre-training and
then finetuning reaches the best supervised learn-
ing accuracy of 92.20%, which is SOTA among all
explainable models reported on Dogs-120.

Besides, PEEB offers novel, editable image-text
grounding explanations (see Fig. 5).

Table 6: In the supervised learning setting, PEEB is the
state-of-the-art explainable, Stanford Dogs-120 clas-
sifiers and competitive w.r.t. SOTA black-box models.

Methods Model size Backbone Acc (%)

(a) SOTA black-box classifiers
TransFG (2022a) 86M ViT-B/16 92.30
ViT-Net (2022b) 86M DeiT-B 93.60
SR-GNN (2022) 32M Xception 97.00

(b) Explainable methods
FCAN (2016) 50M ResNet-50 84.20
RA-CNN (2017) 144M VGG-19 87.30
ProtoPNet (2019) 22M DeiT-S 77.30
Deformable ProtoPNet (2022) 23M ResNet-50 86.50
PEEB (ours) 155M

pre-training + finetuning only 155M OWL-ViTB/32 74.17
pre-training + finetuning 155M OWL-ViTB/32 87.37
pre-training + finetuning 155M OWL-ViTB/16 92.20

6 Discussion and Conclusion

We introduce PEEB, a unique, novel explainable
classifier due to its editability (Fig. 2) and operation
at the part level on both image and text sides. The
part-level operation makes PEEB applicable to fine-
grained classification. Yet, it is also interesting to
extend PEEB into an object-level model for multi-
domain tasks like ImageNet or VQA.

Besides enabling users to edit PEEB’s text de-
scriptors to re-program PEEB, it might also be
promising to let users edit the bounding boxes
while working with PEEB to improve the human-
AI team accuracy (Nguyen et al., 2024). On ob-
ject detection, PEEB’s Box MLP performs on-
par with OWL-ViTB/32 based on quantitative (Ap-
pendix E.7) and qualitative results (Appendix G).

Finally, we contribute to the broader research
community by curating the Bird-11K and Dog-140
datasets and showing that it is possible to leverage
them for large-scale training.
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7 Limitations

Text encoder may not fully comprehend the bird
descriptors Our CLIP text encoder, pre-trained
on an Internet-scale image-text dataset (Radford
et al., 2021), may not fully capture the intricate de-
tails specific to birds. Furthermore, the CLIP text
encoder is known to suffer from the binding prob-
lem and do not understand some logical operators
such as “and”, “or”, or negation. PEEB accuracy
depends heavily on the quality of the text encoder.

Assumption that object parts mostly visible
PEEB operates based on the assumption that most
if not all of the object parts are visible in the image.
In cases where a part is missing or occluded, the
model may still assign a non-zero similarity score
(i.e. a non-zero dot product between the image-
part embedding and its associated text descriptor),
which makes it harder to separate classes. It might
be beneficial to incorporate extra training samples
and specifically encourages PEEB to assign zero
image-text similarity score to the missing or oc-
cluded parts.

Hallucinations in GPT-4 descriptors The accu-
racy of PEEB is directly governed by the accuracy
of descriptors, which are currently generated by
GPT-4. Yet, our manual assessment over 20 bird
classes reveals that, on average, 45% of these de-
scriptors do not accurately reflect the birds’ fea-
tures (Appendix F.2). Also, we observe that revis-
ing certain descriptors in the CUB dataset led to a
significant improvement of +10 points in classifi-
cation accuracy for those classes (Appendix F.3).
This primitive observation suggests that PEEB can
be further improved if trained with more accurate,
human-labeled descriptors.
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Appendix for:
PEEB: Part-based Image Classifiers with an

Explainable and Editable Language Bottleneck

A Architecture details

A.1 Image encoder and text encoder
We employ the image encoder and text encoder from OWL-ViT. In order to maintain a general understand-
ing of natural languages and avoid overfitting our training samples, we keep the text encoder frozen for all
training and experiments. This setup allows our design to be flexible about the choice of text encoder, e.g.,
one can easily replace the text encoder without changing other architecture.

A.2 Linear projection (for part embedding selection)
The image embedding will be forwarded to a Linear Projection layer (see detail implementation here),
which is composed of a learnable logit scale, a learnable logit shift, and an Exponential Linear Unit
(ELU) activation function. These processed image embeddings then have the same dimension as the
text embeddings. For OWL-ViTB/32, the image embeddings are projected from 768 to 512. We select a
single image embedding for each text query. In this context, the text queries correspond to the component
names of the target object, which includes twelve distinct parts. This selection is based on the cosine
similarity between the projected image embeddings and the text embeddings. Finally, the chosen images
embeddings (before projection) will be sent to the Part MLP for classification and Box MLP for box
prediction (Fig. A1, Step 1).

A.3 Part MLP
We introduce Part MLP to enable part-based classification (see implementation detail here). It comprises
a three-layer MLP with GELU activations (Hendrycks and Gimpel, 2016) . Part MLP takes in the
selected part embeddings (i.e. output of step 1 in Fig. A1) and outputs a vector of size Rd for each part,
where d is the dimension of descriptor embeddings (for OWL-ViTB/32, the input dimension is 768, and
d = 512). Part MLP is trained to map the selected part embeddings to the same dimensional space with
descriptor embeddings to compute final logits for classification.

A.4 Box MLP
The Box MLP retained from OWL-ViT consists of a three-layer MLP (see here for implementation detail).
It takes the visual embedding as input and generates a four-element vector corresponding to the center
coordinates and size of a bounding box (e.g., [x, y, width, height]). It is important to note that the
image embedding inputs of Box MLP and Part MLP layers are the same, as shown in Fig. A1, Step 2.

A.5 Visual part embedding selection
As shown in Fig. A1 step 1, 1c, the image embeddings are first projected by a Linear Projection layer and
compute the dot product with the encoded part names. The image embeddings (before Linear Projection)
are chosen as visual part embeddings by selecting the embedding that has the highest similarity scores
with the corresponding part after the Linear Projection.
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Figure A1: During the test time using PEEB, we perform 2 steps.
Step 1: (a) Encode an input image and texts (i.e. 12 part names) by the image and text encoder to get patch
embeddings pi and text embeddings t′i. (b) Feed pi to Linear Projection to get p′i in the same dimensional space with
t′i and compute dot product between {p′i} and {t′i}. (c) argmax over m embeddings to select 12 part embeddings.
Step 2: (a) Encode input texts (i.e. N sets of 12-part descriptors) with the same text encoder to get ti. (b) Feed
the selected part embeddings to Box MLP to localize parts (in center format). (c) Also feed the selected part
embeddings to Part MLP to get si in the same dimensional space with ti (d) Compute a dot product between {si}
and {ti}, then diagonal sum for each class and argmax over logits to get predicted label ŷ.

A.6 Descriptor embedding matching

To enhance the model’s flexibility, we do not use a linear layer for classification. Instead, we adopt a
strategy similar to CLIP: we compute the similarity matrix of the projected visual embeddings (image
embeddings after processing by the Part MLP) and the text embeddings. Then, we sum the corresponding
similarities of each part in the class; the class with the highest score is considered the predicted class as
shown in Fig. A1, step 2, 2d. This design enables our proposed method to perform arbitrary ways of
classification.

A.7 Implementation details

Our experiments are conducted under PyTorch (Paszke et al., 2019). We employ HuggingFace’s (Wolf
et al., 2020) implementation of OWL-ViT and use their pre-trained models. The DETR losses implemen-
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tation (Carion et al., 2020) is employed directly from their official implementation.

A.8 Training hyperparameters
We provide the hyperparameters of all models trained in this work. Table A1 shows the details of the
pre-training models. Table A2 presents the details of the finetuned models. All trainings utilize optimizer
AdamW with Plateau Scheduler.

A.9 Computational budget and infrastructures
We use 8 Nvidia RTX A100 GPUs for our experiments. The pertaining approximate takes ∼24 hours on
Bird-11K. The finetuning takes 2 to 4 hours with one single GPU.

A.10 Pre-training and Finetuning objectives
As discussed in Sec. 4.3, we have three objectives during the Pre-training phase:

1. Pre-training Stage 1: (Fig. A2) During the pre-training stage one, we contrastively pre-train the model
to maximize the similarity between related part-descriptor pairs while minimizing the unrelated pairs
using symmetric cross-entropy (SCE) loss (Radford et al., 2021).

2. Pre-training Stage 2: (Fig. A3) We try to remove the dependence on the OWL-ViTLarge teacher
model by training PEEB to mimic OWL-ViTLarge’s box predictions using the SCE loss.

3. Pre-training Stage 2: (Fig. A3) We simultaneously train PEEB to improve box prediction with DERT
losses (Zheng et al., 2021).

During the Finetuning phase where we finetune on a downstream task (e.g. Dogs-120 or CUB-200),
we also employ the same three losses. However, we change the first loss from SCE into CE since on the
downstream classification task, the classifier is tasked with selecting one class that matches the single
input image from a set of classes.

A.10.1 Pre-training stage one: Symmetric cross-entropy loss for contrastive pre-training
We first define the embeddings derived from the image and text encoders:

I ′f = image_encoder(I) (1)

where I is the input image, and I ′f ∈ Rn×di is output image embeddings. Here, di is the feature dimension
of the image encoder. The text embedding Tf is given by

Tf = text_encoder(T ) (2)

where T represents the tesxt input, and Tf ∈ Rm×dt . In this case, dt is the feature dimension of the text
encoder. The image embedding I ′f is then transformed by Part MLP layer (Fig. A1, 1b) to align its
dimensions with the text embedding. This transformation is denoted as

If = Part MLP(I ′f) (3)

where If ∈ Rn×dt . The similarity matrix S between the image and text embeddings is computed as the dot
product of If and the transpose of Tf , expressed as

S = If ⋅ T ⊺f (4)

where S ∈ Rn×m. The image logits (Si) and text logits (St) are then defined as

Si = softmax(S, axis=0) (5)

and
St = softmax(S, axis=1) (6)

Next, we define the symmetric cross-entropy loss for the multi-modal embeddings.

Lsce = −(∑i y
i
i log(Si

i) +∑m yti log(St
m)

2
(7)

where yi ∈ Rn is the label for image and yt ∈ Rm is the label for text.
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A.10.2 Pre-training stage 2: Symmetric cross-entropy loss to mimic the teacher OWL-ViTLarge

detector
To mimic the object detection capability of the OWL-ViTLarge teacher, we train PEEB to mimic the
image-text similarity prediction between image embedding and textual part-name embeddings (as shown
in Fig. A1, 1c). We first binary the teacher logits and consider it as the ground truth label. Then, apply the
same symmetric cross-entropy loss as described in eq. (7) with two minor differences: (1) The text input
is part names rather than descriptions. (2) The Part MLP is replaced by Linear Projection (Fig. A1, 2c).

A.10.3 Pre-training stage 2: DETR losses to mimic the teacher OWL-ViTLarge detector
DETR losses are designed to optimize the box detection performance. We employ partial losses in our
training for box predictions. Specifically, we employ ℓ1 corner-to-corner distance loss and GIoU loss. For
the selected embeddings, we predict the boxes with Box MLP (Fig. A1, 2b)

B = Box MLP(I ′f) (8)

where I ′f is the image selected image embeddings from eq. (1), B ∈ Rn×4 is the predicted bounding boxes.
Let Y GT ∈ Rn×4 be the ground truth boxes. The ℓ1 corner-to-corner distance loss is defined as

Lℓ1 =∑
i

∥Y GT
i −Bi∥ (9)

The GIoU loss LGIoU is defined in Appendix A.10.3, and the total box loss is defined as

LBox = Lℓ1 +LGIoU

2
(10)

Algorithm 1 Generalized Intersection over Union
Require: Two arbitrary convex shapes: A,B ⊆ S ∈ Rn

Ensure: GIoU
1: For A and B, find the smallest enclosing convex object C, where C ⊆ S ∈ Rn

2: IoU = ∣A∩B∣∣A∪B∣
3: GIoU = IoU − ∣C/(A∪B)∣∣C∣
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Figure A2: In pre-training stage 1, the objective is to let the Image Encoder learn the general representation
of different parts of the birds. Therefore, in pre-training stage 1, we train the Image Encoder and Part MLP
contrastively. During the training, the Step 1 utilizes a teacher model (OWL-ViTB/32) to help PEEB select 12 part
embeddings. In Step 2, we update the model with symmetric Cross-Entropy loss. Here’s the flow of Step 1: (1a)
We utilize the teacher model to encode 12 part names and the image to derive the text embedding t′i, and the patch
embedding pi. (1b) Then the patch embeddings p is forwarded to Linear Projection to obtain p′, matching the
dimension of t′. (1c) We compute the dot product between p and t′ and apply argmax over p to derive 12 indices.
In Step 2: (2a), We first encode the descriptors and the image with the Text Encoder and Image Encoder to obtain
descriptor embeddings t and patch embeddings q. (2b), Then we select the 12 patch embeddings based on the 12
indices from (1c). (2c), The 12 patch embeddings then forwarded to Part MLP to derive s, which has the same
dimension as t. Then, we compute the similarity matrix for the patch embedding and the descriptor embedding by
computing the dot product between s and t. (2d), we construct a one-hot encoded matrix based on the descriptors as
the ground truth label and minimize the Symmetric Cross-Entropy loss between the similarity matrix in (2c) and the
ground truth label.
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Figure A3: In pre-training stage 2, the goal is to eliminate the teacher model to obtain a standalone classifier.
Therefore, the targeted components are Linear Projection and Box MLP. Since these two components are taking
care of different functionalities for patch embedding selection and box prediction, respectively, stage 2 training is a
multi-objective training. We employ Symmetric Cross-Entropy loss to learn the patch embedding selection and
DETR losses to refine the box predictions. In Step 1: (1a), We first encode the 12 part names and the image with
Text Encoder and Image Encoder to obtain the text embedding t′i and patch embedding pi. (1b) Then the patch
embeddings p is projected by Linear Projection to obtain p′. (1c) We then compute dot product between p′ and t′
and one-hot encode the matrix via the dimension of p′ to obtain the “teacher logits”. In Step 2: (2a), We encoder
the image with Image Encoder to obtain patch embedding qi. (2b) The patch embeddings are then being projected
by Linear Projection to derive q′. (2c), We compute the dot product between projected patch embeddings q′ and
part name embeddings t′ to obtain the similarity matrix. Then, we employ Symmetric Cross-Entropy loss between
the similarity matrix and the “teacher logits” derived in (1c). (2d), Meanwhile, we select the 12 part embeddings by
taking argmax over q′. Then, the selected part embeddings are forwarded to Box MLP to predict the coordinates of
each part. We compute the DETR losses for the predicted coordinates and update the model.
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Table A1: Pre-training details of our pre-trained models.

Model Epoch Batch size LR Weight decay # in-batch classes Early stop Training set

Train Val Train Val

Pre-training stage 1

PEEB[−test] 32 32 50 2e−4 0.01 48 50 5 Bird-11K[−test]
PEEB[−CUB] 32 32 50 2e−4 0.001 48 50 10 Bird-11K[−CUB]
PEEB[−NAB] 32 32 50 2e−4 0.001 48 50 10 Bird-11K[−NAB]

Pre-training stage 2

PEEB[−test] 32 32 50 2e−5 0.01 48 50 5 Bird-11K[−test]
PEEB[−CUB] 32 32 50 2e−5 0.001 48 50 5 Bird-11K[−CUB]
PEEB[−NAB] 32 32 50 2e−5 0.001 48 50 5 Bird-11K[−NAB]

Table A2: Details of our finetuned models.

Model Fine-tune from Epoch Batch size LR Weight decay Early stop Training set

PEEBCUB[−test] PEEB[−test] 30 32 2e−5 0.001 5 CUB

PEEBAkata[−cub] PEEB[−CUB] 5 32 2e−5 0.001 5 CUB ZSL (2015)

PEEBSCS[−cub] PEEB[−CUB] 5 32 2e−5 0.001 5 CUB-SCS

PEEBSCE[−cub] PEEB[−CUB] 5 32 2e−5 0.001 5 CUB-SCE

PEEBSCS[−nab] PEEB[−NAB] 5 32 2e−5 0.001 5 NABirds-SCS

PEEBSCE[−nab] PEEB[−NAB] 5 32 2e−5 0.001 5 NABirds-SCE
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B Model and dataset notations

B.1 Dataset notations
Following the conventional setup of ZSL, we execute certain exclusions to make sure none of the test
classes or descriptors are exposed during pre-training. That is, Bird-11K[−CUB] and Bird-11K[−NAB]
exclude all CUB and NABirds classes, respectively. For GZSL, we exclude all test sets in CUB, NABirds,
and iNaturalist, denoted as Bird-11K[−test]. We provide detailed statistics for the three pre-training sets in
Table A3.

Table A3: Three pre-training splits for PEEB.

Training set Number of images Number of classes

Train Val Train Val

Bird-11K[−test] 234,693 29,234 10,740 9,746

Bird-11K[−CUB] 244,182 28,824 10,602 9,608

Bird-11K[−NAB] 216,588 27,996 10,326 9,332

B.2 Model notations
We adopt a strategy based on the datasets excluded during training to simplify our model naming
convention. Specifically:

• PEEB[−test] is pre-trained model using Bird-11K[−test] datset.

• PEEB[−CUB] is pre-trained model using the Bird-11K[−CUB] dataset.

• PEEB[−NAB] is pre-trained model using the Bird-11K[−NAB] dataset.

We named finetuned models after the pre-trained model and the finetuned training set. For example,
PEEBCUB[−test] is finetuned from PEEB[−test], on CUB training set.

C Generating part-based descriptors

CUB annotations initially comprise 15 bird parts. However, distinctions between the left and right part
are not essential to our method, we merge them into a single part (i.e., “left-wing” and “right-wing” are
merged into “wings”) Hence, we distilled the original setup into 12 definitive parts: back, beak, belly,
breast, crown, forehead, eyes, legs, wings, nape, tail, throat. To compile visual part-based descriptors for
all bird species within Bird-11K, we prompted GPT-4 (OpenAI, 2023) with the following input template:

A bird has 12 parts: back, beak, belly, breast, crown, forehead, eyes, legs, wings, nape, tail and
throat. Visually describe all parts of {class name} bird in a short phrase in bullet points using
the format ‘part: short phrase’

Where {class name} is substituted for a given bird name (e.g., Painted Bunting).
The output is a set of twelve descriptors corresponding to twelve parts of the query species. e.g. The

response for Cardinal is:

Cardinal: {
back: vibrant red feathers ,
beak: stout , conical , and orange ,
belly: light red to grayish -white ,
breast: bright red plumage ,
crown: distinctive red crest ,
forehead: vibrant red feathers ,
eyes: small , black , and alert ,
legs: slender , grayish -brown ,
wings: red with black and white accents ,
nape: red feather transition to grayish -white ,
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tail: long , red , and wedge -shaped ,
throat: bright red with sharp delineation from white belly

}

D Datasets

D.1 Bird-11K
We provide a brief statistic of Bird-11K in Table A4. Bird-11K is a diverse and long-tailed bird-image
dataset. The descriptors generated by GPT-4 are in English and only describe the visual features of the
corresponding class. We propose Bird-11K for academic research only.

Table A4: Number of images and species of different bird datasets. Our proposed dataset Bird-11K includes almost
all avians on Earth.

Dataset # of Images # of Species

CUB-200-2011 (Wah et al., 2011) 12,000 200
Indian Birds (Vaibhav Rokde, 2023) 37,000 25
NABirds v1 (Van Horn et al., 2015) 48,000 400
Birdsnap v7 (Berg et al., 2014) 49,829 500
iNaturalist 2021-birds (Van Horn et al., 2021) 74,300 1,320
ImageNet-birds (Deng et al., 2009) 76,700 59
BIRDS 525 (Piosenka, 2022) 89,885 525
Macaulay Library at the Cornell Lab of Ornithology 55,283 10,534

Bird-11K (Raw Data) 440,934 11,097
Bird-11K (pre-training set) 294,528 10,811

Data splits We provide data splits and metadata, e.g., file names, image size, and bounding boxes, along
with the instruction of Bird-11K construction in our repository. Note that the Bird-11K dataset is for
pre-training purposes; it is important to execute exclusion based on the test set.

License and terms

• CUB (Wah et al., 2011): The dataset can be freely used for academic and research purposes;
commercial use is restricted.

• Indian Birds (Vaibhav Rokde, 2023): CC0: Public Domain.

• NABirds-v1 (Van Horn et al., 2015): For non-commercial research purposes, other use is restricted 3

here for detail: .

• Birdsnap-v7 (Berg et al., 2014): The dataset creator provides no specific license or terms of use. We
only use this dataset for academic research until more specific details can be obtained.

• iNaturalist 2021-birds (Van Horn et al., 2021): CC0: Public Domain. We use the train_mini subset
on Github, which has 1,486 classes. After filtering out images (as described in Sec. 3.2), we end up
with 1,320 classes and 74,300 images for including in Bird-11K.

• ImageNet-birds (Deng et al., 2009): BSD-3-Clause license.

• BIRDS 525 (Piosenka, 2022): CC0: Public Domain

• Cornell eBird: We used the following 55,384 recordings from the Macaulay Library at the Cornell
Lab of Ornithology. The data is for academic and research purposes only, not publicly accessible
unless requested. (Please refer to our Supplementary Material for the full list):

3See Terms of Use
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ML187387391, ML187387411, ML187387421, ML187387431, ML262407521, ML262407481, ML262407531, ML262407491, ML262407511, ML257194111 ML257194071,
ML257194081, ML257194061, ML495670791, ML495670781, ML495670801, ML495670771, ML183436431, ML183436451, ML183436441 ML183436411, ML183436421,
ML256545901, ML256545891, ML256545841, ML256545851, ML256545831, ML169637941, ML238083081, ML169637881 ML169637911, ML238083111, ML238083051,
ML169637971, ML299670841, ML64989231, ML299670831, ML64989241, ML299670791, ML64989251 ML246866001, ML246865941, ML246866011, ML246865961,
ML246865971, ML333411961, ML240835531, ML240835541, ML240835701, ML240835591 ML245260391, ML245260341, ML245260371, ML245260411, ML245260421,
ML245260431, ML245260441, ML240866351, ML240866331, ML240866321 ML240866341, ML240866371, ML248318661, ML248318571, ML248318591, ML248318581,
ML248318631, ML245204281, ML245204311, ML245204371 ML245204381, ML245204291, ML245603571, ML245603521, ML245603511, ML245603491, ML245603501,
ML245603601, ML245257771, ML245257651 ML245257631, ML245257661, ML245257761, ML247221051, ML247221061, ML247221071, ML247221081, ML240365811,
ML240365751, ML240365781 ML240365761, ML300579541, ML247298551, ML247298541, ML247298561, ML247298611, ML247298571, ML247298591, ML247298601,
ML247298631...

D.2 Dog-140
To pre-train PEEB on dogs, we construct Dog-140 by combining dog images from ImageNet-21K
and Stanford Dogs-120. Specifically, we selected 189 dog classes from ImageNet-21K, and based on
Fédération Cynologique Internationale (FCI) (Fédération Cynologique Internationale (FCI), 2023), we
merged them with 120 classes from Stanford Dogs, ending up with 140 classes. After merging, Dog-140
has 206,076 images in total. We provide a class distribution analysis in Fig. A4, where we can find that
Dog-140 is roughly class-balanced.
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Figure A4: The class distribution of Dog-140 dataset. The histogram indicates that most classes in Dog-140 have
around 1,000 to 2,000 images.

Data splits Similar to Bird-11K, we provide data splits and metadata, e.g., file names, image size, and
bounding boxes, along with the instruction of Dog-140 construction in our repository.

License and terms

• Stanford Dogs (Khosla et al., 2011): The dataset was constructed using images and annotations from
ImageNet. Therefore, all the images (including those presented in the paper) follow the ImageNet
license.

• ImageNet-21K (Deng et al., 2009): BSD-3-Clause license, non-commercial.

E Additional results

E.1 PEEB outperforms M&V in CUB and NABirds in ZSL setting
To rigorously evaluate the ZSL capabilities of our pre-trained models, we introduce a stress test on the
CUB and NABirds datasets. The crux of this test involves excluding all classes from the target dataset

2040



(CUB or NABirds) during the pre-training. The exclusion ensures that the model has no prior exposure
to these classes. Subsequently, we measure the classification accuracy on the target dataset, comparing
our results against benchmarks set by CLIP and M&V in the scientific name test. In this experiment, we
consider the scientific name test a ZSL test for CLIP and use them as the baseline because the frequencies
of scientific names are much lower than common ones.

Experiment To conduct this test, we pre-train our model on Bird-11K[−CUB] and Bird-11K[−NAB],
which deliberately exclude images bearing the same class label as the target dataset. Specifically, we test
on our pre-train model PEEB[−CUB] and PEEB[−NAB] (see Table A1 for details), respectively.

Results The primary objective is to ascertain the superiority of our pre-trained model, PEEB, against
benchmarks like CLIP and M&V. For CUB, our method reported a classification accuracy of 17.9%,
contrasting the 5.95% and 7.66% achieved by CLIP and M&V, respectively, as shown in Table A5. The
PEEB score, which is substantially higher (+10) than M&V, highlights the advantages of our part-based
classification. On NABirds, our method surpasses CLIP and M&V by +1 point. The performance disparity
between CUB and NABirds can be attributed to two factors: The elevated complexity of the task (555-way
classification for NABirds versus 200-way for CUB) and the marked reduction in training data. An
auxiliary observation, detailed in Appendix E.3, indicates that our pre-trained model necessitates at least
250k images to achieve admirable classification accuracy on CUB, but we only have 210k images training
images in Bird-11K[−NAB] (the variants of Bird-11K with classes excluded for ZSL testing are described
in Table A3).

Table A5: Stress test results on CUB and NABirds datasets. Despite the ZSL challenge, our method consistently
surpasses CLIP and M&V. This underscores the robust generalization of our approach, which leverages descriptors
for classification.

Method CLIP M&V PEEB (ours)

CUB 5.95 7.66 17.90

NABirds 4.73 6.27 7.47

E.2 Performance measurement on different noisy levels
In our evaluations, as indicated in Table 2, we discerned a marked performance disparity between the
iNaturalist dataset and others. Probing this further, we identified image noise as a principal contributor to
these discrepancies.

Experiment A qualitative assessment of the iNaturalist test images revealed a significantly higher noise
level than CUB or NABirds. To systematically study this, we utilize the object detector OWL-ViTLarge to
measure the size of the bird within the images. We formulated two filtered test sets based on the detector’s
output, categorizing them by the bird’s size, specifically, the detected bounding box. Images were filtered
out if the bird’s size did not exceed predetermined thresholds (areas of 1002 or 2002 pixels). Larger birds
naturally reduced other content by occupying more image space, thus serving as a proxy for reduced noise.
All three test sets, including the original, were evaluated using our pre-trained model PEEB[−test].
Results The results presented in Table A6 reveal a clear trend: as the image noise level decreases,
the classification accuracy consistently improves, with gains ranging from (+6 to +17) points across the
various methods. Notably, cleaner images consistently yield better results. At each noise level, our method
outperforms the alternatives. While our method exhibits an impressive (+17 points) accuracy boost on the
cleanest test set, this substantial gain also indicates that our model is sensitive to image noise.

E.3 Number of training images is the most critical factor towards classification accuracy
Bird-11K, as shown in Fig. A5a, is a highly imbalanced dataset characterized by a large amount of
long-tailed classes. We conduct a comprehensive study to discern how variations in the number of classes
and images affect the classification accuracy of our pre-trained models. Predictably, the volume of training
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Table A6: The table showcases the classification accuracies on iNaturalist as we vary the noise levels. The data
underscores that the performance disparity on iNaturalist is predominantly due to image noise. While all methods
improve with cleaner images, our model exhibits the most substantial gains, particularly in the least noisy sets.

Splits CLIP M&V PEEB (ours)

Original 16.36 17.57 25.74

> 1002 pixels 20.18 21.66 35.32

> 2002 pixels 22.88 24.90 42.55

images occurred as the most influential factor. However, a noteworthy observation was that the abundance
of long-tailed data enhanced the model’s accuracy by approximately +1.5 points.

Experiment We curated eight training sets based on varying class counts: 200, 500, 1,000, 2,000, 4,000,
6,000, 8,000, and 10,740. For each set, we maximized the number of training images. It is important to
note that a set with a lesser class count is inherently a subset of one with a higher count. For instance, the
500-class set is a subset of the 2,000-class set. For each split, we apply the same training strategy as in
Sec. 4.3.1, and choose the checkpoint with the best validation accuracy. We consider the CUB test set as a
generic testing benchmark for all variants.

Results As illustrated in Figure Fig. A5b, there is a pronounced correlation between the increase in the
number of images and the corresponding surge in accuracy. For instance, an increment from 106K to 164K
images led to a rise in classification accuracy from 30.05% to 43.11%. The accuracy appears to stabilize
around 60% when the image count approaches 250K. This trend strongly suggests that the volume of
training images is the most critical factor for the pre-trained model. We believe that the accuracy of the
pre-trained model could be further enhanced if enough data is provided. Interestingly, a substantial amount
of long-tailed data bolsters the model’s performance, evident from +1.5 points accuracy improvement
when comparing models trained on 2,000 classes to those on 10,740 classes. Note that the additional
classes in the latter set averaged merely 2.2 images per class.
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(a) The Cumulative Distribution Function (CDF) plot for the Bird-11K dataset.
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Figure A5: The CDF plot (a), underscores significant imbalance of the Bird-11K dataset. While the dataset has
abundant long-tailed classes, e.g., a striking 80% of the classes contribute to only 13.46% of the entire image count.
The plot (b) showcases the correlation between the number of training images/classes and the resulting classification
accuracy. As the image count grows, there is a noticeable surge in accuracy, which nearly stabilizes upon surpassing
250K images. Additionally, a significant amount of long-tailed data contributes to a +1.5 points boost in accuracy.

E.4 Ablation study on the influence of parts utilized
In this ablation study, we aimed to measure the impact of varying the number of distinct “parts” (back,
beak, belly, breast, crown, forehead, eyes, legs, wings, nape, tail, and throat) used in our model. We
experiment with a range from a single part to all 12 identifiable parts. Interestingly, even with a solitary
part, the model could make correct predictions, though there was an evident decline in performance,
approximately -20 points.

Experiment Our testing ground is the pre-trained model PEEB[−test], evaluated against the CUB test
set. We assessed the model’s prowess utilizing various subsets of parts: 1, 3, 5, 8, and all 12. These
subsets were derived based on the frequency of visibility of the parts within the CUB dataset, enabling us
to compare the model’s performance when relying on the most frequently visible parts versus the least.
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For comparison, we also conduct a similar experiment on M&V, where we only use 1, 3, 5, 8, and 12
descriptors (if possible).

Results Relying solely on the most frequent part led to a decline in classification accuracy by around -20
points, registering at 45.44% (Table A7). In contrast, utilizing the least frequent part resulted in a sharper
drop of around -27, with an accuracy of 37.02%. As the model was furnished with increasing parts, its
accuracy improved incrementally. The data underscores that optimal performance, an accuracy of 64.33%,
is attained when all 12 parts are included. For M&V, the accuracy keeps increasing homogeneously from
5 to 12 descriptors, hinting that accuracy may increase further by increasing the number of descriptors.

Table A7: Classification accuracy on the CUB test set that uses a different number of parts. Performance dips
significantly with just one part, especially for the least visible ones. Maximum accuracy is reached with all 12 parts.
The last row of the table also shows the accuracy of (Menon and Vondrick, 2023) method which employs a different
number of parts. It is evident that their method is insensitive to the number of parts used, which may not reflect a
realistic scenario.

Number of Parts (descriptors) 1 3 5 8 12

Accuracy (most frequent parts) 45.44 56.48 59.89 61.32 64.33

Accuracy (least frequent parts) 37.02 55.51 60.04 61.13 64.33

Accuracy of (Menon and Vondrick, 2023) 51.93 52.87 52.83 53.33 53.92

E.5 Training is essential for PEEB’s classification efficacy
In this ablation study, we highlight the pivotal role of training in the performance of PEEB on bird
classification tasks. We demonstrate that without adequate tuning, the results are indistinguishable from
random chance.

Experiment We conduct the experiment based on OWL-ViTB/32. We retain all components as illustrated
in Fig. A1, with one exception: we substitute the Part MLP with the MLP layer present in the box prediction
head of OWL-ViT because the proposed layers require training. The MLP layers in the box prediction
head project the part embeddings to match the dimensionality of the text embeddings. Our focus is on
assessing the classification accuracy of the untuned PEEB on two datasets: CUB and NABirds.

Results Table A8 reveals the outcomes of our experiment. Without training, PEEB yields classification
accuracies of 0.55% for CUB and 0.31% for NABirds, both of which are proximate to random chance
(0.5% for CUB and 0.1% for NABirds). However, with training, the model’s performance dramatically
transforms: 64.33% for CUB (an increase of +63.78 points) and 69.03% for NABirds (a leap of +68.72
points) for PEEB[−test]. These pronounced disparities underscore the vital role of training in PEEB.

Table A8: Impact of Training on Classification Accuracies: Untuned PEEB yields 0.55% on CUB and 0.31% on
NABirds, almost mirroring random chance. With training (PEEB[−test]), accuracy surges by +63.78 points on CUB
and +68.72 points on NABirds.

CUB NABirds

PEEB (no training) 0.55 0.31

PEEB[−test] pre-trained 64.33 69.03

PEEBCUB[−test] finetuned 86.73 -

E.6 Failure analysis
Since PEEB has two branches, box detection, and descriptor matching, we would like to find out, in
the failure case, what is the main cause. i.e., is it because of the mismatch in the descriptor to the part
embeddings? Or is it because the box detection is wrong? From our ablation study, it turns out that most
errors come from the descriptor-part matching.
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Experiment We conduct the experiment with PEEB[−test] on CUB test set. Specifically, we measure
the box detection accuracy based on the key point annotation in CUB dataset, i.e., We consider the
box prediction as correct if the prediction includes the human-annotated key point. We report the box
prediction error rate (in %) based on parts.

Results As shown in Table A9, the average error rate difference between success and failure cases
is merely 0.38. That is, in terms of box prediction, the accuracy is almost the same, disregarding the
correctness of bird identification. It indicates that the prediction error is predominantly due to the mismatch
between descriptors and part embeddings. We also noted that some parts, like Nape and Throat, have a
very high average error rate, which may greatly increase the matching difficulties between descriptors and
part embeddings.

Table A9: Error rate of Box Prediction in Failure and Success Cases. We report the box prediction error rate,
depending on whether the prediction box includes ground truth key points. No major difference is found between
them, which means the failure is largely due to the part-descriptor mismatch.

Body Part Average Back Beak Belly Breast Crown Forehead Eyes Legs Wings Nape Tail Throat

Failure Cases 16.52 23.38 3.28 8.06 15.96 7.41 24.72 7.29 5.63 3.36 64.79 7.25 27.07
Success Cases 16.14 23.03 2.96 7.44 18.64 7.13 21.53 3.93 6.85 2.68 68.66 6.40 24.38
Difference 0.38 0.35 0.33 0.62 -2.68 0.28 3.19 3.36 -1.22 0.68 -3.87 0.85 2.68

E.7 Evaluation of predicted boxes from PEEB
Our proposed method primarily aims to facilitate part-based classification. While the core objective is not
object detection, retaining the box prediction component is paramount for ensuring model explainability.
This section delves into an evaluation of the box prediction performance of our method against the
OWL-ViTB/32 model.

Experiment Given our focus on part-based classification, we aimed to ascertain the quality of our
model’s box predictions. To this end, we employed two metrics: mean Intersection over Union (IoU)
and precision based on key points. We opted for mean IoU over the conventional mAP because: (1)
Ground-truth boxes for bird parts are absent, and (2) our model is constrained to predict a single box per
part, ensuring a recall of one. Thus, we treat OWL-ViTLarge’s boxes as the ground truth and evaluate the
box overlap through mean IoU. Furthermore, leveraging human-annotated key points for bird parts, we
measure the precision of predicted boxes by determining if they contain the corresponding key points. We
evaluate our finetuned models on their corresponding test sets. For instance, PEEBAkata[−cub], finetuned based
on the CUB split (Akata et al., 2015), is evaluated on the CUB test set.

Results Our evaluation, as presented in Table A10, shows that PEEB’s box predictions do not match
those of OWL-ViTB/32. Specifically, on average, there is a -5 to -10 points reduction in mean IoU for
CUB and NABirds datasets, respectively. The disparity is less distinct when examining precision based
on human-annotated key points; our method records about -0.14 points lower precision for CUB and -3.17
points for NABirds compared to those for OWL-ViTB/32. These observations reinforce that while PEEB’s
box predictions might not rival these dedicated object detection models, they consistently highlight the
same parts identified by such models as shown in Fig. A6. It is important to note that our approach utilized
the same visual embeddings for both classification and box prediction tasks. This alignment emphasizes
the part-based nature of our model’s predictions.
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Table A10: Model evaluation on CUB and NABirds test sets. We evaluate the predicted boxes on two ground-truth
sets; (1) predicted boxes from OWL-ViTLarge as ground-truths, and (2) OWL-ViTLarge’s boxes that include the
human-annotated key points. Our method has slightly lower performance in terms of mean IoU but comparable
precision.

Models
Mean IoU

(1) All (2) w/ Keypoints Precision

CUB OWL-ViTLarge 100.00 100.00 83.83
OWL-ViTB/32 44.41 49.65 83.53
PEEB (Average) 35.98 40.14 83.39

PEEBCUB[−test] 37.45 41.79 81.55
PEEBAkata[−cub] 35.11 39.14 82.72
PEEBSCS[−cub] 35.77 39.96 84.89
PEEBSCE[−cub] 35.58 39.67 84.38

NABirds OWL-ViTLarge 100.00 100.00 85.01
OWL-ViTB/32 40.14 47.63 83.89
PEEB (Average) 36.47 42.01 80.72

PEEBSCS[−nab] 36.45 42.03 80.09
PEEBSCE[−nab] 36.49 41.99 81.34
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F Study on GPT-4 generated descriptors

F.1 Assessment of the generated part-based descriptors
We test GPT-4V on the CUB test set using the generated descriptors of 200 classes to assess their usability.
Specifically, we feed GPT-4V with each test image encoded in the payload and 200 sets of part-based
descriptors through a carefully designed prompt (Table A11). GPT-4V is asked to output one of 200
provided class names to compute the classification accuracy. As a result, GPT-4V achieves 69.4% accuracy
which is slightly higher than PEEB’s generalized zero-shot accuracy (64.33%) and significantly lower
than PEEB results after finetuning (86-88%).

Table A11: Prompt for GPT-4V evaluation on CUB where {list_of_200_classes} is the placeholder for the actual
200 CUB classes while {descriptors} (see an example in appendix C) is the placeholder for the actual descriptors
associated with a given bird image from the CUB test set.

You are an image classifier which can tell what type of a bird is from the given image and its associated part descriptors
describing 12 parts of the bird. Your answer should be strictly formatted as {"prediction": "bird_class"}.

where "bird_class" is one of the following 200 bird classes: {list_of_200_classes}

Given the bird image and the following descriptors: {descriptors}

What kind of bird is this? Let’s think step by step.

F.2 Noise measurement in GPT-4 generated descriptors
In this section, we conduct an empirical analysis to quantify the noise in descriptors generated by GPT-4
for 20 different classes within the CUB dataset. To achieve this, we manually inspect each descriptor and
tally the instances where at least one factual error is present. Our findings reveal that every one of the 20
classes contains descriptors with errors, and on average, 45% of the descriptors necessitate corrections.
This substantial noise level underscores the need for further refinement in our work, particularly in text
descriptors.

We observe a notably high error rate in descriptors on the back and wings, with approximately 60% of
these containing inaccurate information (refer to Table A12). This could be attributed to the challenges in
distinguishing between the back and wings, given that the back is typically positioned behind the wings,
yet exhibits considerable variability in size and shape. Addressing all descriptor issues by revising all
11,000 fine-grained descriptors would demand a significant investment of time and resources, which
is beyond the scope of the current work. As such, we identify this as an area for future research and
development, aiming to enhance the quality of the Bird-11K dataset.

Table A12: Summary of manual inspection results for 20 classes, highlighting the need for revision in GPT-4
generated descriptors. An average error rate of 45% indicates substantial room for improvement.

Back Beak Belly Breast Crown Forehead Eyes Legs Wings Nape Tail Throat Average

Error Rate 60 30 50 40 50 55 50 20 60 50 35 40 45

F.3 Revising descriptors improves classification accuracy
As mentioned in the limitation section, the descriptors are generated from GPT-4 and therefore noisy and
incorrect. Given that PEEB accepts open vocabulary inputs for classification, a natural way to improve
classification accuracy is to improve the correctness of the descriptors.

Experiment We first collect descriptors of 183 CUB classes from AllAboutBirds. We then prompt
GPT-4 to revise our original descriptors by providing the collected descriptor. We revise the descriptors
with the following prompt:
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Given the following descriptors of {class name}: {AllAboutBirds descriptors}. Can you revise the
incorrect items below (if any) of this bird, return them as a Python dictionary, and use the key
as the part name for each item? If a partś descriptor is not specifically described or cannot be
inferred from the definition, use your own knowledge. Otherwise, leave as is. Note: please use a
double quotation mark for each item such that it works with JSON format.

{Original descriptors}

Where {class name} the placeholder for the class name, {AllAboutBirds descriptors} is the description
collected from AllAboutBirds, {Original descriptors} is the descriptors we used for training.

Due to the errors in the descriptors we used to train PEEB, simply replacing the descriptors with
their revised version does not lead to better performance. Because the incorrect descriptors in training
change the meaning of some of the phrases. For example, the belly of Blue bunting is pure blue, but
the descriptors from GPT-4 is soft, creamy white. In addition, the GPT-4 uses the exact same descriptor
in the belly for other classes, e.g., Blue breasted quail, which should be cinnamon. Blue Fronted
Flycatcher, which should be yellow. Training the same descriptors with different colors confuses
the model, and the model will convey the phrase “creamy white” with a different meaning to humans.
Therefore, simply changing the descriptors to their’ revised version will not work. We empirically inspect
the descriptors that PEEB can correctly respond to and replace the class descriptors with the revised
version. Specifically, we replace the descriptors of 17 classes in CUB and test the classification accuracy
on PEEB[−test].
Results As shown in Table A13, the overall accuracy increases by +0.8 points.

The average improvement of the revised class is around +10.8, hitting that if we have correct descriptors
of all classes, we may significantly improve the classification accuracy of the pre-trained model. However,
correcting all 11k class descriptors is too expensive and out of the scope of this work. We leave it as a
further direction of improving the part-based bird classification.

Table A13: The revised descriptors result in +0.8 for PEEB[−test] in CUB. In particular, the average improvement
among the 17 revised classes is +10.8, hinting at the large potential of our proposed model.

Descriptors Original Partially Revised Avg. Improvement

PEEB[−test] 64.33 65.14 10.80
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G Qualitative Inspections

G.1 Visual comparison of predicted boxes
We provide a visual comparison of the box prediction from OWL-ViTLarge, OWL-ViTB/32, and PEEB
in Fig. A6. We find that despite the fact that our predicted boxes have lower mean IoU compared to
OWL-ViTLarge, they are visually similar to the boxes as OWL-ViTB/32.

G.2 Qualitative examples of using randomized descriptors
We visually compare M&V and PEEB based on their utilization of descriptors. (Figs. A7 to A9).
Specifically, we randomly swap the descriptors of the classes and then use these randomized descriptors
as textual inputs to the tested models to see how they perform. We observe that the scores from M&V
tend to cluster closely together. Surprisingly, M&V’s prediction remains unchanged despite the inaccurate
descriptors. In contrast, PEEB, when presented with randomized descriptors, attempts to identify the best
match grounded on the given descriptors.

G.3 Examples of PEEB explanations for birds
Figs. A10 to A12 are examples of how PEEB makes classification based on the descriptors and how it can
reject the predictions made by M&V. Since we aggregate all descriptors for the final decision, even if
some of them are similar in two classes, our method can still differentiate them from other descriptors. For
instance, in Fig. A10, while other descriptors are similar, PEEB can still reject chesnut-sided warbler
thanks to the distinct features of forehead, throat and belly.

G.4 Examples of PEEB explanations for dogs
Figs. A13 to A15 are examples of how PEEB makes classification based on the descriptors in Stanford
Dogs dataset. We demonstrate that our model works well on dogs, which indicates that our proposed
method is transferable to other domains while maintaining high-quality explainability as in birds.
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Original PEEB OWL-ViTB/32 OWL-ViTLarge

Figure A6: Our predicted boxes (second column) often align closely with those of OWL-ViTB/32 (third column).
However, slight shifts can lead to significant IoU discrepancies. For instance, in the first row, both PEEB and
OWL-ViTB/32 accurately identify the tail. Yet, variations in focus yield a stark IoU contrast of 0.45 versus 0.81.
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Original Descriptor Random nonsense Descriptor

M
&

V
PE

E
B

cerulean warbler
0.344

0.350

0.346

0.350

0.344

0.351

0.347

Small bird

Distinctive blue color on the upper parts and white
underneath

Thin, pointed beak

Black streaks on the back and flank

Black line through the eyes

Males are brighter blue than females

Often found in trees or shrubs

cerulean warbler | 0.006

0.347

0.347

0.343

0.347

0.351

0.351

long, curved beak

brownish-tan feathers

relatively large size for a shorebird

long legs

a small head in relation to its body

typically found in open grasslands or wetlands.

cerulean warbler | 0.006

 
0.875
0.864
0.865
0.874
0.876
0.843
0.849
0.872
0.838
0.853
0.875
0.866

crown: bright cerulean blue
forehead: blue and unmarked
nape: blue, similar to the crown
eyes: black, round and tiny
beak: small, pointed, and black
throat: clean white contrasting with blue upperparts
breast: blue-gray with dark streaks
belly: white and unmarked
back: deep blue with streaks of black
wings: cerulean blue with black edging
legs: dark gray and slender
tail: blue-black with white edges

cerulean warbler | 0.688
0.310
0.252
0.529
0.810
0.657
0.486
0.557
0.339
0.368
0.665
0.561
0.452

crown: deep blue head crest
forehead: small blue patch
nape: blue and smooth
eyes: dark, rounded, expressive
beak: short, sturdy, black
throat: sky-blue feathers
breast: bright blue feathers
belly: light blue-gray plumage
back: vibrant blue feathers
wings: vivid blue with black edges
legs: strong, grayish-black
tail: slender, blue with black tips

least tern | 0.041

Figure A7: Qualitative example of original descriptors vs. randomized descriptors. Upon swapping descriptors
randomly, the prediction outcomes from M&V exhibit minimal variations.

Original descriptor Random nonsense descriptor
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PE

E
B

indigo bunting
0.374

0.372

0.373

0.366

0.371

0.354

Bright blue plumage (in males)

Small, finch-like body

Short, conical beak

Brownish wings and tail (in females and juveniles)

A habitat setting such as open areas with shrubs or trees,
or forest edges

Often seen near bird feeders.

indigo bunting | 0.006
0.378

0.374

0.374

0.368

0.370

0.366

0.376

0.378

medium-sized wading bird

slate-blue plumage

long, slender neck

long, dark legs

sharp, pointed beak

white morph with completely white plumage
often found near bodies of water, such as wetlands or
marshes
may be seen standing or walking slowly while hunting for
prey

indigo bunting | 0.006

 
0.357
0.753
0.748
0.452
0.813
0.676
0.612
0.530
0.568
0.684
0.375
0.492

crown: bold, indigo-blue crest
forehead: deep indigo-blue hue
nape: rich indigo-blue
eyes: small, dark, and alert
beak: short, conical, and silver-gray
throat: vivid indigo-blue with lighter shades
breast: bright indigo-blue plumage
belly: lighter indigo blue shading to white
back: vibrant indigo-blue feathers
wings: striking indigo-blue with black edges
legs: slender grayish-blue
tail: tapered, black with blue edges

indigo bunting | 0.154
0.437
0.387
0.624
0.448
0.663
0.482
0.534
0.370
0.457
0.314
0.753
0.420

crown: deep blue with smooth contour
forehead: bright blue and flat
nape: rich blue and rounded
eyes: black, small and circular
beak: silver-colored, conical shape
throat: bright blue and smooth
breast: vibrant blue feathers
belly: lighter blue plumage
back: deep blue feathers
wings: blue and black striped pattern
legs: dark grey, sturdy
tail: long, dark blue feathers

tennessee warbler | 0.072

Figure A8: Qualitative example of original descriptors vs. randomized descriptors. Since PEEB’s decision is
made by the descriptors, the model will try to find the descriptors that best match the image. e.g., in the random
descriptors, most parts are blue.
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Original descriptor Random nonsense descriptor
M

&
V

PE
E

B

vermilion flycatcher
0.365

0.365

0.376

0.362

0.370

0.366

0.351

small bird species

bright red or vermilion plumage, especially in males

females and juveniles are more brown or grey

black mask around the eyes in adult males

relatively short beak

often perches on branches or wires

native to the Americas, particularly in warmer climates.

vermilion flycatcher | 0.006
0.351

0.376

0.380

0.366

0.366

0.367

0.362

0.364

small bird species (swallow)

glossy blue-black upperparts

pale underparts, usually white or light grey

deeply forked tail with long, slender outer feathers

pointed wings

short, pointed beak

often seen flying or perched near water or open areas

typically found in Africa and Asia

vermilion flycatcher | 0.006

 
0.659
0.440
0.487
0.558
0.775
0.676
0.727
0.293
0.646
0.622
0.541
0.578

crown: intense red-orange plumage
forehead: bright vermilion feathers
nape: striking vermilion feathers
eyes: sharp black beads
beak: short, pointy black beak
throat: vivid red-orange feathers
breast: fiery red-orange coloring
belly: bright vermilion hue
back: vibrant red-orange feathers
wings: black with red-orange highlights
legs: thin dark gray limbs
tail: long black with red-orange edges

vermilion flycatcher | 0.068
0.549
0.775
0.534
0.819
0.781
0.569
0.754
0.589
0.508
0.533
0.635
0.362

crown: deep rusty red
forehead: bright red-orange
nape: rich red hue
eyes: small and black
beak: strong, curved and crossed tip
throat: bright reddish-orange
breast: vibrant reddish-orange
belly: pale red-orange
back: dark rusty red
wings: dark brown with red-orange edges
legs: short and dark
tail: black with reddish tinge

red headed woodpecker | 0.103

Figure A9: Qualitative example of original descriptors vs. randomized descriptors. M&V maintains similar scores
even for mismatched descriptors. For instance, “bright red or vermilion plumage, especially in males” receives a
score lower than “glossy blue-black upperparts”. Conversely, PEEB leverages the descriptors for classification,
consistently relying on the descriptors that most closely align with the image.

0.637
0.374
0.613
0.430
0.527
0.552
0.596
0.261
0.665
0.618
0.608
0.327

crown: olive-green with faint black crown stripe
forehead: yellowish-green
nape: olive-green
eyes: dark with thin white eye-ring
beak: short, thin, and pointed
throat: yellow-orange
breast: bright yellow-orange with black streaks
belly: creamy white with subtle yellow wash
back: olive-green with black streaks
wings: blue-gray with white wing bars
legs: pale pinkish-gray
tail: blue-gray with white outer tail feathers

Our prediction: bay breasted warbler  0.431
because of the following...

0.433
0.097
0.613
0.480
0.488
0.268
0.339
0.085
0.630
0.585
0.585
0.367

crown: yellow with black stripe
forehead: bright yellow
nape: olive-green
eyes: black with white eye-ring
beak: thin, pointy, and black
throat: bright white
breast: white with distinct chestnut streaks
belly: white and unmarked
back: olive-green with streaks
wings: grayish-blue with two white wing-bars
legs: pale pinkish-brown
tail: grayish-blue, white-edged feathers

M&V's prediction: chestnut sided warbler  0.125
but we rejected it because...

Figure A10: An example of PEEB explanation. We can see that the descriptors of these two classes are largely
similar, but PEEB makes the correct prediction based on the distinctive feature of the forehead in the two classes.

0.652
0.709
0.578
0.432
0.377
0.568
0.491
0.679
0.545
0.536
0.622
0.514

crown: smooth white with light gray area
forehead: white feathers
nape: white turning to pale gray
eyes: dark and round, surrounded by white
feathers
beak: dark red to orange, sturdy and sharp
throat: white feathers
breast: white feathers with gray shading
belly: white feathers
back: pale gray feathers
wings: pale gray with black tips and a white
trailing edge
legs: pinkish-red and medium-length
tail: white with black terminal band

Our prediction: heermann gull  0.786
because of the following...

0.149
0.676
0.224
0.000
0.000
0.403
0.000
0.180
0.433
0.167
0.112
0.000

crown: grey, subtly streaked
forehead: flat, extended white feathers
nape: white, short plumage
eyes: dark, intelligent gaze
beak: sharp, yellow-tipped hook
throat: white, soft feathering
breast: white, well-rounded
belly: smooth, white plumage
back: sleek, white-grey feathered
wings: long, black-tipped with white-grey
feathers
legs: vibrant red, slender
tail: white, fan-shaped feathers

M&V's prediction: red legged kittiwake  0.006
but we rejected it because...

Figure A11: An example of PEEB explanation. M&V incorrectly classifies it as red-legged kittiwake where
the heermann gull does not have red legs but a red beak. This example shows that CLIP is strongly biased towards
some particular descriptors.
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0.696
0.688
0.722
0.483
0.475
0.672
0.614
0.624
0.688
0.575
0.645
0.699

crown: orange-yellow with pale edges
forehead: yellowish with faint markings
nape: olive-brown, blending into the back
eyes: small and dark, framed by eye-ring
beak: short and sharp, black-colored
throat: bright yellow, blending into the breast
breast: bright yellow with dark streaks
belly: creamy white with faint streaks
back: olive-brown back with streaks
wings: olive-brown with white-edged feathers
legs: long and skinny, with blackish coloring
tail: short and dark, with white outer feathers

Our prediction: palm warbler  0.819
because of the following...

0.000
0.309
0.000
0.212
0.149
0.173
0.551
0.306
0.100
0.220
0.000
0.142

crown: yellowish-green
forehead: yellow with black markings
nape: greenish-yellow
eyes: dark with thin white eye-ring
beak: small and pointed
throat: bright yellow
breast: bright yellow with faint streaks
belly: yellowish with light brown streaks
back: olive-green with faint streaks
wings: dark grayish-brown with white streaks
legs: pinkish-brown
tail: dark grayish-brown with white edges

M&V's prediction: prairie warbler  0.002
but we rejected it because...

Figure A12: An example of PEEB explanation. We can see that when the descriptor does not match the image,
the matching score tends to be zero, e.g., crown: yellowish-green. The clear differences in scores provide us
transparency of the model’s decision.

0.673

0.514

0.437

0.756

0.626

0.631

head:  round with a distinct "dome" shape, often covered in long,
silky fur that can vary in color from black, brown, or white

ears:  long, floppy, and heavily feathered, usually in deep chestnut
brown or black, often hang down past the jawline

muzzle:  short and tapered, usually the same color as the body fur,
with a black or brown nose at the end

body:  compact and well-balanced, covered in silky fur that can
be a blend of white, black, and brown

legs:  short and straight, often covered in feathered fur that matches
the body color, paws are small and compact

tail:  medium-length, often covered in feathered fur, usually carried
aloft but not above the level of the back

Our prediction: Papillon (Continental Toy Spaniel)  0.190
because of the following...

0.589

0.096

0.084

0.061

0.219

0.363

head: round with a distinct dome shape, often a mix of white
and brown or black fur

ears: long, droopy and feathered, usually colored in rich brown
or black, framing each side of the face

muzzle: short and slightly tapered, covered in short brown,
black, or white fur, with a black nose at the end

body: compact and muscular, covered in a silky, wavy coat that
can be a mix of white, brown, black and tan

legs: short to medium length and straight, with feathered fur
that matches the color of the body

tail: medium length, often docked, covered in feathered fur,
carried happily but never much above the level of the back

Top-2 prediction: Beagle  0.021
but we rejected it because...

Figure A13: An example of PEEB explanation for dogs. Like birds, PEEB first identifies the predefined parts and
then matches them to the descriptions.

0.671

0.497

0.428

0.200

0.637

0.641

head:  round with a distinct dome shape, often a mix of white
and brown or black fur

ears:  long, droopy and feathered, usually colored in rich brown
or black, framing each side of the face

muzzle:  short and slightly tapered, covered in short brown,
black, or white fur, with a black nose at the end

body:  compact and muscular, covered in a silky, wavy coat that
can be a mix of white, brown, black and tan

legs:  short to medium length and straight, with feathered fur
that matches the color of the body

tail:  medium length, often docked, covered in feathered fur,
carried happily but never much above the level of the back

Our prediction: Beagle  0.126
because of the following...

0.474

0.000

0.014

0.207

0.290

0.425

head: round with a distinct "dome" shape, often covered in long,
silky fur that can vary in color from black, brown, or white

ears: long, floppy, and heavily feathered, usually in deep chestnut
brown or black, often hang down past the jawline

muzzle: short and tapered, usually the same color as the body fur,
with a black or brown nose at the end

body: compact and well-balanced, covered in silky fur that can
be a blend of white, black, and brown

legs: short and straight, often covered in feathered fur that matches
the body color, paws are small and compact

tail: medium-length, often covered in feathered fur, usually carried
aloft but not above the level of the back

Top-2 prediction: Papillon (Continental Toy Spaniel)  0.023
but we rejected it because...

Figure A14: An example of PEEB explanation for dogs. Like birds, PEEB first identifies the predefined parts and
then matches them to the descriptions.

0.662

0.452

0.394

0.748

0.636

0.587

head:  rounded skull with a slight stop, often covered in silky, wavy chestnut
on white fur

ears:  long, set high, droopy and well-feathered with chestnut-colored fur, framing
the face

muzzle:  moderately short and rounded, usually white with patches of chestnut

body:  compact but well-proportioned with a level topline, covered in wavy, silky
fur that's usually white with chestnut patches

legs:  medium length, often covered in white fur that may have chestnut patches,
and adorned with feathering on the back of the thighs

tail:  moderate length, carried happily but never much above the level of the
back, often covered in white fur with chestnut patches, feathering present

Our prediction: Redbone Coonhound  0.253
because of the following...

0.417

0.000

0.000

0.729

0.000

0.595

head: compact with a slightly rounded skull and a
well-defined stop

ears: long, feathered, and set low, hanging close
to the cheeks

muzzle: short, square and well proportioned with a
black or brown nose at the end

body: compact and well-balanced with a level topline

legs: muscular and straight with feathered fur, ending
in compact, cushioned feet

tail: medium length, carried happily but never much
above the level of the back, with feathered fur

Top-2 prediction: Australian Kelpie  0.032
but we rejected it because...

Figure A15: An example of PEEB explanation for dogs. Like birds, PEEB first identifies the predefined parts and
then matches them to the descriptions.
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