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Abstract

Knowledge-to-text generators often struggle
to faithfully generate descriptions for the
input facts: they may produce hallucina-
tions that contradict the input, or describe
facts not present in the input. To reduce
hallucinations, we propose a decoding-only
method, TWEAK (Think While Effectively
Articulating Knowledge), which can be inte-
grated with any generator without retraining.
TWEAK treats the generated sequences at each
decoding step and its future sequences as hy-
potheses, and ranks each generation candidate
based on the extent to which their hypothe-
ses are supported by the input facts using a
Hypothesis Verification Model (HVM). We
first demonstrate the effectiveness of TWEAK
by using a Natural Language Inference (NLI)
model as the HVM and report improved faith-
fulness with a minimal impact on the qual-
ity. We then replace the NLI model with
a task-specific HVM trained with a first-of-
a-kind dataset, FATE (Fact-Aligned Textual
Entailment), which pairs input facts with their
original and perturbed descriptions. We test
TWEAK with two generators, and the best
TWEAK variants improve on average for the
two models by 2.24/7.17 points in faithfulness
(FactKB) in in/out-of-distribution evaluations,
respectively, and with only a 0.14/0.32-point
decline in quality (BERTScore)1.

1 Introduction

Knowledge-to-text generation (K2T) aims to gen-
erate precise and fluent textual descriptions which
are consistent with the input facts (Gardent et al.,
2017; Perez-Beltrachini and Lapata, 2018; Agar-
wal et al., 2021; Colas et al., 2021). Although the
neural generators are capable of generating fluent
and high-quality texts on various tasks (Ribeiro
et al., 2021a; Zhou et al., 2021; Liu et al., 2022;

* Work done while the author was an intern at Apple.
1Our code and dataset are at https://github.com/

apple/ml-tweak.

Chen et al., 2022; Qiu and Cohen, 2022), one major
challenge remains to be hallucination (Zhao et al.,
2020; Maynez et al., 2020; Dziri et al., 2022; Da-
heim et al., 2023; Xu et al., 2023), i.e., the tendency
of the models to produce outputs that contradict or
are not supported by the inputs.

In this paper, we address the hallucination
problem with a model-agnostic decoding method,
TWEAK (Think While Effectively Articulating
Knowledge). Different from previous works such
as (Hashem et al., 2023), we tweak only the de-
coding process without requiring re-training of the
generative models, thus making our approach eas-
ily integratable with any K2T generator. The ex-
isting decoding methods of a generative model,
such as beam search, sample candidates only from
the predicted likelihood without any consideration
on the faithfulness implication of these candidates.
The problem of exposure bias of autoregressive
generation only makes the matter worse once any
deviation from a faithful generation occurs, since
these errors accumulate and become unrecover-
able (Schmidt, 2019; Zhang et al., 2023). TWEAK
mitigates this problem by verifying the faithful-
ness of the candidates at each decoding step to
reduce hallucinations. As the example illustrated
in Fig. 1, for each candidate at a decoding step,
TWEAK treats the sequence generated so far and
its possible future sequence as the backward and
the forward hypothesis (inspired by Lu et al.), re-
spectively, and feeds them into a Hypothesis Veri-
fication Model (HVM) to estimate the candidate’s
faithfulness score, a measure indicating how well
the candidate supports the input facts. The candi-
dates are then ranked considering both their gener-
ation scores and faithfulness scores.

We first deploy a natural language inference
(NLI) model (Nie et al., 2020) as the HVM for
experimentation, and observe that this approach,
TWEAK-NLI, indeed improves the faithfulness of
the output compared to the baseline (beam search)

1628

https://github.com/apple/ml-tweak
https://github.com/apple/ml-tweak


(Abdul Rahman Ya’kub, in Office While Vice President, Tuanku Bujang Tuanku Othman)

Abdul Rahman

K2T 
Generator

+
Beam 
Search

is the Vice President of the United States.

Bujang, Tuanku Othman is the Vice President.

is the Vice President of the country.

is the Vice President of Tuanku Bujang Tuanko
Othman.

Beam Rank

1

2

3

4

Ya’kub

Ya’kub

,

Ya’kub

Forward Hypotheses

Input Knowledge Triples

Candidates Tweak Rank

4

3

2

1

Hypothesis 
Verification 

Model

Figure 1: Our proposed TWEAK approach. Compared with beam search which solely ranks the candidates based
on generative model’s predicted likelihood, TWEAK incorporates faithfulness, which is estimated by evaluating
the backward and forward hypotheses of each generation candidate with a Hypothesis Verification Model (HVM).
In the 4th decoding step of this example, the beam search promotes the candidate leading to hallucinations (e.g.,
“United States”), but TWEAK demotes it using signals from HVM.

by a significant margin. The distribution shift be-
tween NLI and faithfulness assessment tasks, how-
ever, may result in reduced output quality (Kryscin-
ski et al., 2020; Laban et al., 2022; Qiu et al., 2023).
We therefore experiment with a second variation,
TWEAK-HVM, where we propose a task-specific
HVM trained with a first-of-a-kind dataset, FATE
(Fact-Aligned Textual Entailment). This dataset
pairs and aligns input facts with their original and
perturbed descriptions. We mimic the autoregres-
sive decoding process where we expand the gen-
eration process one token at a time until comple-
tion to synthesize the triple-hypothesis pairs with
their faithfulness labels. The HVM is then trained
to predict all triple-hypothesis labels in a tabular
form (Wang et al., 2021; Fatahi Bayat et al., 2022).
Experimental results on WebNLG (Gardent et al.,
2017) and two out-of-distribution datasets, Tek-
Gen (Agarwal et al., 2021) and GenWiki (Perez-
Beltrachini and Lapata, 2018), confirm the advan-
tages of TWEAK-HVM. It also greatly reduces
computation as it encodes both input facts and hy-
potheses simultaneously.

We summarize our contributions as follows,

• We propose a model-agnostic decoding strategy,
TWEAK, which incorporates an HVM for can-
didate ranking, and show that the approach im-
proves faithfulness of K2T generation when us-
ing an NLI model as the HVM.

• We propose a new dataset, FATE, which pairs
and aligns input facts with their original and
perturbed descriptions at word level.

• We train a task-specific HVM with FATE and
demonstrate its advantages over the NLI-based
method in output faithfulness and quality.

2 Related Work

Knowledge-to-text generation tasks involve the
transformation of structured data or knowledge
into natural language texts (Gardent et al., 2017;
Perez-Beltrachini and Lapata, 2018; Colas et al.,
2021). Previous works encode the structured input
explicitly as models’ representations (Schmitt et al.,
2021; Marcheggiani and Perez-Beltrachini, 2018;
Guo et al., 2019; Rebuffel et al., 2020; Koncel-
Kedziorski et al., 2019). A usual way is to serial-
ize the structured input first and use a pre-trained
model to directly generate its description (Ribeiro
et al., 2021b; Li et al., 2021; Su et al., 2021). How-
ever, a notable challenge is hallucinations – models
produce claims that are not supported by inputs
(Hashem et al., 2023; Wang et al., 2023; Yang et al.,
2022). Previous work has explored methods includ-
ing plan-before-generate pipelines (Puduppully and
Lapata, 2021; Puduppully et al., 2019, 2022), archi-
tecting models to be explicitly fact-aware (Wang
et al., 2022; Ji et al., 2023), and augmenting the
training data with self-supervised learning (Han
and Shareghi, 2022; Wang et al., 2023; Hashem
et al., 2023). Mitigating hallucinations in decoding,
however, has received relatively less attention, de-
spite its advantages in model-agnostic applications
(Xiao and Wang, 2021; Lu et al., 2022; Wan et al.,
2023).

Comparing to a recent work (Wan et al., 2023),
where effect of different decoding strategies on
faithfulness of abstractive summarization is inves-
tigated, and a faithfulness re-ranking method is pro-
posed to improve output, our work is unique in that
we target a different task (K2T), use hypothesis ver-
ification instead of a faithfulness composite metric
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to guide the ranking, and train a task-specific HVM
based on our novel dataset to bring improvement
to both faithfulness and quality.

3 Knowledge-to-Text: Task Definition

K2T task concerns generating a natural language
description y for a list of input facts x =
⟨. . . , xi, . . .⟩, where xi is a fact triple represented
as <subj, rel, obj> indicating a relation,
rel, holds between the subject entity, subj, and
the object entity, obj. Two complementary re-
quirements exist for an ideal generation: a high-
quality generation should describe all of the input
facts in a grammatical and readable fashion, while
a faithful generation should not add any additional
claim or contradict any input fact.

We use an autoregressive language model pθ
with parameters θ to estimate the probability of the
token sequence y = ⟨. . . , yt, . . .⟩, i.e., pθ(y | x) =∏|y|

t=1 pθ(yt | y<t, x). To decide on the final output,
a decoding process finds the optimal sequence by
solving y∗ = argmaxy∈Y F (y), where Y is the
set of all possible sequences, and F is an objective
function. This can be accomplished by selecting
the top k candidates generated from vocabulary V
using an F -approximating scoring function f one
token yt at a time:

Y ′
t = {y<t ◦ yt | y<t ∈ Yt−1, yt ∈ V},
Yt = arg topk

(y<t◦yt)∈Y ′
t

{f(y<t, yt, x)}. (1)

Common decoding strategies, such as greedy and
beam search, set f to log pθ(y≤t | x). In greedy
search k is set to 1. In Sec. 4.1 we describe our
scoring function that promotes faithful generation
via hypothesis verification.

4 TWEAK

We now describe our approach in Sec. 4.1, the
FATE dataset in Sec. 4.2, and our task-specific
HVM trained with the dataset in Sec. 4.3.

4.1 Decoding with Hypothesis Verification
TWEAK is a model-agnostic decoding method that
incorporates faithfulness objective into the decod-
ing process. As shown in Fig. 1, at each decoding
step we rank a candidate not only by its predicted
likelihood from the generator, i.e., log pθ(y≤t | x),
but also by its faithfulness score. To assess the faith-
fulness for a single candidate, we ask the model to
look ahead and generate the future sequence until

the end (Lu et al., 2022), and we approximate the
candidate’s faithfulness based on the sequence gen-
erated to the current step, the backward hypothesis,
and the future sequence, the forward hypothesis,
using a HVM.

More specifically, we instantiate the scoring
function f(y<t, yt, x) in Equ. (1) as follows2:

f(·) = log pθ(y≤t | x) + α · ffaith(·),
ffaith(·) = wt · h(x, y≤t) + (1− wt)h(x, yf).

(2)

The overall score f is thus a weighted sum of the
generator’s predicted likelihood and faithfulness
ffaith. The latter, weighted by α,3 scores how likely
a backward and forward hypothesis, y≤t and yf
respectively, supports the input facts via the hy-
pothesis scoring function h, and returns a weighted
sum of the faithfulness scores of the two hypothe-
ses. Depending on the implementation of h, we
have different instantiations for yf and weight wt,
as described in Sec. 4.1.1 and Sec. 4.1.2.

4.1.1 Hypothesis Verification via NLI
One simple way to implement an HVM is to treat
the concatenated input facts as a premise and the
(possibly partial) generated sequence as the hypoth-
esis, then use an NLI model’s prediction as the
faithfulness score. We thus instantiate Equ. (2) as:

h(x, y) = NLI(x1 ◦ . . . ◦ xm, y),
yf = y≤t ◦ g(y≤t, x),

g(y≤t, x) = argmax
y∈{y>t}

(

|y|∏

t′=t+1

pθ(y
′
t|y<t′ , x)),

wt =





1 for TWEAK-NLI-B

0 for TWEAK-NLI-F
t

|yf| for TWEAK-NLI-B+F.

(3)

The hypothesis scoring function in the above is
simply an NLI model returning a score indicat-
ing how likely the hypothesis is supported by the
premise.4 The forward hypothesis yf is a complete
sequence concatenating the sequence generated so
far and a possible future sequence. Function g is a
greedy generator producing a future sequence from
time step (t + 1) on. We experiment with three
NLI-based variants: TWEAK-NLI-B uses only the

2We omit function arguments as ‘·’ if context is clear.
3The weight α can be determined on a validation set such

that a desirable balance between output quality and faithful-
ness is achieved. See Fig. 3 for example.

4We only use the the entailment score and discard the
scores of neutral and contradiction.
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backward hypothesis with wt set to 1, TWEAK-
NLI-F uses only the forward hypothesis with wt

set to 0, and TWEAK-NLI-B+F uses both, with
wt dynamically set to the ratio of the lengths of
the backward and the forward hypotheses at time
step t. We call this last weighing scheme dynamic
aggregation (DA), and the intuition is to place less
weight on the relatively incomplete backward hy-
pothesis at the early stage of decoding.

4.1.2 Hypothesis Verification via HVM
Alternatively, we train a task-specific HVM to
score hypotheses, and instantiate Equ. (2) as:

h(x, y) = HVM(x, y),
yf = g(y≤t, x),

wt =
t

t+ |yf|
.

(4)

Comparing to the NLI-based hypothesis scoring
function in Equ. (3), here we use HVM to compute
a score indicating how well sequence y supports
input facts x. We also consider only the future
sequence as yf, and the weight wt is computed
entirely dynamically, similar to TWEAK-NLI-B+F.
More details of HVM are discussed in Sec. 4.3.

4.2 Fact-Aligned Textual Entailment Dataset
To train the task-specific HVM (see Sec. 4.3), we
construct a novel dataset called FATE, where each
instance is a tuple (F+, F−, T+, T−): F+,
F− are fact triples and their perturbed version, and
T+, T− are their respective descriptions. We take
F+ and T+ from WebNLG (Gardent et al., 2017),
and employ a large language model (LLM) 5 to
perturb one triple in F+ to construct F−. The per-
turbation may happen in any position in a fact triple,
i.e., subject, object, or relation. We then ask the
LLM to generate description T− for F− that is as
close to T+ as possible. The perturbed span is then
identified and clearly marked with tag “<Si>” in
both T+ and T−, where i indicates the perturbed
triple corresponding to the span. We present an
instance in Table 1 and the dataset statistics in Ap-
pendix B.

4.3 A Task-specific HVM
There are two disadvantages when using an NLI
model as the HVM in TWEAK: 1) the NLI model
concatenates all triples into a single premise, losing
the entailment relationship between each individual

5We use text-davinci-003. The prompt templates we use
for manipulating triple and description are in Appendix E.

Base Language Model (e.g., RoBERTa)

Trip. 1 Trip. 2 Trip. 3 <B> Back 
Hypo <F> Forw. 

Hypo

Trip. 1 Trip. 2 Trip. 3 Back Hypo Forw. Hypo

Biaffine Attention Layer

HVM’s 
Predicted 

Table
Trip. 3Trip. 2Trip. 1

✓ ✓ ✓

✘ ✓ ✓

Back. Hypo

Forw. Hypo

Figure 2: Our task-specific hypothesis verification
model. It takes fact triples and backward/forward hy-
potheses as input, and predicts pair-wise faithfulness
relations for each triple-hypothesis pair in a 2D table.

triple and a hypothesis, and 2) NLI models often
perform poorly in faithfulness classification due
to their inability to generalize to a different target
task (Utama et al., 2022; Kryscinski et al., 2020).

To address these problems, we train a task-
specific HVM using our dataset FATE described in
Sec. 4.2. As depicted in Fig. 2, we first assemble
fact triples and the corresponding pair of backward
and forward hypotheses as input. We then encode
the input via a language model (RoBERTa; Liu
et al. 2019) and use average pooling over all tokens
to obtain the representations of each triple and hy-
pothesis. A biaffine attention layer is then used to
predict a 2D table representing the pair-wise faith-
fulness relations (unsupported/supported)
between each triple-hypothesis pair. Our model
is then trained to minimize a table-form objective
(Wang et al., 2021; Fatahi Bayat et al., 2022),

L = − 1

2|x|
∑

x∈x

∑

y∈{y≤t,yf}
logP (B̂x,y = Bx,y | x, y),

where x is the set of fact triples in an instance, y≤t

and yf are a corresponding backward and forward
hypotheses, and Bx,y and B̂x,y are the ground-truth
label and the biaffine model prediction for the triple-
hypothesis pair, respectively. For inference, we
instantiate the function HVM in Equ. (4) as:6

HVM(x, y) =
1

|x|
∑

x∈x
logP (B̂x,y = 1 | x, y).

61 is the supported label.

4
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FATE Instance Type Label

(Ireland, largest_city, Dublin) PTs -
(Ireland, national_capital, Dublin) NTs -
Dublin is Ireland’s <S0> largest city </S0> PD -
Dublin is Ireland’s <S0> national capital </S0> ND -

Synthesized Hypotheses (at 10th Decoding Step)

Dublin is Ireland’s largest BH ✓
largest city. FH ✓
Dublin is Ireland’s national BH ✗
national capital. FH ✗

Table 1: FATE’s example (upper panel) and the syn-
thesized hyptheses derived from it (bottom panel).
PTs/NTs stand for the positive/negative triples.
PDs/NDs are the positive/negative descriptions, and
BH/FH are the backward/forward hypothses. ✓and ✗in-
dicate supported and unsupported, respectively. Note
that even when the description, "Dublin is Ireland’s na-
tional capital.", is factual (obtained from the perturbed
fact), it is unsupported by the original unperturbed fact,
(Ireland, largest_city, Dublin), and our HVM is trained
to capture such faithfulness errors.

To train the task-specific HVM with our FATE
dataset, for each training instance we randomly set
a decoding position and break its original and per-
turbed descriptions in two parts to simulate possible
backward and forward hypotheses: a hypothesis
derived from a perturbed description that overlaps
with the marked perturbed span receives unsup-
ported label as the ground truth, and all of the
others receive supported. We present an example
synthetic pair of backward and forward hypotheses
in Table 1. Finally, we up-sample the supported
hypotheses to balance the labels.

5 Experiments and Results

Datasets and Models. We train two base genera-
tion models BART-large (Lewis et al., 2020) and
T5-large (Raffel et al., 2020), following the hyper-
parameter settings from (Ribeiro et al., 2021a), and
evaluate our decoding strategy on WebNLG (Gar-
dent et al., 2017), TekGen (Agarwal et al., 2021),
and GenWiki (Jin et al., 2020) .
Metrics. We assess the models on faithfulness and
quality. Faithfulness metrics measure how much se-
mantic distortion the output contains with respect
to the input, while quality metrics measure how
close a model output is to the reference. For the
former we employ FactKB (Feng et al., 2023), a
state-of-the-art reference-free metric constructed
via factuality pre-training. For the latter we em-
ploy the three metrics previously used by Ribeiro
et al. (2021a): BLEU (Papineni et al., 2002), ME-

Decoding FKB BLEU MET BS

B
A

R
T-

la
rg

e

Greedy 27.74 51.3 66.79 94.2
Beam 28.91 54.23 67.55 94.35

TWEAK-NLI-F 30.46 52.02 67.17 94.2
TWEAK-NLI-B 30.59 49.68 65.88 94.12
TWEAK-NLI-B+F 30.47 51.62 66.84 94.19

TWEAK-HVM 31.34 53.14 67.38 94.25

T
5-

la
rg

e

Greedy 30.14 57.71 68.71 94.84
Beam 31.29 58.93 69.38 94.86

TWEAK-NLI-F 33.03 53.51 67.8 94.39
TWEAK-NLI-B 31.49 44.96 65.02 93.93
TWEAK-NLI-B+F 32.71 51.71 66.73 94.19

TWEAK-HVM 33.34 57.31 69.02 94.68

Table 2: Results of decoding baselines and our TWEAK
decoding variants measured by faithfulness metric
(FKB = FactKB) and quality metrics (BLEU, MET
= METEOR, BS = BERTScore) on WebNLG dataset.
Numbers in bold are the highest scores among the base-
lines (greedy and beam) or among the TWEAK variants.

TEOR (Banerjee and Lavie, 2005), and BERTScore
(Zhang* et al., 2020).
Baseline Decoding Strategies. As baselines we
test two basic decoding strategies: greedy search
and beam search (Sec. 3). For our TWEAK decod-
ing strategy, we first test it with an off-the-shelf
NLI model (Nie et al., 2020) for hypothesis verifi-
cation. Three variations are tested: TWEAK-NLI-
B, TWEAK-NLI-F, and TWEAK-NLI-B+F, using
only backward, only forward, and both hypotheses,
respectively. We then replace the NLI model with
our task-specific HVM trained with FATE dataset
(Sec. 4.2 & 4.3) as TWEAK-HVM variant. More
implementation details are in Appendix A.1.

5.1 Main Results in WebNLG

Our main results are shown in Table 2. Overall the
best TWEAK variants improve on average +2.24
points on faithfulness (FactKB), with only -0.14
points degradation in quality (BERTScore).
Baseline Decoding Results. Looking at the re-
sults of the two baseline decoding strategies, we
observe that beam search consistently outperforms
greedy search on both faithfulness and quality met-
rics. This suggests that increasing the beam size
during decoding widens the exploration and gener-
ates a more faithful and higher quality output.
TWEAK Decoding with NLI. Comparing our
TWEAK-NLI variants to the baselines, we find that
all of them outperform beam search on faithfulness
(FactKB), with TWEAK-NLI-B on BART-large

5
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Model Decoding TekGen GenWiki

FactKB BLEU METEOR BS FactKB BLEU METEOR BS

B
A

R
T-

la
rg

e
Greedy 9.44 22.42 44.21 90.32 13.69 30.31 60.53 90.71
Beam 11.57 21.34 43.86 90.52 14.24 37.48 63.16 91.67

TWEAK-NLI-F 14.77 15.92 38.48 88.25 18.97 24.61 55 90.13
TWEAK-NLI-B 12.8 20.22 42.62 90.51 16.48 31.08 58.53 91.37
TWEAK-NLI-B+F 15.2 17.57 38.79 88.57 19.51 25.54 56.02 90.29

TWEAK-HVM 13.24 19.26 40.48 88.65 15.72 29.52 56.17 90.54

T
5-

la
rg

e

Greedy 9.12 21.09 43.09 90.52 14.22 30.45 58.89 90.54
Beam 11.64 21.35 42.97 90.61 14.67 37.25 61.4 91.57

TWEAK-NLI-F 16.51 8.57 37.48 87.88 25.22 12.65 50.47 88.8
TWEAK-NLI-B 12.12 19.98 41.32 90.33 23.78 18.25 54.11 90.31
TWEAK-NLI-B+F 15.86 10.66 38.44 88.55 29.57 11.53 49.58 88.49

TWEAK-HVM 13.44 21.51 41.61 89.56 17.54 30.62 57.54 90.88

Table 3: Generalization results on out-of-distribution (OOD) test sets TekGen and GenWiki. BS = BERTScore.
Numbers in bold are the highest scores among the baselines (greedy and beam) or among the TWEAK variants.

improving +1.68 points, and TWEAK-NLI-F on
T5-large improving +1.74 points over beam search.
This demonstrates the effectiveness of performing
hypothesis verification during decoding to improve
output faithfulness. For each generator, a different
variant achieves the best faithfulness result while
the combo approach, TWEAK-NLI-B+F, is always
in the middle. This indicates that simply combin-
ing the scores obtained from both hypotheses does
not guarantee an optimal gain in faithfulness.

On the quality front, all TWEAK-NLI variants
score lower on all metrics, with TWEAK-NLI-F
showing the least regression. A manual analysis
reveals that the more faithful generations exhibit
a higher divergence from the reference (see Ap-
pendix A.2 for an example). This is also consistent
with Wan et al. (2023) who show that optimiz-
ing faithfulness can lead to lower textual similarity
with reference. We also note that since quality met-
rics require reference while the faithful metric does
not, any noise present in the reference may lead to
a lower score even if the output is reasonable.
TWEAK Decoding with HVM. Comparing the
TWEAK-HVM variant (Sec. 4.3) to the baselines,
TWEAK-HVM significantly outperforms in faith-
fulness: its FactKB score reaches 31.34 (+2.43
points improvement) and 33.34 (+2.05 points) on
BART-large and T5-large over beam search, respec-
tively. TWEAK-HVM is also more faithful than
the most faithful TWEAK-NLI variant, demonstrat-
ing the advantage of a task-specific HVM and the
benefits of performing triple-specific entailment
classification.

On output quality, TWEAK-HVM still fares

Faithfulness Completeness Readability

NLI vs Beam 56.06% 56.67% 36.07%
HVM vs Beam 59.09% 56.06% 45.83%

Table 4: Human evaluation on NLI vs. Beam and HVM
vs. Beam. Numbers are win-rates over the non-similar
output. Highest numbers in each aspect are bolded.

lower than beam search, but it scores higher than
all TWEAK-NLI variants on all metrics, therefore
significantly closing the gaps to be almost on par
with beam search, with only 0.1/0.18 decline in
BERTScore for BART/T5, respectively. In sum-
mary, TWEAK-HVM is more faithful than the
baselines with almost as good quality.

5.2 Out-of-distribution Evaluation

We have demonstrated that performing hypothe-
sis verification during decoding can significantly
enhance faithfulness without losing much of the
overall quality on an in-distribution (ID) test set.
To evaluate the out-of-distribution (OOD) effec-
tiveness of our approach, we conducted experi-
ments on two additional datasets that the HVM
is not trained on: TekGen (Agarwal et al., 2021)
and GenWiki (Jin et al., 2020). We show the re-
sults for BART and T5-large in Table 3. Over-
all the best TWEAK variants improve BART and
T5 on average +7.17 points on faithfulness (Fac-
tKB), with only -0.32 points degradation on quality
(BERTScore).

TWEAK-HVM still outperforms the best base-
line (beam search) on faithfulness, yielding an
average relative improvement of 14.95%/14.98%
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FactKB BLEU MET BS

BART 30.47 51.62 66.84 94.19
w/o DA -0.12 -2.63 -1.34 -0.12

T5 32.71 51.71 66.73 94.19
w/o DA -0.79 -12.21 -2.21 -0.49

Table 5: Effect of dynamic aggregation (DA) with
TWEAK-NLI-B+F on WebNLG and BART-large.
MET and BS stand for METEOR and BERTScore.

on TekGen/GenWiki, respectively. However, the
best NLI variant outperforms TWEAK-HVM on
faithfulness by an average relative margin of
18.82%/46.35% on TekGen/GenWiki, respectively.
Since the NLI model is trained with OOD datasets,
it appears to be more generalizable than our task-
specific HVM in the OOD setup, as expected.

On the quality front, all TWEAK variants score
lower than the best baseline, similar to the ID set-
ting (Sec. 5.1). if we compare NLI vs HVM by
picking first the most faithful TWEAK-NLI vari-
ant, it always performs worse on quality than the
TWEAK-HVM variant. For example, on TekGen
with BART-large, comparing TWEAK-NLI-B+F,
which has the highest FactKB score among all NLI
variants, to TWEAK-HVM using BLEU, the HVM
variant outperforms by 1.69 absolute points. It
appears TWEAK-HVM is able to strike a better
balance between faithfulness and quality.

5.3 Human Evaluation

We also conduct human evaluation on WebNLG for
the output of the beam search, TWEAK-NLI, and
TWEAK-HVM decoding. The graders are asked to
compare side-by-side NLI vs. Beam and HVM vs.
Beam on three aspects: faithfulness (whether an
output contains only claims supported by the input),
completeness (whether an output captures all of the
input), and readability (whether an output is gram-
matical and easy to understand), and can choose
between four grades: better than, similar to, worse
than, and can’t decide. We use T5-large as the base
model, and sample the output uniformly across dif-
ferent numbers of input facts (1 to 7), resulting
in 127 instances. The result is shown in Table 4
in terms of the win-rates over the output that are
not marked as similar. Overall, consistent with the
main results discussed in Sec. 5.1, both TWEAK
variants outperform the beam search baseline on
faithfulness and completeness, but underperform
on readability. In particular, TWEAK-HVM out-

2 4 6 8 10
51

52

53

54

BLEU

2 4 6 8 10
29.5

30.0

30.5

31.0

FactKB

TWEAK-HVM TWEAK-NLI

Figure 3: The effect on quality (BLEU) and faithfulness
(FactKB) from choosing different α in Equ. (2), with
α = 0 being equivalent to beam search. The results are
obtained using TWEAK-NLI-B+F and TWEAK-HVM
variants on WebNLG test set with BART.

performs more than TWEAK-NLI on faithfulness
and readability, with nearly identical completeness.

6 Analysis

We report additional experiments and analyses in
this section.
Dynamic Aggregation. As observed in Table 2,
different models achieve peak faithfulness using
either backward or forward hypotheses (BART fa-
vors backward while T5 favors forward). This
implies both types of hypotheses can be useful
in improving faithfulness of the output, which is
borne out again by the OOD results reported in Ta-
ble 3 where we observe that TWEAK-NLI-B+F, us-
ing both backward and forward hypotheses via dy-
namic aggregation (DA; see Sec. 4.1.1), becomes
the most faithful variant. To assess DA’s impact,
we examine TWEAK-NLI-B+F without DA on
WebNLG in Table 5, revealing a clear performance
drop in both faithfulness and quality. This under-
scores the importance of adapting weights placed
on forward/backward hypotheses throughout the
decoding process, as incomplete hypothesis verifi-
cation can be less reliable.
Weighting Effects. As described in Equ. (2), we
combine the generative score and the faithfulness
score weighted by α to rank the candidates. We
are therefore interested in the effect of choosing
α. In Fig. 3 we plot the resulting quality score
(BLEU) and faithfulness score (FactKB) with dif-
ferent α, with 0 being equivalent to beam search.
The experiments are done with WebNLG test set
and BART-large, using TWEAK-NLI-B+F and
TWEAK-HVM variants.

We observe that increasing the weight on faith-
fulness score improves faithfulness in almost all
settings at the cost of reduced quality. HVM out-
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#Triples Short Medium Long

#Sample 908 2196 620
B

L
E

U HVM 64.18 50.22 46.26
NLI 63.48 48.59 45.23

∆ +1.09% +3.25% +2.23%

Fa
ct

K
B HVM 18.11 33.47 43.17

NLI 18.06 32.67 40.81

∆ +0.28% +2.39% +5.47%

Table 6: TWEAK decoding performance on WebNLG
with increasing number of input triples. We split the
WebNLG test set into three groups: Short (1 triples),
Medium (2-4 triples) and Long (5-7 triples).

performs NLI on quality at all α values, and HVM
also outperforms NLI on faithfulness when α ≥ 6.
This clearly demonstrates the advantages of HVM
in the ID setting (see Sec. 5.2).
Number of Input Facts. The number of input
fact triples is an important factor in determining
K2T output quality: the more triples in the input,
the more challenging for a model to generate a
faithful and high-quality output. To investigate
the correlation, we split the WebNLG test set into
three groups: Short (one input triple), Medium (2-4
triples), and Long (5-7 triples). We then test both
TWEAK-NLI-B+F and TWEAK-HVM variants
with BART-large on these three groups. The results
are shown in Table 6.

On generative quality (BLEU) we observe that
TWEAK-HVM outperforms TWEAK-NLI-B+F
by a similar amount across the three groups. On
faithfulness (FactKB), however, TWEAK-HVM’s
improvement over TWEAK-NLI-B+F is positively
correlated with the number of input triples, climb-
ing from +0.28%, +2.39%, to +5.47% from Short,
Medium, to Long. We attribute this growing ad-
vantage to HVM’s ability to model each triple-
hypothesis relation, whereas TWEAK-NLI-B+F
concatenates all triples into a single premise and
may misclassify with more triples in the input.
Exploring Larger Beam Size. If our TWEAK de-
coding strategy can promote a lower-ranked candi-
date based on its faithfulness score, can we further
improve its effectiveness by increasing the beam
size, i.e., letting in more candidates to be evaluated
by TWEAK? To answer this question, we run beam
search, TWEAK-NLI-B+F, and TWEAK-HVM
side-by-side on WebNLG test set and BART-large,
and plot their quality (BLEU) and faithfulness (Fac-
tKB) differences in Fig. 4.
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Figure 4: Performance differences (∆) on quality
(BLEU) and faithfulness (FactKB) between TWEAK-
HVM, TWEAK-NLI-B+F and beam search on various
beam sizes {2, 4, 6, 8, 10, 15}. All experiments are done
on WebNLG with BART-large.
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Figure 5: The distributions of the relative positions
where negative predictions (i.e., possible hallucination)
happen during the decoding process. 0 and 1 along the
horizontal axis represent the start and end of the decod-
ing. The upper and bottom panel represent TWEAK-
HVM and TWEAK-NLI-B+F running on WebNLG
with BART-large, respectively.

Comparing TWEAK-HVM with beam search
(blue bars), we observe that TWEAK-HVM im-
proves on faithfulness, with improvement grow-
ing with beam size. In terms of quality, however,
TWEAK-HVM underperforms beam search, but
the drop stabilizes after beam size = 4.

Comparing TWEAK-HVM with TWEAK-NLI-
B+F (red bars), we observe that on quality,
TWEAK-HVM steadily becomes better than
TWEAK-NLI-B+F as beam size increases. On
faithfulness, TWEAK-HVM starts out being
slightly worse at beam size = 2, but then steadily
becomes better over TWEAK-NLI-B+F with in-
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The leader of Russia is Valentina Matviyenko. The country is 
the location of the club FC Torpedo Moscow which is managed 
by Valery Petrakov. Chumakov played for the Soviet Union 
national football team and died in the country.

Valery Petrakov is the manager of FC Torpedo Moscow. The 
club is affiliated with the Soviet Union national football team. 
The country's leader is called Valentina Matviyenko and the 
country is the location of the death place of former player, 
Aleksandr Chumakov.

Valery Petrakov is the manager of FC Torpedo Moscow. The 
club is affiliated with the Soviet Union national football team. 
The country's leader is called Valentina Matviyenko and the 
country is the location of the death place of former player, 
Aleksandr Chumakov.

BART-
WebNLG

Aleksandr 
Chumakov

Russia
death 
place (✓)

Valentina 
Matviyenko

leader name (✓)

FC 
Torpedo 
Moscow

club (✓)

Soviet Union national 
football team

club (✘)

Valery 
Petrakov

manager  (✓)

T-HVM

T-NLI

BEAM

TWEAK-HVM 42th Decoding Step:
[Backward] … The country is the location of the club FC Torpedo Moscow, managed by Valery Petrakov. The club is 
[Forward] affiliated with…

Figure 6: Output from beam search, TWEAK-NLI-B+F (T-NLI), and TWEAK-HVM (T-HVM) on an example
taken from WebNLG test set, using BART-large. Tweak-HVM benefits from the more fine-grained modeling
of hypothesis-triple relation and correctly capture the contradiction between forward hypothesis affiliated with...
and triple (Aleksandr Chumakov, club, Soviet Union national football team). We use ✓and ✗to
indicate HVM’s predictions for triple-hypothesis pairs at the 40th decoding step.

creasing beam size until it reaches 10. This result
shows TWEAK-HVM has a greater capacity in
taking advantage of a bigger beam size.

Where is Hallucination Found? Since TWEAK’s
strength lies in its ability to identify and demote
potential hallucinations at any decoding step, we
are interested in investigating where these halluci-
nations can typically be detected. We experiment
with TWEAK-NLI-B+F and TWEAK-HVM on
WebNLG and BART-large, and analyze the distri-
bution of predicted hallucination positions, normal-
ized between 0 (beginning) and 1 (end), for back-
ward and forward hypotheses. As depicted in Fig.5,
TWEAK-HVM predicts more hallucinating for-
ward hypotheses, while TWEAK-NLI-B+F leans
towards more hallucinating backward hypotheses.

This divergence can be attributed to the training
differences between NLI and HVM. NLI, trained
on complete hypotheses, tends to assign lower en-
tailment scores to incomplete sentences like back-
ward hypotheses, leading to negative predictions
in the NLI function used in Equ.(3). In contrast,
HVM’s inclination towards forward hallucinations
might stem from FATE’s uneven perturbation dis-
tribution, where objects and relations undergo the
most perturbations. Since objects and relations are
predominantly positioned toward sentence endings
in a Subject-Verb-Object language like English, the
trained HVM may detect more forward hallucina-
tions due to their higher likelihood of containing
perturbations in the training set. When amplified by
dynamic aggregation which gives early emphasis to

forward hypotheses, this helps stop potential errors
from happening earlier in decoding. This also ex-
plains why TWEAK-HVM rarely detects backward
hallucinations at the start, and why TWEAK-NLI-
B+F initially detects more hallucinations.
Qualitative Case. We offer an example in Fig. 6
that shows how TWEAK-HVM successfully
directs the decoding process away from a potential
hallucination. The example features five input
fact triples describing the professional relation-
ships around footballer Aleksandr Chumakov.
Both beam search and TWEAK-NLI produced
hallucinating output, describing that “FC Torpedo
Moscow” is affiliated with “the Soviet Union
national football team”, which is not stated in
the input facts. The hallucination stems from
the wrong interpretation of triple (Aleksandr

Chumakov, club, Soviet Union national

football team), which TWEAK-HVM correctly
concludes is not supported by the forward hypoth-
esis “affiliated with...” at the 40th decoding step.
More examples can be found in Appendix F.

7 Conclusions

We introduce TWEAK, a model-agnostic decod-
ing strategy incorporating hypothesis verification,
to mitigate hallucinations in K2T generation. Our
work demonstrates the effectiveness of TWEAK
with an off-the-shelf NLI model and a task-specific
HVM. Future directions involve improving general-
ization, and reducing inference costs via techniques
such as knowledge distillation (Wan et al., 2023).
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Ethical Considerations

This paper focuses on accurate knowledge-to-text
generation, crucial for reducing errors in natural
language generation. Our goal is to minimize mis-
takes and misinformation synthesized in texts pro-
duced by the generative language models. Within
this scope, TWEAK provides a method to manip-
ulate text generation to be more faithful without
altering the trained generative model.

In our human evaluation, all participants are em-
ployed as full-time workers within our internal data
annotation team. To guarantee evaluation quality,
we ensure that all participants possess a native-
speaker level of proficiency in English. Each par-
ticipant receives fair compensation, commensurate
with standard wages in the United States. All par-
ticipants are explicitly informed that the annotated
data would be used for research purposes. Addition-
ally, this study has undergone review and approval
by our internal ethical panel.

Limitations

The authors wish to note the following limitations:

• The proposed TWEAK decoding strategy im-
poses additional cost at inference time compared
to the baseline approaches such as beam search.

• The reported results indicate while all TWEAK
variants outperform the baseline in ID settings, in
OOD settings the results are more nuanced. On
faithfulness, TWEAK-HVM still outperforms
the baselines in OOD settings, but it underper-
forms the more costly variant TWEAK-NLI in
some settings (see Sec. 5.2). A future exploration
is to further improve the robustness of HVM as
discussed in Sec. 6.

• Our proposed approach has only been tested in
English language. The authors expect the ap-
proach to work reasonably well in non-English
languages, provided adequate datasets and base
models are available.
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A Appendix

A.1 Implementation Details.

We implement all of our methods with the
transformers package (Wolf et al., 2020). We
mainly follow Ribeiro et al. to train and test our
models in all experiments. In this section we de-
scribe all hyperparameters used for reproducibility.

We train BART-large and T5-large as the base
generators. They have 406M and 770M parameters,
respectively.

A.1.1 WebNLG
BART. Following (Ribeiro et al., 2021a), we add
the special tokens <H>, <R>, and <T> to the mod-
els’ vocabulary, insert them before the subject, rela-
tion, and object, respectively, before concatenating
them all into a triple string. We then concatenate all
triple strings within an instance to form the input.
We train a BART-large model (Lewis et al., 2020)
as our generator with 2 epochs and a batch size
4. We set the learning rate to be 3 · 10−5. Simi-
lar to (Ribeiro et al., 2021a), we employ a linearly
decreasing learning rate schedule without warm-
up. We use beam search as the baseline and set
the beam search size to 5. The best checkpoint is
selected based on the validation BLEU score (Pa-
pineni et al., 2002). We set the max generation
length to 384.
T5. We perform the same preprocessing as above
for T5’s input. We additionally append a prefix,
“translate from Graph to Text:” at the beginning
of an input. We train a T5-large generator with 10
epochs and batch size 4. We use the same learning
rate as suggested in (Ribeiro et al., 2021a) at 3 ·
10−5. We also use a linearly decreasing learning
rate schedule without warm-up. Again, the beam
search is used as the baseline but the beam size
is set to 3. The best checkpoint is again selected
based on the validation BLEU score (Papineni et al.,
2002). We set the max generation length also to
384.
TWEAK Decoding For both models, when apply-
ing TWEAK decoding, we set the beam size to
4, and generate forward hypotheses using greedy
decoding for efficiency. The weighting parameter
α is set to 8. We also set the max generation length
to 384.

A.1.2 TekGen
We use the same hyperparameters as we do for
WebNLG to train and test for both BART-large
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and T5-large generators. When applying TWEAK
decoding, we set α to 8 and 1 for BART and T5,
respectively. We use the same beam size as the
beam search baseline, where beam size is 5 and 3
for BART-large and T5-large, respectively. Max
generation length is also set to 384.

A.1.3 GenWiki
We use the same hyperparameters as we do for
WebNLG to train and test for both BART-large and
T5-large generators, except we set a larger batch
size at 32. We also raise the batch size for training
T5-large to 16, and keep the other hyperparameters
the same as when we train T5-large on WebNLG.

When applying TWEAK decoding, we set α to
8 and 2 for BART-large and T5-large, respectively.
We use the same beam size as the beam search
baseline, where the beam size is 5 and 3 for BART-
large and T5-large, respectively. Max generation
length is also set to 384.

A.2 Example: Faithful Output is Worded
Differently

The following shows the output from BART-large
using the baseline beam search decoding and the
TWEAK-NLI-B+F variant decoding strategy. Al-
though the output of the latter produces a higher
faithfulness score (FactKB), it is worded more dif-
ferently with respect to the reference, resulting in a
lower quality score.

• Facts:

– (Aston Martin V8, related Mean
Of Transportation, Aston Martin
DBS)

– (Aston Martin V8, engine, 5.3
litres)

– (Aston Martin V8, assembly,

United Kingdom)

• Reference: The Aston Martin V8 is assembled
in the United Kingdom and has an engine
volume of 5.3 litres. The Aston Martin V8
and Aston Martin DBS are a related means of
transport.

• Beam search: Aston Martin V8, which is 5.3
litres and made in the United Kingdom, is
related to the Aston Martin DBS.

• TWEAK-NLI-B+F: The United Kingdom is
the location of the assembly of the Aston Mar-
tin V8 which has a 5.3 litres engine and is
related to the DBS.

B FATE Dataset Statistics

FATE Subj Rel Obj Triples Entity Avg.

Triples Words

Original 423 235 1499 922 4.54 19.8
Perturbed 432 1666 3118 7368 17.05 20.0

Table 7: Dataset statistics for our curated FATE. Both
the original and the perturbed sets contain 18,102 in-
stances. All numbers are counts of unique instances.

C Statistics of Evaluation Benchmarks

Dataset Subj Rel Obj Triples Entity Avg.

Triples Words

WebNLG Train 430 246 1613 2090 4.8 19.8
Test 575 300 1882 2331 4.0 19.5

TekGen Train 20K 1K 13K 34K 1.7 21.0
Test 1000 200 1176 1783 1.7 21.4

GenWiki Train 713K 287 273K 1754K 2.4 29.2
Test 817 157 2150 1783 3.9 18.6

Table 8: Dataset statistics for WebNLG, TekGen, and
GenWiki. All numbers are counts of unique instances.

D Weighting Effects in
Out-of-distribution Evaluations

We have discussed the effect of manipulating
weighting coefficient α in in-distribution experi-
ments in Sec. 6. We further plot the weighting
effect on out-of-distribution (OOD) datasets in Fig-
ure 7. On the two other datasets, HVM underper-
forms NLI on faithfulness due to distribution shift,
but maintains higher quality scores than NLI at all
α values. This shows HVM maintains the quality
edge over NLI even in the OOD settings.

E Prompt Template to Generate FATE

In this section we show the prompt templates we
use with the LLM to create our FATE dataset
(Sec. 4.2): one prompt is used to perturb a fact
triple (Figure 8), and the other is to generate the
description for the perturbed fact triple (Figure 9).
Different from the majority of the similar meth-
ods deployed in the literature focusing solely on
subjects or objects, we allow perturbations to hap-
pen at all possible positions – subject, relation, and
object – in order to obtain more diverse datapoints.

F More Examples

We show three more examples in Table 9:
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Figure 7: The effect on quality (BLEU) and faithfulness (FactKB) from choosing different α in Equ. (2), with α = 0
being equivalent to beam search. The results are obtained using TWEAK-NLI-B+F and TWEAK-HVM variants on
WebNLG, TekGen and GenWiki with BART.

• First example: All three decoding strategies
produce faithful textual descriptions for the
given triples. TWEAK-HVM’s output is ar-
guably more readable than the others, but in
terms of textual similarity with the reference,
both TWEAK variants produce less similar
output than beam search.

• Second example: Beam search generates an
output asserting "Costa Crociere is the parent
company of Carnival Corporation", which di-
rectly contradicts the input fact 2 ("The parent
company of Costa Crociere is Carnival Cor-
poration"). Both TWEAK variants avoid this
mistake.

• Third example: Beam search misses the
fact "nearest city" which is captured by our
TWEAK variants.
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Fact triples:

1. <H> Accademia di Architettura di Mendrisio <R> country <T> Switzerland
2. <H> Accademia di Architettura di Mendrisio <R> dean <T> Mario Botta
3. <H> Accademia di Architettura di Mendrisio <R> city <T> Mendrisio
4. <H> Accademia di Architettura di Mendrisio <R> established <T> 1996
5. <H> Accademia di Architettura di Mendrisio <R> academic Staff Size <T> 100
6. <H> Accademia di Architettura di Mendrisio <R> location <T> Ticino

Reference: Accademia di Architettura di Mendrisio in Mendrisio, Switzerland has 100 employees, was
established in 1996 and is overseen by Dean Mario Botta. The school’s location is Ticino.
Beam Search: The Accademia di Architettura di Mendrisio is located in Ticino, Mendrisio, Switzerland.
It was established in 1996 and its dean is Mario Botta. It has 100 academic staff.
TWEAK-NLI: Mario Botta is Dean of the Accademia di Architettura di Mendrisio in Mendrisio,
Ticino, Switzerland. The Accademia was established in 1996 and has 100 academic staff.
TWEAK-HVM: The dean of the Accademia di Architettura di Mendrisio is Mario Botta. The
Accademia was established in 1996 in the city of Mendrisio, Ticino, Switzerland and has 100 academic
staff.

Fact triples:

1. <H> Costa Crociere <R> location <T> Genoa
2. <H> Costa Crociere <R> parent Company <T> Carnival Corporation & plc
3. <H> AIDAstella <R> operator <T> AIDA Cruises
4. <H> AIDAstella <R> builder <T> Meyer Werft
5. <H> AIDAstella <R> owner <T> Costa Crociere

Reference: Carnival Corporation & plc is the parent company of Costa Crociere in Genoa, who own
the AIDAstella. AIDAstella was built by Meyer Werft and is operated by AIDA Cruises.
Beam Search: AIDAstella, built by Meyer Werft and owned by Costa Crociere, is operated by AIDA
Cruises. Costa Crociere is the parent company of Carnival Corporation & plc and is located in Genoa.
TWEAK-NLI: AIDAstella, built by Meyer Werft, is operated by AIDA Cruises. It is owned by Costa
Crociere, whose parent company is Carnival Corporation & plc and is located in Genoa.
TWEAK-HVM: The parent company of Costa Crociere, located in Genoa, is Carnival Corporation &
plc. AIDAstella, operated by AIDA Cruises, was built by Meyer Werft and is owned by Costa Crociere.

Fact triples:

1. <H> 14th New Jersey Volunteer Infantry Monument <R> district <T> Monocacy National Battle-
field

2. <H> Monocacy National Battlefield <R> nearest City <T> Frederick Maryland

Reference: The 14th New Jersey Volunteer Infantry Monument is near Frederick, Maryland in the
district of the Monocacy National Battlefield.
Beam Search: The 14th New Jersey Volunteer Infantry Monument is located in the district of the
Monocacy National Battlefield, Frederick, Maryland.
TWEAK-NLI: Frederick, Maryland is the nearest city to Monocacy National Battlefield where the
14th New Jersey Volunteer Infantry Monument is located.
TWEAK-HVM: The 14th New Jersey Volunteer Infantry Monument is in the district of the Monocacy
National Battlefield and the nearest city is Frederick, Maryland.

Table 9: Three examples taken from T5-large’s outputs on WebNLG.
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Prompt template for perturbing original facts.
Using your commonsense knowledge to edit the predicate in the old triple to make it counter-
factual. Note that you should not always use predicate negation.

Old triple: (’Aarhus Airport’, ’operating Organisation’, ’Aarhus Lufthavn A/S’)
New triple: (’Aarhus Airport’, ’leader Name’, ’Aarhus Lufthavn A/S’)

Old triple: (’Aarhus Airport’, ’location’, ’Tirstrup’)
New triple: (’Aarhus Airport’, ’country’, ’Tirstrup’)

Old triple: (’Aarhus Airport’, ’location’, ’Tirstrup’)
New triple: (’Aarhus Airport’, ’birthday’, ’Tirstrup’)

Old triple: ("jamaica at the fifa world cup", "subclass of", "jamaica national football team")
New triple: ("jamaica at the fifa world cup", "president of", "jamaica national football team")

Old triple: ("kentucky louisville rivalry", "participating team", "louisville cardinals")
New triple: ("kentucky louisville rivalry", "beat", "louisville cardinals")

Old triple: {$old_triple}
New triple:

Figure 8: Prompt template we used for perturbing a fact triple. We allow the model to perturb both subject/object
and predicate.

Prompt template for editing description to align with the new fact.
Minimally edit the following sentence so it supports the new fact triple instead of the old fact
triple, while highlighting your edited text spans with ’[’ and ’]’.

Sentence: Aarhus Airport serves the city of Aarhus, Denmark.
Old fact: (’Aarhus Airport’, ’city Served’, ’Aarhus Denmark’)
New fact: (’Taylor County Texas’, ’city Served’, ’Aarhus Denmark’)
Revised: [Taylor County Texas] swerves the city of Aarhus, Denmark

Sentence: Aarhus Airport is operated by Aarhus Lufthavn A/S.
Old fact: (’Aarhus Airport’, ’operating Organisation’, ’Aarhus Lufthavn A/S’)
New fact: (’Aarhus Airport’, ’death Date’, ’Aarhus Lufthavn A/S’)
Revised: Aarhus Airportś [death date is] Aarhus Lufthavn A/S

Sentence: The location of Aarhus Airport is Tirstrup.
Old fact: (’Aarhus Airport’, ’location’, ’Tirstrup’)
New fact: (’Aarhus Airport’, ’leader Name’, ’Tirstrup’)
Revised: The [leader name of] Aarhus Airport is Tirstrup.

Sentence: {$sentence}
Old fact: {$old_triple}
New fact: {$new_triple}
Revised:

Figure 9: Prompt template we used for editing textual description to align with the edited fact, while annotating the
edited span.
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