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Abstract

The primary aim of Knowledge Graph Embed-
dings (KGE) is to learn low-dimensional rep-
resentations of entities and relations for pre-
dicting missing facts. Although rotation-based
methods like RotatE (Sun et al., 2019) and
QuatE (Zhang et al., 2019) perform well in
KGE, they face two challenges: limited model
flexibility requiring proportional increases in
relation size with entity dimension, and diffi-
culties in generalizing the model for higher-
dimensional rotations. To address these is-
sues, we introduce OrthogonalE, a novel KGE
model employing matrices for entities and
block-diagonal orthogonal matrices with Rie-
mannian optimization for relations. This ap-
proach not only enhances the generality and
flexibility of KGE models but also captures sev-
eral relation patterns that rotation-based meth-
ods can identify. Experimental results indi-
cate that our new KGE model, OrthogonalE,
offers generality and flexibility, captures sev-
eral relation patterns, and significantly outper-
forms state-of-the-art KGE models while sub-
stantially reducing the number of relation pa-
rameters.

1 Introduction

The fundamental elements of knowledge graphs
(KGs) are factual triples, each represented as
(h, r, t), indicating a relationship r between head
entity h and tail entity t. Notable examples include
Freebase (Bollacker et al., 2008), Yago (Suchanek
et al., 2007), and WordNet (Miller, 1995). KGs
have practical applications in various fields such
as question-answering (Hao et al., 2017), informa-
tion retrieval (Xiong et al., 2017), recommender
systems (Zhang et al., 2016), and natural language
processing (Yang and Mitchell, 2019), garnering

Our code is available at https://github.com/
YihuaZhu111/OrthogonalE.

...

...

Figure 1: Fundamental operations (e1R · e1h ≈ e1t )
and inherent challenges of rotation-based KGE models.
Rotation-based methods require increasing relation pa-
rameters for adequate entity representation (lack of flexi-
bility) and struggle with researching higher-dimensional
rotation embeddings (d > 3) due to their complexity
(lack of generality). OrthogonalE, depicted in Fig. 2,
efficiently resolves these challenges.

considerable interest in academic and commercial
research.

Addressing the inherent incompleteness of KGs,
link prediction has become a pivotal area of fo-
cus. Recent research (Bordes et al., 2013; Trouillon
et al., 2016) has extensively leveraged Knowledge
Graph Embedding (KGE) techniques, aiming to
learn compact, low-dimensional representations of
entities and relations. These approaches, marked by
scalability and efficiency, have shown proficiency
in modeling and deducing KG entities and relations
from existing facts.

Recently, rotation-based KGE like RotatE (Sun
et al., 2019) and QuatE (Zhang et al., 2019) meth-
ods have achieved notable success in the field. Ro-
tatE uses the Hadamard product to multiply the
real and imaginary components of the head entity
embedding by the angle-based relation embedding,
resulting in a 2D rotation effect within each unit.
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Each unit consists of two elements representing the
real and imaginary components. For example, an
entity embedding with 500 dimensions consists of
250 units. The resulting vectors in each unit are
then concatenated to form the tail entity embed-
ding. The essence of this operation is the matrix
multiplication between a 2D rotation matrix and
the entity vector, followed by concatenation as well,
as illustrated in Fig. 1, multiplying the relation ma-
trix e1R ∈ Rn×n composed of the block-diagonal
Rotation matrix Bi ∈ Rd×d (RotatE: R2×2) with
the head entity vector e1h ∈ Rn. Here, we treat
the concatenation operation as a block-diagonal ar-
rangement of each 2D rotation matrix. Similarly,
QuatE extends RotatE by using quaternions, which
consist of one real and three imaginary components,
achieving a 3D rotation effect through the multipli-
cation of a 3D rotation matrix with the entity vector.
For QuatE, we replace the 2D rotation matrix R2×2

with a 3D rotation matrix R3×3 as shown in Fig. 1.
However, these approaches face two primary

issues: lack of flexibility and generality, as il-
lustrated in Fig. 1. First, the model’s lack of
flexibility necessitates increasing the size of the
overall relation matrix (e1R ∈ Rn×n → e2R ∈
R(n+l)×(n+l)) to meet entity dimension require-
ments (e1h ∈ Rn → e2h ∈ Rn+l) for better entity
representation. For example, when the entity vector
changes (e1h ∈ R100 → e2h ∈ R1000) to improve
representation, the parameter increase is 900. How-
ever, the corresponding change in the relation ma-
trix (e1R ∈ R100×100 → e2R ∈ R1000×1000) results
in a parameter increase of 990,000. This substan-
tial increase leads to redundancy and inefficiency
in representing relations.

Second, the model’s lack of generality makes it
challenging to explore high-dimensional rotational
KGE models due to the significant computational
demands and the complexity of rotations in higher
dimensions (Bi ∈ R2×2,R3×3 → Rd×d, d > 3),
such as SO(4), SO(5), and SO(10)1. This restricts
the development of more generalized and higher-
dimensional rotation KGE approaches.

To overcome these two issues, we propose a
highly general and flexible KGE model named Or-
thogonalE as shown in Fig. 2, and detailed notation
is shown in Table 1. Firstly, by transforming en-
tity vectors ev ∈ Rn into matrices eV ∈ Rn×m

to better represent entities, we control the entity
1SO(d) is the set of orthogonal matrices with determinant

1 that represent rotation transformations in d-dimensional Eu-
clidean space.

...

Figure 2: Diagram of the OrthogonalE approach. We
employ matrices for entities and block-diagonal orthog-
onal matrices with Riemannian optimization for rela-
tions, thereby retaining the advantages of rotation-based
method relation patterns while addressing its two main
issues.

dimension through variable m, avoiding unneces-
sary expansion of the size of the relation matrix.
Corresponding to the above example of lack of
flexibility, we can maintain the relation matrix size
(eR ∈ R100×100) and only modify the entity matrix
size (e1V ∈ R100×1 → e2V ∈ R100×10,m = 1 →
10) to meet the requirements of entity representa-
tion. Secondly, leveraging the concept that rotation
matrices are orthogonal, we replace rotation matri-
ces Bi with orthogonal matrices2 Xi ∈ Rd×d of
adaptable dimensions d, facilitating the exploration
of higher-dimensional block-diagonal orthogonal
matrix models. Lastly, for effective optimization,
we employ Riemannian optimization for the rela-
tion matrix eR ∈ Rn×n and Stochastic Gradient
Descent (SGD) for the entity matrix eV ∈ Rn×m.

We evaluate the new model on two KGE
datasets including WN18RR (Dettmers et al.,
2018), FB15K-237 (Toutanova and Chen, 2015).
Experimental results indicate that our new KGE
model, OrthogonalE, offers generality and flexibil-
ity, captures several relation patterns, and signif-
icantly outperforms state-of-the-art KGE models
while substantially reducing the number of relation
parameters.

2 Related Work

Knowledge Graph Embedding Translation-
based approaches are prominent in KGE, notably

2O(d) is the set of square orthogonal matrices in d-
dimensional Euclidean space, including those with a determi-
nant of 1 or -1, representing transformations such as rotations
and reflections.
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Notation Explanation
(h, r, t) ∈ E Fact triples
V Entity sets
R Relation sets
ev ∈ Rn Entity vector rep
eV ∈ Rn×m Entity matrix rep in OrthogonalE
eR ∈ Rn×n Relation matrix rep
Bi ∈ Rd×d Block-diagonal rotation matrix
Xi ∈ Rd×d Block-diagonal orthogonal matrix
n ∈ R1 Row size of relation matrix rep
m ∈ R1 Column size of entity matrix rep
d ∈ R1 size of Block-diagonal matrix
dE (., .) Euclidean distance
bv ∈ R1 Entity bias
· Matrix multiplication
s(h, r, t) Scoring function

Table 1: Notation summary. Within the table, ev in-
cludes the head eh and tail et entity vectors as used in
traditional KGE methods, whereas eV consists of the
head eH and tail eT entity matrix representations in our
OrthogonalE approach. Furthermore, ‘rep’ in the table
denotes representation.

TransE (Bordes et al., 2013), which interprets rela-
tions as vector translations. TransH (Wang et al.,
2014), TransR (Lin et al., 2015), and TransD (Ji
et al., 2015) represent extensions of the translation-
based method, building upon the foundational ap-
proach of TransE. ComplEx(Trouillon et al., 2016)
advances this by embedding KGs in a complex
space and using the Hermitian product for model-
ing antisymmetric patterns. Inspired by ComplEx,
RotatE (Sun et al., 2019) then innovated by treat-
ing relations as rotations in a complex vector space,
capable of capturing varied relation patterns like
Symmetry, Antisymmetry, Inversion, and Commu-
tative Composition. Following this, QuatE (Zhang
et al., 2019) employed quaternion operations (3D
rotations) for even better expressiveness than Ro-
tatE. DensE (Lu et al., 2022) employed various
techniques for 3D rotation implementation and pro-
posed that 3D rotation could handle the relation
pattern of non-commutative composition. HopfE
(Bastos et al., 2021) seeks to employ SO(4) rather
than SO(3) for KG representation, which is directly
connected to the generality issue discussed in our
research. We are also keen on investigating ro-
tations in higher dimensions. Nonetheless, pro-
gressing to SO(5) or even SO(10) poses substantial
difficulties.

In addition, our research builds upon existing
work in the field. For instance, OTE (Tang et al.,
2019) uses a compact block-diagonal orthogonal
matrix, similar to our approach, to maintain Ro-
tatE’s relation patterns and complex relations. Yet,
our OrthogonalE model improves stability and per-
formance with Riemannian Optimization, outper-
forming OTE’s Gram-Schmidt process. GoldE’s
(Li et al., 2024) universal orthogonal parameteriza-
tion, derived from Householder reflections, offers
theoretical guarantees for dimensionality and ge-
ometry. However, our focus is on enhancing the
generality and flexibility of the KGE models, not
just on capturing knowledge graph patterns and
heterogeneity.

In conclusion, considering the two major disad-
vantages of rotation-based methods mentioned in
Section 1, we need to refine our model to make it
more general and flexible.

Optimization on the orthogonal manifold In
optimization on the orthogonal manifold, transi-
tioning from Xt to Xt+1 while remaining on the
manifold necessitates a method known as retraction
(Absil and Malick, 2012). Prior research has effec-
tively adapted several standard Euclidean function
minimization algorithms to Riemannian manifolds.
Notable examples include gradient descent (Absil
et al., 2008; Zhang and Sra, 2016), second-order
quasi-Newton methods (Absil et al., 2007; Qi et al.,
2010), and stochastic approaches (Bonnabel, 2013),
crucial in deep neural network training.

Meanwhile, Riemannian optimization is often
used for the orthogonal manifolds, and has made
significant progress in deep learning, especially in
CNNs and RNNs. Cho and Lee (2017) innovatively
substituted CNN’s Batch Normalization layers with
Riemannian optimization on the Grassmann man-
ifold for parameter normalization. Additionally,
significant strides in stabilizing RNN training have
been made by (Vorontsov et al., 2017; Wisdom
et al., 2016; Lezcano-Casado and Martınez-Rubio,
2019; Helfrich et al., 2018), through the application
of Riemannian optimization to unitary matrices.

As this paper primarily focuses on KGE, we
do not delve deeply into Riemannian optimization.
Instead, we utilize retraction with the exponential
map for iterative optimization, as implemented in
the Geoopt library (Kochurov et al., 2020).
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Figure 3: Illustration of Riemannian gradient descent
iteration on an orthogonal manifold.

3 Problem Formulation and Background

Before presenting our approach, we introduce the
KGE problem and provide an overview of optimiza-
tion on orthogonal manifolds.

3.1 Knowledge Graph Embedding
In a KG consisting of fact triples (h, r, t) ∈ E ⊆
V × R × V , with V and R denoting entity and
relation sets, the objective of KGE is to map enti-
ties v ∈ V to kV -dimensional embeddings ev, and
relations r ∈ R to kR-dimensional embeddings
er.

A scoring function s : V × R × V → R evalu-
ates the difference between transformed and target
entities, quantified as a Euclidean distance:

dE (x,y) = ∥x− y∥ .

3.2 Optimization on the orthogonal manifold
In optimization on the orthogonal manifold, the
core problem is formulated as:

min
X∈Od

f(X). (1)

Here, f is a differentiable function mapping el-
ements of Rd×d to R, and the orthogonal man-
ifold Od, also denoted as O(d), is defined as
Od ≜

{
X ∈ Rd×d | XX⊤ = Id

}
. Moreover, the

tangent space at X , denoted by TX , is the set
TX =

{
ξ ∈ Rd×d | ξX⊤ +Xξ⊤ = 0

}
.

To address the problem formulated in (1) more
efficiently, recent studies suggest optimization of
the orthogonal manifold with retractions as an ef-
fective approach (Ablin and Peyré, 2022). In this
work, we primarily employ the retraction with ex-
ponential map for iterative optimization, as illus-
trated in Fig. 3. The key iteration formula for this

method is:

Xt+1 = ExpXt(−η Gradf(Xt)), (2)

Where t indexes the iteration steps, ExpXt(ξ) de-
notes the exponential map, and η represents the
learning rate. Gradf(·) is the Riemannian gradient.
Subsequent sections will delve into the computa-
tion of ExpXt(ξ) and Gradf(·).

The exponential map allows movement in a spec-
ified direction on the manifold. Starting from X
with initial velocity ξ, the exponential map on the
manifold of orthogonal matrices is given by (Mas-
sart and Abrol, 2022):

ExpX(ξ) = X expm(X⊤ξ), ∀ξ ∈ TX ,

where expm(·) denotes the matrix exponential.
On the orthogonal manifold, the Riemannian gra-

dient Gradf(·) is calculated as (Absil et al., 2008):

Gradf(X) = PTX (∇f(X)),

where ∇f(X) is Euclidean gradient of f(X), and
the calculation formula for PTX (·) is:

PTX (Y ) = X(
X⊤Y − Y ⊤X

2
), Y ∈ Rd×d.

4 Approach

Our approach is developed to acquire both a flex-
ible and general KGE model and ensure that this
model can concurrently represent several relation
patterns. This is achieved by employing matrices
for entities and block-diagonal orthogonal matrices
with Riemannian optimization for relations. Fig-
ure 2 illustrates the OrthogonalE approach, and
Table 1 provides the details of the notations used.

4.1 Orthogonal Matrices for Relations
To address the challenge of generality for ex-
ploring high-dimensional rotational KGE models
mentioned in Section 1, we exploit the orthogo-
nality of rotation matrices, substituting rotation
matrices (Bi ∈ Rd×d) with orthogonal matrices
(Xi ∈ Rd×d) of corresponding dimensions d. Con-
sequently, our relation embedding (eR ∈ Rn×n) is
composed of n/d block-diagonal orthogonal matri-
ces Xi as illustrated in Fig. 2:

eR = diag(X1,X2, . . . ,Xn/d), (3)

where the number of relation parameters is
d(d−1)

2 × n
d = (d−1)n

2 as shown in Table 2. This
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e Model
Number of Parameters

Normal
m = 1
5.2.2

Fixed eV
5.2.4

eV

RotatE n n n×m

QuatE n n n×m

OrthogonalE(d× d) n×m n n×m

eR

RotatE n
2

n
2 (n2 )×m

QuatE n n n×m

OrthogonalE(d× d) (d−1)n
2

(d−1)n
2

(d−1)n
2

Table 2: The parameter calculations for the KGE mod-
els. For all models, the relation matrix size is n. The
block-diagonal matrix size is 2 for RotatE, 3 for QuatE,
and d for OrthogonalE, with an entity matrix column
size of m for OrthogonalE. In the table, “Normal” rep-
resents the standard parameter calculation, “m = 1”
constrains the column size of the entity matrix to 1 to
explore the impact of block-diagonal orthogonal matri-
ces on the model, as analyzed in section 5.2.2. “Fixed
eV ” ensures that the entity dimensions are consistent
across all models to demonstrate the parameter savings
in the relation matrix when using the entity matrix in
OrthogonalE, as discussed in section 5.2.4.

structure allows OrthogonalE to achieve generality,
adapting to datasets with diverse complexities by
adjusting the dimension d of the block-diagonal
matrices. Additionally, the employed relation struc-
ture facilitates the model’s capability to concur-
rently capture Symmetry, Antisymmetry, Inversion,
and Non-commutative Composition relation pat-
terns, as substantiated in Appendix A.2, and de-
tailed introduction of relation patterns refer to Ap-
pendix A.4.

4.2 Matrix Representation for Entities

Inspired by (Miyato et al., 2022), transforms vector
embeddings into matrix embeddings to improve
embedding effectiveness. In our work, to enhance
OrthogonalE’s flexibility, we aim to regulate entity
dimension using variable m and transform entity
vectors ev ∈ Rn into matrices eV ∈ Rn×m as
shown in Fig. 2, thus preventing unnecessary ex-
pansion of the relation size as shown in Fig. 1.
This part allows OrthogonalE to acquire flexibility,
adapting to diverse datasets with varying relation
and entity parameters, rather than indiscriminately
increase both. And the number of entity parameters
is n×m.

4.3 Scoring function and Loss

We utilize the Euclidean distance between the trans-
formed head entity eR · eH and the tail entity eT

as the scoring function:

s(h, r, t) = −dE (eR · eH , eT ) +bh+bt. (4)

Here, bv (v ∈ V) denotes the entity bias, incorpo-
rated as a margin in the scoring function, following
methodologies from Tifrea et al. (2018); Balaze-
vic et al. (2019). Furthermore, we opt for a uni-
form selection of negative samples for a given triple
(h, r, t) by altering the tail entity, rather than em-
ploying alternative negative sampling techniques.
The loss function defined as follows:

L =
∑

t′
log

(
1 + exp

(
yt′ · s

(
h, r, t′

)))
(5)

yt′ =

{
−1, if t′ = t
1, otherwise,

where t′ represents sampled tail entities that include
both positive and negative samples.

4.4 Optimization
Traditional KGE models train and optimize rela-
tions and entities jointly. In contrast, our study
aims to achieve more effective optimization of the
block-diagonal orthogonal matrices of relation em-
beddings Xi ∈ Rd×d by separately optimizing re-
lations and entities, utilizing Riemannian optimiza-
tion for the relation matrix eR ∈ Rn×n and SGD
for the entity matrix eV ∈ Rn×m.

Initially, when optimizing relations, all entity
parameters are fixed, rendering the entity embed-
dings analogous to the function f(·) in the problem
formulated in (1). Notably, each block-diagonal or-
thogonal matrix Xi within the relation embedding
eR optimized by individual Riemannian optimiza-
tion of eq. (2) using RiemannianAdam (Kochurov
et al., 2020), which is a Riemannian version of
the popular Adam optimizer (Kingma and Ba,
2014). These are then concatenated in a block-
diagonal way according to eq. (3) to complete the
process. After optimizing the relation parameters
eR ∈ Rn×n, they are held constant while the en-
tity parameters eV ∈ Rn×m are optimized using
Stochastic Gradient Descent (SGD), specifically
employing the Adagrad optimizer (Duchi et al.,
2011).

5 Experiment

We expect that our proposed OrthogonalE model,
employing matrices for entities and block-diagonal
orthogonal matrices with Riemannian optimiza-
tion for relations, will outperform baseline models.
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WN18RR FB15K-237
Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
TransE ♢ .226 - - .501 .294 - - .465
DistMult ♢ .430 .390 .440 .490 .241 .155 .263 .419
ComplEx ♢ .440 .410 .460 .510 .247 .158 .275 .428
ConvE ♢ .430 .400 .440 .520 .325 .237 .356 .501
RotatE ♢ .470 .422 .488 .565 .297 .205 .328 .480
QuatE ♢ .481 .436 .500 .564 .311 .221 .342 .495
HopfE (Bastos et al., 2021) .472 .413 .500 .586 .343 .247 .379 .534
DensE (Lu et al., 2022) .486 - - .572 .306 - - .481
Gram-Schmidt(2×2) .475 .434 .489 .556 .317 .226 .344 .502
Gram-Schmidt(3×3) .487 .445 .500 .568 .322 .232 .350 .504
OrthogonalE(2×2) .490 .445 .503 .573 .330 .239 .368 .516
OrthogonalE(3×3) .493 .450 .508 .580 .331 .240 .359 .513
OrthogonalE(4×4) .493 .446 .506 .578 .332 .240 .363 .517
OrthogonalE(10×10) .494 .446 .508 .573 .334 .242 .367 .518

Table 3: Link prediction accuracy results of two datasets, Bold indicates the best score, and underline represents the
second-best score. For a fair comparison, we standardized m at 1 for Gram-Schmidt and all OrthogonalE sizes.
The entity dimension for WN18RR was set at approximately 500 (for example, 501 for 3×3 blocks to ensure
experimental feasibility) and around 1000 for FB15K-237. [♢]: The results are sourced from (Zhang et al., 2019).
For a fair comparison, the results of RotatE, QuatE, HopfE, and DensE are reported without self-adversarial negative
sampling, type constraints, semantics, or reciprocals. More baseline results are shown in Appendix A.5.

Dataset Entities Relations Train Validation Test
WN18RR 40,943 11 86,835 3,034 3,134
FB15K-237 14,541 237 272,115 17,535 20,466

Table 4: Details of the two datasets.

Also, we anticipate that OrthogonalE is a general
and flexible KGE model and can represent several
relation patterns simultaneously. Our goal is to
validate these through empirical testing.

5.1 Experiment Setup
Dataset. We evaluate our proposed method on
two KG datasets, including WN18RR (Dettmers
et al., 2018) (license: Apache 2.0), FB15K-237
(Toutanova and Chen, 2015) (license: CC-BY-4.0).
The details of these datasets are shown in Table 4.
More detail is given in Appendix A.1.

Evaluation metrics. To predict the tail entity
from a given head entity and relation, we rank
the correct tail entity among all possible entities
using two established ranking metrics. The first
is the mean reciprocal rank (MRR), the average
inverse ranking of the correct entities, calculated
as 1

n

∑n
i=1

1
Rank i

. The second is Hits@K for
K ∈ {1, 3, 10}, the frequency of correct entities
ranking within the top K positions.

Baselines. We compare our new model with sev-
eral classic methods, including TransE (Bordes

et al., 2013), DistMult (Yang et al., 2014), Com-
plEx (Trouillon et al., 2016), and ConvE (Dettmers
et al., 2018). Additionally, we include rotation-
based KGE methods such as RotatE (Sun et al.,
2019), QuatE (Zhang et al., 2019), HopfE (Bas-
tos et al., 2021), and DensE (Lu et al., 2022) as
baselines. In addition to these methods and our
OrthogonalE(d × d), we introduce comparative
models such as Gram-Schmidt(d× d) utilizing the
Gram-Schmidt process for generating orthogonal
matrices and SGD for joint relation-entity training.
OrthogonalE further differentiates by employing
orthogonal matrices of varying sizes to discuss per-
formance nuances.

Implementation The key hyperparameters of our
implementation include the learning rate for Rie-
mannianAdam (Kochurov et al., 2020) and Ada-
grad (Duchi et al., 2011), negative sample size, and
batch size. To determine the optimal hyperparame-
ters, we performed a grid search using the valida-
tion data. More detail refers to Appendix A.1.

5.2 Results
We first analyzed the overall accuracy for all base-
line models and OrthogonalE, then separately ex-
amined the impacts of block-diagonal Orthogonal
matrices, Riemannian Optimization for relations,
and entity matrices on the model from various ex-
perimental results. Finally, we utilize several re-
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Figure 4: MRR accuracy comparison of OrthogonalE models with different block-diagonal orthogonal matrices
across varying entity dimensions (n× 1, where we set m = 1 to control the entity shape as a single entity vector)
on WN18RR and FB15K-237.

lation histograms to verify our model can capture
these relation patterns.

5.2.1 Overall Accuracy
Table 3 presents link prediction accuracies for the
WN18RR and FB15K-237 datasets. The Orthogo-
nalE model demonstrates superior performance in
the WN18RR dataset and achieves results on the
FB15K-237 dataset that are only marginally lower
than those of HopfE (Bastos et al., 2021), outper-
forming all other compared models, highlighting
its superior representational ability by employing
matrices for entities and block-diagonal orthog-
onal matrices with Riemannian optimization for
relations. Moreover, the OrthogonalE model with
2×2 and 3×3 configurations yields significantly
better performance than the corresponding sizes of
the Gram-Schmidt method, and notably exceeds
RotatE and QuatE, respectively, showcasing the en-
hanced efficacy of the KGE model. Finally, since
the WN18RR and FB15K-237 datasets are rela-
tively small, the performance differences among
OrthogonalE models with (2× 2), (3× 3), (4× 4),
and (10 × 10) are not significant when using suf-
ficient dimensions (WN18RR: 500, FB15K-237:
1000). We will discuss the performance at different
dimensions in detail in Section 5.2.2.

5.2.2 Block-diagonal Orthogonal matrices for
generality

To prove the generality of OrthogonalE, we design
experiments to compare the MRR accuracy of Or-
thogonalE models with different block-diagonal
orthogonal matrices across varying entity dimen-
sions (n × 1, where we set m = 1 to control the
entity shape as a single entity vector) on WN18RR
and FB15K-237. The results are shown in Fig. 4
and the explanation is provided as follows.

An initial dataset analysis reveals WN18RR has

Figure 5: MRR accuracy comparison of
OrthogonalE(2×2) and Gram-Schmidt(2×2) models
across varying entity dimensions (m) with fixed relation
matrix (40×40) on WN18RR.

40,943 entities with just 11 relations (about 3,722
entities per relation), while FB15K-237 includes
14,541 entities and 237 relations (around 61 entities
per relation). This implies that WN18RR requires
a more sophisticated representation capability com-
pared to FB15K-237.

Our results (Fig. 4) confirm our dataset analy-
sis. For WN18RR, the performance is similar for
block sizes from 3×3 to 10×10, all outperform-
ing 2×2 blocks, showcasing 2×2 blocks are not
enough for its relation representation. However, for
FB15K-237, performance is stable across all block
sizes, indicating 2×2 blocks are enough for its rela-
tions representation. These results show WN18RR
requires more complex blocks for adequate repre-
sentation, and illustrate that the OrthogonalE model
is general, which can adapt to datasets of various
complexities by adjusting the dimension d of the
block-diagonal matrices.

5.2.3 Riemannian Optimization for relations
Fig. 5 compares MRR accuracies of Orthogo-
nalE (2×2) and Gram-Schmidt (2×2) across en-
tity dimensions (m) with a constant relation matrix
(40×40) on WN18RR, assessing the efficacy of
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Figure 6: MRR accuracy comparison of RotatE and
OrthogonalE(2×2) models across varying entity dimen-
sions (n×m) on WN18RR.

Figure 7: MRR accuracy comparison of RotatE and
OrthogonalE(2×2) models across varying entity dimen-
sions (n×m) on FB15K-237.

orthogonal optimization beyond the Gram-Schmidt
method for block-diagonal orthogonal matrices.
The result demonstrates that OrthogonalE’s Rie-
mannian optimization significantly exceeds Gram-
Schmidt, underscoring its necessity. In addition,
OrthogonalE can solve the problem that Gram-
Schmidt model will face the gradient vanishing
during the training process.

5.2.4 Entity matrix for flexibility
In OrthogonalE, we maintained a constant entity
dimension (n×m) while varying m to assess the
impact of entity shape. To prove the flexibility of
OrthogonalE, we design experiments to compare
the MRR accuracies of RotatE with OrthogonalE
(2×2) and QuatE and OrthogonalE (3×3) over dif-
ferent fixed entity dimensions n×m in WN18RR
and FB15K-237 dataset.

From the results on WN18RR in Fig. 6, Orthogo-
nalE models with m = 1, 2, or 3 perform similarly
and better than m = 10, and all significantly out-
perform RotatE across dimensions. Notably, their
relation parameter count is 1/m of RotatE’s, which
is shown in Table. 2. These results demonstrate
OrthogonalE’s efficacy in saving relation parame-
ters while outperforming RotatE, highlighting our
model’s flexibility in controlling entity dimension

Figure 8: MRR accuracy comparison of QuatE and
OrthogonalE(3×3) models across varying entity dimen-
sions (n×m) on WN18RR.

through variable m without unnecessarily increas-
ing relation size.

Furthermore, Fig. 7 shows comparison of Ro-
tatE and OrthogonalE (2×2) in FB15K-237. Fig. 8
compare MRR accuracies of QuatE and Orthogo-
nalE (3×3) on WN18RR. The experimental results,
consistent with those discussed in the previous para-
graph.

Furthermore, for OrthogonalE(2×2) on
WN18RR dataset, Fig. 5 result (with m = 7
yielding MRR=0.483) suggests that a relation
matrix of 40×40 (20 parameters), compared to
a dimension of 500×500 (250 parameters) in
Table 3, can achieve comparably high performance,
thus demonstrating that entity matrix method
significantly reduces the need for excessive relation
parameters.

5.2.5 Relation Pattern
Following the proof of relation patterns in Ap-
pendix A.2, Fig. 9 shows histograms of relation
embeddings for different relation patterns. We pro-
vide several examples of relation patterns and a
discussion of non-commutative composition in Ap-
pendix A.3.

Symmetry and Antisymmetry In OrthogonalE,
the symmetry relation pattern is encoded when the
eR embedding satisfies eR · eR = I, in accordance
with eq. (6). Figs. 9(a) and (b) illustrate the embed-
dings of e1R and e1R · e1R − I, respectively. From
Fig. 9(b), we observe that nearly all values are
concentrated around 0, thereby indicating that Or-
thogonalE’s relations exhibit symmetry properties.
Correspondingly, the multitude of nonzero values
in Fig. 9(d) indicates that OrthogonalE’s relations
also can represent antisymmetry properties.

Inversion The inversion relation pattern is en-
coded when the e3R and e4R satisfies e3R · e4R = I,
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Figure 9: Histograms of relation embeddings for different relation patterns, where
e1R represents _similar_to, e2R represents _member_of_domain_region, e3R represents
/film/film/genre, e4R represents /media_common/netflix_genre/titles, e5R represents
/location/administrative_division/country, e6R represents /location/hud_county_place/place,
and e7R represents /base/aareas/schema/administrative_area/capital. From the WN18RR dataset, we
select e1R and e2R to represent Symmetry and Antisymmetry, respectively, and obtain their relation embeddings using
the OrthogonalE(3×3) model with n=500 and m=1. Similarly, from the FB15K-237 dataset, we select e3R, e4R, and
e5R, e6R, e7R as representations for Inversion and Composition, respectively, and acquire their relation embeddings
under the OrthogonalE(2×2) model with n=1000 and m=1.

according to eq. (8). Even though e3R and e4R are
responsible for additional relation patterns, which
results in a cluster of values around −2 in Fig 9
(g), the majority of values still converge towards or
equal 0. This suggests that OrthogonalE’s relations
have the inversion property.

Composition The composition relation pattern
is encoded when the e5R, e6R, and e7R embedding
satisfy e6R · e5R = e7R, in accordance with eq. (9).
The majority of data in Fig. 9 (k) converge towards
or are equal to 0, indicating that OrthogonalE’s
relations can represent the composition relation
pattern.

6 Conclusion

In this study, we propose the OrthogonalE model
to acquire a flexible and general KGE model with
employing matrices for entities and block-diagonal

orthogonal matrices with Riemannian optimization
for relations. Experimental results indicate that our
new KGE model offers generality and flexibility,
captures several relation patterns, and outperforms
SoTA rotation-based KGE models while substan-
tially reducing the number of relation parameters.
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Limitations

Even though the block-diagonal orthogonal relation
with Riemannian optimization makes KGE mod-
els more general and improves their performance,
the computation of exponential retraction in the
orthogonal manifold for Riemannian optimization
is costly. In practical model training, with the same
entity dimension, our OrthogonalE (2×2) training
time is 4 times longer than that of RotatE. In future
research directions, we will continue to explore
this limitation, such as by employing the landing
algorithm (Ablin and Peyré, 2022) for retraction
on orthogonal manifolds to reduce computational
complexity.
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A Appendix

A.1 More information about Experiment
setup

Dataset WN18RR is a subset of WN18
(Dettmers et al., 2018) which is contained in Word-
Net (Miller, 1995). FB15K-237 is a subset of
FB15K, which is a subset of Freebase (Bollacker
et al., 2008), a comprehensive KG including data
about common knowledge. All three datasets were
designed for KGE, and we employ them for KGE
tasks, and all three datasets have no individual peo-
ple or offensive content.

Implementation The training of models was car-
ried out on two A6000 GPUs, which boasts 48GB
of memory. Specifically, for the OrthogonalE
model and its related flexible versions, the training
durations were roughly 5 hour for the WN18RR
dataset, 30 hours for FB15K-237. Our experiments
were facilitated by leveraging PyTorch and Numpy
as essential tools. Furthermore, We use ChatGPT
in our paper writing. Finally, we obtain results by
selecting the maximum values from three random
seeds for Table 3 and using a single run for other
results.

A.2 Proof of Relation Patterns

OrthogonalE is capable of representing the four
kinds of relational patterns: Symmetry, Antisymme-
try, Inversion, and Non-commutative Composition.
We present the following propositions to formalize
this capability:

Proposition 1. OrthogonalE can represent Sym-
metry relation pattern.

Proof. If (eH , eR, eT ) ∈ E and (eT , eR, eH) ∈

E , we have

eR · eH = eT ∧ eR · eT = eH

⇒ eR · eR = I

⇒ Xi ·Xi = I
(6)

Proposition 2. OrthogonalE can represent Anti-
symmetry relation pattern.

Proof. If (eH , eR, eT ) ∈ E and (eT , eR, eH) /∈
E , we have

eR · eH = eT ∧ eR · eT ̸= eH

⇒ eR · eR ̸= I

⇒ Xi ·Xi ̸= I

(7)

Proposition 3. OrthogonalE can represent Inver-
sion relation pattern.

Proof. If (eH , e1R, eT ) ∈ E and (eT , e
2
R, eH) ∈

E , we have

e1R · eH = eT ∧ e2R · eT = eH

⇒ e1R · e2R = I

⇒ X1
i ·X2

i = I
(8)

Proposition 4. OrthogonalE can represent Non-
commutative Composition relation pattern.

Proof. If (eH , e1R, eT ) ∈ E and (eT , e
2
R, eP ) ∈

E and (eH , e3R, eP ) ∈ E , we have

e1R ·eH = eT ∧ e2R ·eT = eP ∧ e3R ·eH= eP

⇒ e2R · e1R = e3R

⇒ X2
i ·X1

i = X3
i

(9)

Xi ∈ Rd×d

{
is Commutative, if d = 2
is Non-commutative, if d > 2

(10)

The property of non-commutative composition
dictates that the sequence of X1

i and X2
i cannot

be exchanged. Given that Xi ∈ Rd×d represents
an orthogonal matrix, we consider two situations.
In the first scenario, when d = 2, Xi is a special
case corresponding to a 2-dimensional rotation ma-
trix, analogous to the RotatE (Sun et al., 2019),
and is therefore commutative, not exhibiting non-
commutative composition. However, for d > 2,
Xi is non-commutative, thus can represent non-
commutative composition relation pattern.
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Figure 10: Toy examples for symmetry, antisymmetry, inversion, and non-commutative composition relation patterns.

To gain a clearer understanding of the proof pro-
cess, we use symmetry as an illustrative example to
introduce the proof section, specifically referring
to equation 6 in the paper. Initially, we assume
that if a relation eR in the OrthogonalE model ex-
hibits the property of symmetry, then we can iden-
tify two related KG triples: (eH , eR, eT ) ∈ E and
(eT , eR, eH) ∈ E . For instance, eH (eR: is sim-
ilar to) eT and eT (eR: is similar to) eH . Since
both triples are trained by the OrthogonalE model,
they adhere to the OrthogonalE equation (as de-
picted in Fig. 2). Consequently, we can derive that
eR ·eH = eT and eR ·eT = eH . By combining and
simplifying these two equations, we can conclude
that eR · eR = I (Identity matrix). This means
that if we can identify such an eR that satisfies
eR · eR = I, it demonstrates that the OrthogonalE
model can capture the symmetry relation pattern.
For eR·eR = I, we understand that eR is composed
of several block-diagonal orthogonal matrices Xi,
as shown in Fig. 2). Ultimately, this reduces to
finding Xi · Xi = I to satisfy eR · eR = I. We
can identify corresponding orthogonal matrices Xi

that satisfy Xi ·Xi = I, which demonstrates that
OrthogonalE can fulfill the property of symmetry.

A.3 More experiments on relation pattern

Symmetry and Antisymmetry Fig. 11 shows
histograms of additional examples of relation em-
beddings for symmetry and antisymmetry relation

patterns. Furthermore, it displays examples of two
symmetry and two antisymmetry relations from
both the WN18RR and FB15K-237 datasets.

Composition Firstly, we add e1R, e2R, and e3R
from OrthogonalE(3×3) for comparison with
the three composition relations in Fig. 9 from
OrthogonalE(2×2). From Fig. 12(a, b, c, d), we
observe that OrthogonalE(2×2) performs better in
composition than OrthogonalE(3×3).

Secondly, we aim to explore more about the non-
commutative composition relation pattern, so we
select e4R, e5R, and e6R, three non-commutative com-
position relations, for our study. Notably, e7R, e8R,
and e9R share the same relational meanings as e4R,
e5R, and e6R, respectively, with the distinction that
the former are relations within OrthogonalE(3×3),
while the latter are within OrthogonalE(2×2).
Figs. 12(h, l), using e5R ·e4R−e6R and e4R ·e5R−e6R
respectively, show nearly indistinguishable his-
tograms, indicating that swapping the sequence
of the two relations in OrthogonalE(2×2) does
not affect the outcome of the composition, sug-
gesting it is commutative. Conversely, Figs. 12(m,
n), using e8R · e7R − e9R and e7R · e8R − e9R, show
that the former results in a trend closer to or equal
to 0 more distinctly than the latter, implying that
changing the sequence of relations affects the out-
come, thereby demonstrating the non-commutative
nature of relations in OrthogonalE(3×3). In con-
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Dataset model lr-entity lr-relation optimizer negative samples

WN18RR(dim=500)

TransE 0.001 - Adam 300
RotatE 0.1 - Adagrad 300
QuatE 0.2 - Adagrad 300

OrthogonalE(2×2) 0.2 0.02 - 300
OrthogonalE(3×3) 0.2 0.02 - 300

FB15k-237(dim=1000)

TransE 0.05 - Adam 300
RotatE 0.1 - Adagrad 300
QuatE 0.2 - Adagrad 300

OrthogonalE(2×2) 0.5 0.06 - 300
OrthogonalE(3×3) 0.5 0.06 - 300

Table 5: Best hyperparameters of our approach and several composite models. In the table, the lr-entity values
corresponding to TransE, RotatE, and QuatE refer to the learning rate for the entire model. For the OrthogonalE
model, we employ RiemannianAdam for relation optimization and Adagrad for entity optimization, as detailed in
the Approach section.

clusion, even though OrthogonalE(2×2) gener-
ally outperforms OrthogonalE(3×3) in composi-
tion relation patterns, the comparative analysis re-
veals that OrthogonalE(3×3) indeed possesses non-
commutative composition properties, following the
equation 9 and 10.

A.4 Introduction of Relation Patterns

We can observe several relation patterns in
KGs, including symmetry, antisymmetry, inver-
sion, and composition (both commutative and non-
commutative). Detailed examples have been shown
in Fig. 10.

Symmetry and Antisymmetry Certain rela-
tions demonstrate symmetry, indicating that the
validity of a relation between entities x and
y ((r1(x, y) ⇒ r1(y, x))) (for instance, is mar-
ried to) is equally valid in the opposite di-
rection (namely, from y to x). Conversely,
other relations are characterized by antisymmetry
((r1(x, y) ⇒ ¬r1(y, x))), signifying that if a rela-
tion is applicable between x and y (such as is father
of ), it is inapplicable in the reverse direction (from
y to x).

Inversion Relations can also exhibit inversion
((r1(x, y) ⇔ r2(y, x))), where reversing the direc-
tion of a relation effectively transforms it into an-
other relation (for example, is child of and is parent
of ).

Composition The composition of relations
((r1(x, y) ∩ r2(y, z) ⇒ r3(x, z))) signifies a cru-
cial pattern wherein merging two or more rela-
tions facilitates the deduction of a novel relation.

Such compositions might be commutative, where
the sequence of relations is irrelevant, or non-
commutative, where the sequence significantly in-
fluences the outcome. In scenarios where the order
of relations is pivotal, as illustrated by the relation-
ship where B is the mother of A’s father and E is
the father of A’s mother, non-commutative compo-
sition ((r1(x, y) ∩ r2(y, z) ̸=( r2(x, y) ∩ r1(y, z))
becomes essential. While commutative composi-
tions would consider B and E as identical, non-
commutative compositions recognize them as dis-
tinct.

A.5 Other baseline KGE model

In recent times, several significant performance
methods have been developed, as detailed for
WN18RR in Table 6. Among these, MoCoSA(He
et al., 2023), SimKGC(Wang et al., 2022a), C-
LMKE(Wang et al., 2022b), and KNN-KGE(Zhang
et al., 2022) mainly utilize Language Models
(LMs) to enrich dataset semantic information,
thereby achieving superior outcomes. Conversely,
LERP(Han et al., 2023) does not employ LMs but
leverages additional contextual information (logic
rules) beyond the dataset to fill information gaps
in entities and relations, HittER (Chen et al., 2020)
integrates the transformer architecture into KGE,
yet its lack of explainability remains unresolved.
On the other hand, methods such as TransE(Bordes
et al., 2013), RotatE(Sun et al., 2019), and the Or-
thogonalE method introduced in this paper depend
solely on the inherent data and information of the
KGE dataset itself. These methods, based on spe-
cific mathematical rules and algorithms, do not in-
corporate any external information and thus do not
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KGE Model Description MRR Accuracy
MoCoSA(He et al., 2023) Language Models .696
SimKGC(Wang et al., 2022a) Language Models .671
LERP(Han et al., 2023) Additional Contextual Information (Logic Rules) .622
C-LMKE(Wang et al., 2022b) Language Models .598
KNN-KGE(Zhang et al., 2022) Language Models .579
HittER(Chen et al., 2020) Transformer structure .503
OrthogonalE(10× 10) - .494

Table 6: Other baseline models in WN18RR dataset.

operate as black-box approaches like LLMs. Con-
sequently, these dataset-dependent methods remain
highly valuable for KGE research.

A.6 hyperparameter
All the hyperparameter settings have been shown
in Table 5.
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Figure 11: Histograms of relation embeddings for symmetry and antisymmetry relation patterns, where e1R represents
_derivationally_related_form, e2R represents _instance_hypernym, e3R represents _also_see, e4R represents
_verb_group, e5R represents /media_common/netflix_genre/titles, e6R represents /film/film/genre, e7R
represents /award/award_category/category_of , and e8R represents /people/person/gender. From the
WN18RR dataset, we select e1R, e2R e3R, e4Rand to represent Symmetry and Antisymmetry, respectively, and obtain
their relation embeddings using the OrthogonalE(3×3) model with n=501 and m=1. Similarly, from the FB15K-237
dataset, we select e5R, e6R, and e7R, e8R as representations for symmetry and antisymmetr, respectively, and acquire
their relation embeddings under the OrthogonalE(3×3) model with n=999 and m=1.

16971



(a) 𝐞!" (b) 𝐞!# (c) 𝐞!$ (d) 𝐞!# " 𝐞!" − 𝐞!$

(e) 𝐞!% (f) 𝐞!& (g) 𝐞!' (h) 𝐞!& " 𝐞!%− 𝐞!'

(l) 𝐞!% " 𝐞!&− 𝐞!'(i) 𝐞!( (j) 𝐞!) (k) 𝐞!*
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Figure 12: Histograms of relation embeddings for composition relation patterns, where e1R represents
/location/administrative_division/country, e2R represents /location/hud_county_place/place,
e3R represents /base/aareas/schema/administrative_area/capital, e4R represents
/award/award_nominee/award_nominations./award/award_nomination/nominated_for, e5R rep-
resents /award/award_category/winners./award/award_honor/award_winner, and e6R represents
/award/award_category/nominees./award/award_nomination/nominated_for. e7R, e8R, and e9R have
the same relational meanings as e4R, e5R, and e6R, respectively, the difference lies in that the former are relations
within the OrthogonalE(3×3) model, while the latter are from the OrthogonalE(2×2) model. All these relations
are selected from the FB15K-237 dataset. e1R, e2R, e3R, e7R, e8R, and e9R are relation embeddings under the
OrthogonalE(3×3) model with n=999 and m=1, while e4R, e5R, and e6R are relation embeddings under the
OrthogonalE(2×2) model with n=1000 and m=1
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