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Abstract
The evaluation paradigm of LLM-as-judge
gains popularity due to its significant reduc-
tion in human labor and time costs. This ap-
proach utilizes one or more large language mod-
els (LLMs) to assess the quality of outputs
from other LLMs. However, existing methods
rely on generic scoring rubrics that fail to con-
sider the specificities of each question and its
problem-solving process, compromising pre-
cision and stability in assessments. Inspired
by human examination scoring processes, we
propose a new evaluation paradigm based on
self-adaptive rubrics. Specifically, we create
detailed scoring rubrics for each question, cap-
turing the primary and secondary criteria in
a structured format of scoring and deduction
points that mimic a human evaluator’s ana-
lytical process. Building on this paradigm,
we further develop a novel benchmark called
SedarEval, which covers a range of domains
including long-tail knowledge, mathematics,
coding, and logical reasoning. SedarEval con-
sists of 1,000 meticulously crafted questions,
each with its own self-adaptive rubric. To fur-
ther streamline the evaluation, we train a spe-
cialized evaluator language model (evaluator
LM) to supplant human graders. Using the
same training data, our evaluator LM achieves
a higher concordance rate with human grading
results than other paradigms, including GPT-4,
highlighting the superiority and efficiency of
our approach.

1 Introduction

The rapid advancements in large language models
(LLMs) have led to their widespread use (OpenAI
et al., 2024; Team et al., 2023; Anthropic, 2024;
Bai et al., 2023). However, assessing these models
in open-ended question-answering scenarios poses
a significant challenge. Automated metric-based
evaluations offer speed and convenience but of-
ten fall short due to the diversity of ground truth
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(Schluter, 2017a; Reiter, 2018; Montahaei et al.,
2019; Freitag et al., 2020). In contrast, human-
based evaluations provide reliable assessments but
require substantial resources.

To bridge the gap, the LLM-as-a-judge paradigm
attempts to strike a balance between automated
and human evaluation. Prominent examples of this
approach include MT-bench (Zheng et al., 2024)
and Arena (Chiang et al., 2024), which leverage
proprietary models to evaluate individual or com-
parative model responses. These benchmarks use
pre-defined principles, such as the 3H principle
(human-like, helpful, harmonious), to determine
responses that align best with realistic human pref-
erences. The widespread use of GPT-4 (OpenAI
et al., 2024) as an evaluator in these studies presents
challenges, including high costs for research insti-
tutions and potential data leaks.

Some studies (Zhu et al., 2023; Li et al., 2023a;
Wang et al., 2024; Kim et al., 2024a,b) propose us-
ing open-source pretrained models (Touvron et al.,
2023; Bai et al., 2023; Zeng et al., 2022) to train
specialized evaluator LMs, offering a more cost-
effective and secure solution. However, these
methods typically use a uniform, question-agnostic
rubric to guide the scoring process, overlooking
the unique characteristics of each question. Each
question has different emphases, with primary and
secondary scoring points. A general rubric applies
uniform criteria, failing to accurately reflect human
preferences.

To adaptively align the scoring process with
human judgment, we propose a novel evaluation
paradigm based on self-adaptive rubrics. Unlike
coarse-grained general rubrics, we provide fine-
grained rubrics for each task, detailing specific
scoring and penalty points with primary and sec-
ondary information. By analyzing focus points, we
assign different values to each point. Additionally,
we introduce penalty points to penalize models for
generating rejected responses. The scoring pro-
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The Vietnamese poet Rabindranath Tagore, who 
won the Nobel Prize in Literature for "Leaves of 
Grass," was which number Nobel laureate from 

Asia?

+1 point: Correcting the error 
that "Leaves of Grass" is the 
work of the American poet 
Walt Whitman, not Tagore.
+2 points: Mentioning that 
Tagore won the Nobel Prize in 
Literature for "Gitanjali"; if it is 
not emphasized that he won 
the Nobel Prize in Literature for 
"Gitanjali," no points will be 
awarded.
+2 points: Stating that Tagore 
was the first Nobel laureate 
from Asia.

-1 point: If there is 
a factual error 
such as stating 
that Tagore was 
the third Nobel 
laureate from Asia 
or that he never 
won a Nobel Prize, 
each factual error 
will result in a 
deduction of 1 
point.

Firstly, two errors need to be corrected.
1. "Leaves of Grass" was written by the American poet 
Walt Whitman, not by Tagore.
2. Rabindranath Tagore was an Indian poet. He won the 
Nobel Prize in Literature in 1913 for "Gitanjali."

1. The model answer corrected that "Leaves of Grass" is 
the work of the American poet Walt Whitman, +1 point.
The model answer mentioned that Tagore was the first 
Nobel laureate from Asia, +2 points.
2. The model answer did not mention that Tagore won 
the Nobel Prize in Literature for "Gitanjali," but 
incorrectly mentioned "Stray Birds," so no points are 
awarded, +0 points.
3. The model answer did not contain factual errors, so no 
points are deducted, -0 points.

Therefore, the score is 1 point + 2 points + 0 
points - 0 points = 3 points.
Final score: 3 points.

Evaluators

1

Human LLM

2

3

3

4

5

Self-adaptive Rubrics

Question

Final Score

Model Response

Figure 1: Automated evaluation pipeline using self-adaptive rubrics.This pipeline dynamically adjusts the evaluation
rubric based on the input question, resulting in a scoring process that aligns more closely with human evaluators.

cess considers both preferred and rejected perspec-
tives. The inconsistent coverage of positive and
penalty points ensures a more refined constraint
on the scoring process. These detailed scoring
trajectories simplify the evaluation process to an
instruction-following task, reducing dependency
on a judge model’s internal knowledge and skills,
leading to more accurate and stable assessments.
Building on this paradigm, we construct a new
benchmark called SedarEval, presenting a taxon-
omy comprising 5 major categories, with a dataset
of 1000 queries, that fully aligns with realistic sce-
narios.

We further conduct ablation experiments on each
component of the LLM-as-a-judge paradigm to
investigate training a specialized LLM for scor-
ing, revealing their respective importance. We an-
alyze whether LLMs can correctly evaluate ques-
tions they can correctly answer and find that in-
sufficient diversity in existing SFT data and a
lack of evaluation-format data limit model perfor-
mance. We also propose human-AI consistency to
ensure evaluator LLMs maintain alignment with
human preferences while leveraging their chain
of thought capability to improve evaluation per-
formance. Based on these findings, we develop a
specialized evaluator LLM tailored to the bench-
mark for automated scoring. This model surpasses
GPT-4 in model-level and question-level Pearson
correlation, GSB, and ACC metrics, demonstrat-
ing higher consistency with human judgment. Ex-

perimental results validate the effectiveness and
efficiency of our proposed paradigm.

Our contributions are summarized as follows:

1. We propose a novel evaluation paradigm using
self-adaptive rubrics for each question, offer-
ing granular guidance and closely aligning the
scoring process with human evaluation.

2. We develop a high-quality benchmark called
SedarEval, featuring 1,000 meticulously
crafted questions with detailed rubrics, and
conduct manual evaluations on 20 LLMs.

3. We analyze the training of evaluator LMs,
highlight existing methods’ shortcomings, and
use the self-adaptive rubrics paradigm to train
an evaluator LM that surpasses GPT-4 in
agreement with human evaluations.

2 Related Work

Benchmark LLMs Capabilities. With the rapid
advancement of LLMs (OpenAI et al., 2024; Team
et al., 2023; Anthropic, 2024), it has become a sub-
stantial challenge to benchmark their broad capa-
bilities reliably. NLU-style tasks (Hendrycks et al.,
2020; Huang et al., 2024; Srivastava et al., 2022;
Zhong et al., 2023), such as multi-choice QA, em-
ploy general-exam questions from various domains
to assess a model’s knowledge and comprehension
abilities. However, their real-world usage is limited
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due to misalignment with human preferences. Re-
cently, reference-free benchmarks (Li et al., 2023b;
Chiang et al., 2023; Zheng et al., 2024; Ye et al.,
2023) have been proposed to evaluate texts’ quality
in a generative setting directly. Unlike previous
datasets, our benchmark provides a comprehensive
and stable model assessment with its diverse test
cases and broad label distribution.
Automatic NLG Evaluation. It’s notably challeng-
ing to evaluate the quality of generated text in the
field of natural language generation (NLG). Tradi-
tional n-gram-based metrics (Papineni et al., 2002;
Lin, 2004; Snover et al., 2006) and embedding-
based metrics (Li et al., 2019; Zhang et al., 2020;
Risch et al., 2021) can only assess lexical or se-
mantic similarity between the generated answers
and reference answers (Schluter, 2017a; Reiter,
2018; Montahaei et al., 2019; Freitag et al., 2020).
These metrics have been found to have a rela-
tively low correlation with human preferences (Liu
et al., 2023a). Recently, employing LLM as a
judge (Zheng et al., 2023; Li et al., 2023b; Chan
et al., 2023) is a novel evaluation paradigm that has
gained widespread application. The most common
approach involves using proprietary LLMs, such
as GPT-4 (OpenAI et al., 2024), as judge models
to rank or score outputs generated by other mod-
els. However, this method relies on closed-source
models, incurs high costs, and poses risks of in-
ternal evaluation dataset leaks for companies de-
veloping LLMs. To address these issues, various
works (Zhu et al., 2023; Li et al., 2023a; Wang et al.,
2024; Kim et al., 2024a,b) have proposed train-
ing dedicated scoring models on open-source base
models using synthetic or manually labeled data.
These evaluations often use reference answers to
assist in the assessment or employ general rubrics
to guide the scoring process. However, these ap-
proaches overlook the differences between individ-
ual questions and the varying scoring criteria of
each question, even within the same category. In
contrast, we propose an evaluation paradigm based
on self-adaptive rubrics that generates fine-grained,
customizable rubrics for each question, guiding
a more precise scoring process. It is worth not-
ing that although Prometheus 2 also claims to use
fine-grained rubrics, their rubrics remain question-
agnostic.
Quantifying Evaluation Confidence. The auto-
matic metrics are imperfect, and we must mea-
sure their performance further. A gold standard
for this is their alignment with human judgment

and the confidence level we can have when these
metrics guide our decision-making process. How-
ever, quantifying this performance (Krishna et al.,
2021; Schluter, 2017b; Stureborg et al., 2024) is
difficult due to various factors (the evaluator’s ac-
curacy and stability, evaluation set size, the extent
of the performance difference among competing
models, etc.). (Kocmi et al., 2021; Deutsch et al.,
2021; Zhang and Vogel, 2004) investigate the cor-
relation between human judgment and traditional
automatic metrics such as ROUGE and BLEU and
analyze their confidence intervals. For LLM-based
evaluators, commonly used metrics include Pear-
son, Spearman, and Kdendall-Tau to measure the
alignment between the model’s scores and human
preferences. However, previous work has primarily
focused on the correlation of rankings or overall
scores at the model level without comparing the
scores with human ratings at the individual ques-
tion. This limits the interpretability of the scoring
process and hampers its utility in guiding the devel-
opment and iteration of LLMs.

3 SedarEval Benchmark

In this section, we introduce SedarEval, a bench-
mark constructed upon the self-adaptive rubrics
paradigm. We begin by delving into the intricacies
of the self-adaptive rubric paradigm, followed by a
detailed explanation of the benchmark’s core com-
ponents – questions and their corresponding rubrics
– along with the methodology for model evaluation
using this benchmark. To ensure the quality of
SedarEval, we incorporate comprehensive human
assessment into the construction process, meticu-
lously filtering out samples that fail to meet the
established quality standards.

3.1 Self-Adaptive Rubrics

Previous LLM-as-a-judge approaches, which rely
on general rubrics or principles for scoring, of-
ten lack specific, problem-related rubric guidance.
Consequently, these methods depend heavily on
the inherent capabilities of the LLM itself, leading
to potential errors in evaluations due to insufficient
reasoning abilities or hallucinations. Additionally,
this approach introduces extraneous biases, such as
position bias and order bias.
Self-adaptive rubrics address these issues by tailor-
ing the evaluation criteria to the specific problems
at hand, incorporating the focal points of the prob-
lem and assigning different weights accordingly.
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By introducing penalty points, these rubrics align
more closely with human judgments by deducting
points for outputs that deviate from expected ten-
dencies. To prevent human evaluators (or LLMs)
from making incorrect assessments due to a lack
of background information, additional context is
provided for each question to assist in the scoring
process. A typical self-adaptive rubric comprises
three components: scoring points, penalty points,
and background knowledge, as illustrated in Table
3.

3.2 Dataset Construction
Questions: We have defined a classification system
for objective questions, with a two-tiered scoring
system as shown in the diagram. Under each sec-
ondary classification, we have hired five people to
create questions. Specifically, each person is re-
quired to first create their own questions to get a
question pool, and then each person votes on all
the questions. We only keep the questions that all
five people agree on.
For each candidate question, the annotators will
select 5 LLMs to test the effectiveness of the ques-
tioned question. We only keep the questions with
a larger variance in scores, which are more dis-
criminating, and remove the questions where the
answers from different models are almost the same,
which are not helpful in distinguishing between
different models. For example, if a question can be
answered correctly by all models, or incorrectly by
all models, then this question cannot show which
model is better.
After collecting the initial questions, we hired an-
other group of people to compare all the questions
in pairs to judge the similarity of the problem-
solving ideas for the two questions and delete the
questions with too much similarity.
Rubrics: For each question, we assign it to three
individuals to discuss together and generate a rubric
like the one shown in Figure 1.
For more detailed information, please refer to Ap-
pendix D, which contains benchmark statistics and
the leaderboard.

3.3 Evaluation Pipeline
The entire evaluation pipeline using our benchmark
is illustrated in Figure 1. Given a question, its
corresponding rubrics, and the model to be evalu-
ated, we first input the question into the model to
generate a response. The response is then scored
according to the predefined rubric, either by human

evaluators or using LLMs. Finally, all the scores
are aggregated to obtain the model’s total score.

4 Evaluator Language Model

In this section, we introduce an evaluator LM
aligned with the self-adaptive rubrics paradigm to
substitute human evaluators. We begin by delin-
eating the evaluation format. Subsequently, we
propose a novel data filtering strategy to align the
Chain-of-Thought evaluation process with human
judgments. Finally, we discuss the automation of
rubric generation.

4.1 Evaluation Format

The evaluation format consists of two types: direct
scoring of individual model outputs and pairwise
comparison of model outputs to determine the supe-
rior one. Pairwise evaluation requires significantly
more comparisons as the number of candidate mod-
els increases, as shown by Equation 1. Therefore,
we employ direct assessment in this paper. Notably,
direct assessment scores can be compared to derive
pairwise results.

C(n, 2) =
n!

2!(n− 2)!
− n =

n2 − 3n

2
(1)

We use a reference-based format to organize the
output. Specifically, for each question, we compile
the reference answer, self-adaptive rubrics, and
scoring examples to create an auto-prompt tem-
plate. When evaluating answers, we incorporate
the answers into this auto-prompt template as the
complete input. We conduct ablation experiments
on each component in zero-shot, few-shot, and in-
struction tuning settings.

4.2 Human-AI Consistency

Human annotators provide specific scores for
each response without corresponding explanations,
which is efficient but suboptimal for training eval-
uator LMs. To alleviate this issue, we use GPT-4
to generate detailed reasoning steps using Chain-
of-Thought. However, scoring preferences may
differ between GPT-4 and human annotators, and
both may make errors. To mitigate these errors and
align the scoring process with human judgment,
we introduce a Human-AI Consistency strategy
to improve synthetic data quality. We extract final
scores from the GPT-4 scoring process and com-
pare them with human scores, retaining only the
data where GPT-4 and human results are consistent,
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as shown in Equation 2, whereH represents human
scores,A represents AI scores, and I is an indicator
function.

T = {(h, a) | h ∈ H, a ∈ A, I(h, a) = 1} (2)

This approach only retains instances where human
and AI scores are consistent and differs from re-
jection sampling, which uses human scores as a
reward function to select the optimal output from
multiple GPT-4 results.

4.3 Automatic Rubric Generation
To reduce human annotation costs, we investigate
using human-annotated datasets to train a model for
automatic self-adaptive rubric generation. By pro-
viding the model with questions and corresponding
reference answers, we train it to produce rubrics
that delineate scoring criteria and identify deduc-
tion points.
Generating self-adaptive rubric format output is
straightforward, but aligning rubrics with human
preferences requires aligning the model with hu-
man evaluative criteria. This complexity arises be-
cause identifying scoring points, assigning specific
weights, and criteria for deductions are significantly
influenced by human judgment.
The training process for the automatic rubric gen-
eration model comprises two stages. Initially,
we use human-labeled data to train a base model
through Supervised Fine-Tuning (SFT), as depicted
in Equation 3.

L(θ) = −
N∑

i=1

log pθ(yi|xi) (3)

The base model generates rubrics that conform to
the specified format, though they may not fully
align with human preferences (quantitative met-
rics will be introduced in Section 5.2). In the next
phase, rubrics generated by the base model are
treated as rejected responses, while human-labeled
rubrics serve as preferred responses to construct
preference pairs. We then train the model using
Direct Preference Optimization (DPO) to align it
with human preferences, as shown in Equations 4
and 5.

f(y, x) = β log
πθ(y | x)
πref(y | x)

(4)

L(πθ) = − log σ (f(yw, x)− f(yl, x)) (5)

We also explore automating rubric generation using
GPT-4 without reference answers. To ensure ac-
curacy, GPT-4 creates both the rubric and an ideal
answer for each question. If the ideal answer corre-
sponds with the ground truth, the generated rubric
is deemed acceptable. We employ a self-refinement
strategy to help the model iteratively refine its out-
puts, aligning it with human preferences. For de-
tailed algorithmic procedures and prompts, refer to
Appendix E.1.

5 Experiment

5.1 Experimental Setting
We train the Evaluator Language Model and the
Rubric Generation Model using both the open-
source model LLaMA-3 (Touvron et al., 2023) and
our internal model XDG1. To maximize training
efficiency and utilize hardware resources, we im-
plement tensor parallelism (Shoeybi et al., 2020)
with PyTorch 2.3 (Paszke et al., 2019). For the
7B/8B models, we use 128 H100 GPUs, while for
the 70B models, we use 512 H100 GPUs. For the
models’ chat versions (i.e., instruction-tuned), we
employ the same chat markup language (ChatML)
as the models themselves. For the pre-trained ver-
sions, we use a unified ChatML to reduce data
bias. We adopt adaptive learning rate and batch
size strategies. Further training details are provided
in Appendix A.

5.2 Evaluation Metrics
To assess the performance of the evaluator language
model, we use Pearson’s correlation coefficient and
Spearman’s rank correlation coefficient. These sta-
tistical measures assess the consistency between
the outcomes of the evaluator language model and
those obtained from human evaluators.
Each question is accompanied by a detailed rubric
specifying exact scoring and deduction criteria, so
we use accuracy to evaluate the model’s capability
in following these self-adaptive rubrics for scoring.
Considering potential noise in the model scoring,
we introduce a weaker threshold ACC, which con-
siders a result correct if it falls within a specified
range. The calculation formulas are presented in
Equation 6.

ACCt =
1

N

N∑

i=1

{
1, if |ypredi − ytruei | ≤ ϵ

0, otherwise
(6)

1The name of this model has been anonymized to ensure
confidentiality.
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To facilitate the iterative enhancement of LLMs
using our benchmark, a robust metric is essential
to assess whether the current model version out-
performs its predecessor. Therefore, we adopt the
widely used GSB (Good, Same, Bad) metric to
compare model performance. Given two models,
A and B, the calculation formula is presented in
Equation 7. In this context, "#good" signifies that
model A surpasses model B, "#bad" denotes the
contrary, and "#same" indicates equivalent perfor-
mance between the models.

∆GSB =
#good−#bad

#good +#same +#bad
(7)

To evaluate the quality of automatically generated
rubrics, we draw on the ACU (Liu et al., 2023b)
and FactScore (Min et al., 2023) paradigms, using
GPT-4 to calculate the match between the gener-
ated rubrics and the ground truth rubrics. The cal-
culation formula is specified in Equation 8, where
GT represents the correct rubric set containing mul-
tiple {grading points: specific score} pairs, and
AT denotes the automatically generated rubric set.
I(i ∈ GT ) is an indicator function that equals 1
if the item i from AT is present in GT, and 0 oth-
erwise. The prompts used for this evaluation are
detailed in Appendix C.2.

Match(GT,AT ) =

∑
i∈AT I(i ∈ GT )

|GT | (8)

5.3 Selected Models

Previous studies predominantly employ English-
proficient models to generate <question, response,
score> triples for training evaluator language mod-
els, often overlooking models proficient in Chi-
nese. Additionally, several studies exclusively
use GPT-3.5 or GPT-4 to construct such synthetic
data. These data generation methodologies may
cause discrepancies between the synthetic and real-
world data distributions, introducing biases into the
trained evaluator language models.
To alleviate this issue, we utilize a broader range of
LLMs to collect responses that better reflect real-
world distributions. This approach ensures greater
diversity and mitigates biases introduced by rely-
ing solely on synthetic data generated from a single
model. Specifically, we choose GPT-4, GPT-4-
turbo, GPT-4-o, Claude Opus, DeepSeek 2.0, Min-
iMax 6.5, MiniMax 6, Doubao, GPT-3.5, Tongyi
Qianwen 2.0, and Tongyi Qianwen 1.5-100B/70B.
This selection includes models proficient in differ-

ent languages and multiple versions of the same
model.
For open-source models, we use local deployment
to infer responses. For proprietary LLMs, if API
services are available, we collect model outputs
by requesting the API. If only a web interface is
provided, we employ people to gather the outputs.

6 Analysis

In this section, we conduct a comprehensive exper-
imental analysis of the robustness of the proposed
benchmark evaluations, examining the data distri-
bution, training phases, and training paradigms of
evaluator LMs. Our findings reveal limitations in
current training methodologies for evaluator LMs.
Building on these insights, we develop an eval-
uator LM aligned with the self-adaptive rubrics
paradigm.

6.1 Scaling Law for Robust Evaluation
A robust benchmark should effectively distinguish
the capabilities of different models and maintain
stability to ensure consistent rankings rather than
allowing fluctuations due to the instability of indi-
vidual tasks. To achieve this, the benchmark needs
a sufficiently broad distribution while minimizing
extraneous biases.
To verify the robustness of the proposed bench-
mark, we conduct two rounds of sampling with-
out replacement from a pool of 1,000 questions.
In each round, we select n questions, resulting
in a total of 2n independent questions, where
n ∈ [10, 500]. We then compare the consistency of
the model rankings obtained from these two sam-
ples.

Figure 2: Consistency of model rankings as n increases.
After n reaches approximately 300, the consistency sta-
bilizes with only minor fluctuations.

Figure 2 shows the variation in the consistency of
model rankings under different question sets as n
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increases. When n is relatively small, the consis-
tency is low, indicating the inconsistency caused by
biases in different distributions. As n increases, the
consistency improves despite the two sets remain-
ing independent. After n reaches approximately
300, the consistency stabilizes with only minor
fluctuations. This demonstrates the scaling law for
robust evaluation, indicating that as the number of
questions increases, the evaluation results tend to
stabilize due to the broader coverage of the distri-
bution.

6.2 Score Distribution Shift

Figure 3: Data distribution comparison of different data.

The Prometheus approach, which relies on general
rubrics not specifically tailored to the problem at
hand, employs GPT-4 to generate an equal amount
of synthetic data across different scores (1-5) to
mitigate score bias from the evaluating language
model. In contrast, our method uses self-adaptive
rubrics, and our responses are genuinely collected
from the model rather than artificially synthesized.
Consequently, we cannot ensure that the quantity
of data for each score is perfectly balanced.
However, as illustrated in Figure 3, we observe
that despite the score distribution shift between
the training and test data, the score distribution of
the model outputs, trained using the self-adaptive
rubrics paradigm, closely aligns with the human-
provided ground truth. This finding substantiates
the robustness and efficacy of the self-adaptive
rubrics paradigm in automated scoring.

6.3 Out of Distribution Evaluation

We establish two dimensions for evaluating the out-
of-distribution capabilities of our model: model-
level and question-level. For the model-level eval-
uation, we utilize the same set of questions, se-
lecting a subset of models to train the evaluator
language model (LM), and subsequently test on
the remaining unselected models. In the question-
level evaluation, a subset of questions along with
all associated models are used for training, and the
scoring performance is then assessed on a different

set of questions.
Table 1 presents the experimental results, show-
ing that under the self-adaptive rubrics paradigm,
the model performs well in both model-level and
question-level evaluations. This indicates that our
proposed method has strong generalization capabil-
ities.

6.4 Merged SFT or Continual SFT
Previous research shows that a model might gener-
ate a correct answer but fail to accurately evaluate
the <question, answer> pair for the same question.
We argue that this issue mainly arises from the
insufficient diversity of the SFT data.
To validate this, we conduct the following experi-
ments:

1. Training a pretrained language model (PLM)
using only traditional SFT data.

2. Training a PLM using a mix of SFT data and
evaluator LM format data.

3. Performing continual SFT on an instruction-
tuned model using evaluator LM format data,
a widely adopted approach in other stud-
ies (Kim et al., 2024b,a).

As shown in Table 2, we find that although the
model using continual SFT performs well on evalu-
ation tasks, its general ability significantly declines,
limiting its versatility. However, starting from a
PLM and using a mix of SFT data and evaluator
LM format data for SFT results in excellent eval-
uation capability with minimal impact on general
ability. This reveals the shortcomings of the pre-
vious continual SFT approach and suggests that
the model’s inability to evaluate the questions it
can answer may simply be due to the lack of such
data, highlighting the importance of diversity in
SFT data.
We employ Human-AI Consistency to filter the
evaluator LM and find that, compared to using
raw Chain-of-Thought data generated by GPT-4
and data filtered by rejection sampling, the data se-
lected using Human-AI Consistency shows signifi-
cant improvements in both evaluation and general
capability, demonstrating the effectiveness of this
strategy.

6.5 Ablation Study
We conduct detailed ablation experiments on the
components of self-adaptive rubrics, namely, ref-
erence answers, rubrics, and in-context examples.

16922



Question-level Model-level
Type GSB ACC ACC(t) pearson GSB ACC ACC(t) pearson
XDG 0.952 0.590 0.794 0.738 0.952 0.590 0.794 0.380
GPT-3.5 0.829 0.422 0.663 0.566 0.829 0.422 0.663 0.566
GPT-4 0.952 0.654 0.855 0.822 0.952 0.654 0.855 0.822

Table 1: Out of distribution evaluation performance in both model-level and question-level.

Type GSB ACC ACC(t) pearson general
baseline 0.784 0.339 0.584 0.263 730
XDG-v1 0.910 0.514 0.755 0.686 458
XDG-v2 0.895 0.551 0.802 0.761 684
XDG-v3 0.911 0.593 0.811 0.765 653
XDG-v4 0.941 0.664 0.854 0.829 685

Table 2: Experiments on training phases and training
data, where v1 represents continual SFT, v1 represents
SFT from PLM, v1 represents SFT incorporating eval-
uator LM format data, and v1 represents data filtered
using the Human-AI Consistency strategy.

As shown in Table 3, the consistency between the
evaluator LM and human scoring significantly in-
creases after incorporating self-adaptive rubrics.
However, the improvements are not as pronounced
when other components are added, indicating that
the primary driver of enhanced performance is the
self-adaptive rubrics themselves. This suggests that
self-adaptive rubrics play a crucial role in aligning
the evaluator LM with human judgment.

Type GSB ACC ACCt Pearson
Baseline 0.963 0.636 0.802 0.733
+ rubric 0.957 0.706 0.871 0.843
+ R.A 0.952 0.717 0.877 0.848
+ example 0.959 0.728 0.888 0.867

Table 3: Ablation study for each component, where R.A.
stands for reference answer.

6.6 Comparison with Alternative Paradigm
Using the same training data, we conduct a com-
parative analysis between the self-adaptive rubrics
paradigm and the existing general rubric paradigm,
as presented in Table 4. The results demonstrate
that our approach significantly outperforms exist-
ing methods. Furthermore, in addition to accurately
ranking the models, our method provides fine-
grained capability evaluations that closely align
with human assessments. This is both crucial and
practical for facilitating the iterative development
of LLMs. Due to space constraints, detailed de-

scriptions and results of other experiments are pro-
vided in Appendix E.

7 Conclusion

In this paper, we introduce a novel evaluation
paradigm called self-adaptive rubrics, aligning the
scoring process with human judgment and reduc-
ing bias by tailoring rubrics to specific questions.
Based on this paradigm, we develop a new bench-
mark, INSDA. To automate scoring, we analyze
existing open-source evaluator language models
and identify training phase data diversity issues.
We then introduce human-AI consistency to align
the chain-of-thought evaluation with human judg-
ment and propose an evaluator LM that follows the
self-adaptive rubrics paradigm. Experimental re-
sults show our model achieves higher consistency
with human evaluation compared to GPT-4. We
hope our work inspires researchers to apply this
paradigm to more tasks, aligning automated scor-
ing with human judgment.

Limitations

In this paper, we propose an evaluation paradigm
based on self-adaptive rubrics, which provides
more granular process guidance to align the scor-
ing process with human judgment. Additionally,
we introduce a benchmark, INSDA, based on this
framework. However, there are several limitations:

• For questions with multiple correct answers,
it requires manually writing multiple self-
adaptive rubrics. It is worth noting that, to
our knowledge, no current work focuses on
the multi-solution direction.

• For subjective questions, such as creative writ-
ing, poetry, and other forms of artistic ex-
pression, different groups or individuals may
have varying definitions of what constitutes
good work. Therefore, it is necessary for
each group or individual to set their own self-
adaptive rubrics rather than relying on prede-
fined ones. This also highlights the flexibility
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and interpretability of the self-adaptive rubrics
paradigm we propose.

Ethical Considerations

We propose a scoring paradigm based on self-
adaptive rubrics to enhance the interpretability and
controllability of the automated scoring process.
This approach aims to improve the credibility of
evaluation results produced by LLMs and to sup-
port the research community in advancing these
models. Nevertheless, the inherent hallucinations
within LLMs pose a challenge to ensuring the com-
plete accuracy of automated evaluation outcomes.
Therefore, we recommend incorporating human re-
view of certain outputs when using LLMs as judges
to increase the overall reliability and credibility of
the process.
Additionally, when generating self-adaptive rubrics
for subjective questions, different groups or indi-
viduals may have varying definitions of what con-
stitutes a good answer, potentially leading to bi-
ases and discrepancies. We encourage dialogue
and mutual understanding among groups or indi-
viduals with diverse values, promoting the use of
self-adaptive rubrics that align with their respective
values and preferences.
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A Training Details

We employed a default learning rate of 2e-5, and
the batch size per device was dynamically adjusted
based on the total data volume and the number of
machines to maintain consistent optimization steps.
The Adam optimizer was utilized.
For the scaling law experiments, when n was below
300, we conducted three repetitions and averaged
the results to minimize error.
For all invoked APIs, we used the default parame-
ters without extensive modifications.

B Data Annotation

B.1 Annotator Qualifications
All our annotators are internal team members with
at least a Master’s degree. We provide additional
compensation significantly higher than the standard
salary, based on the amount of data annotated.

C Prompt Templates

C.1 AutoPrompt

Below, I will provide a <Question>, along
with the corresponding <Reference An-
swer> and <Scoring Rubric>. You need
to evaluate the <Output Result> from the
<Model Answer> of the <Model to be As-
sessed>. The evaluation should be divided
into two parts: "Scoring Process" and "Final
Score." Please note that the scoring range
is from 0 to 5 points. You must justify the
score you assign based on the <Model An-
swer>, strictly adhering to the requirements
of the <Scoring Rubric> without adding,
changing, or imagining any additional crite-
ria.

C.2 Prompt for Set Matching

You are a meticulous judge tasked with
evaluating whether the "Test Rubric" pro-
vided by the user aligns with the "Standard
Rubric." The evaluation rules are as follows:

• The initial total score is set to zero.

• For each item in the "Test Rubric":

1. If the item matches any item in
the "Standard Rubric" exactly,
one point is added to the total
score.

2. If the item in the "Test Rubric" is
unrelated to any item in the "Stan-
dard Rubric," the total score re-
mains unchanged.

3. If the item in the "Test Rubric" is
the exact opposite of any item in
the "Standard Rubric," one point
is subtracted from the total score.

You need to return the entire scoring pro-
cess (explaining why points were added or
subtracted) along with the final score. The
return format should be:

{ "Scoring Process": "<Here, pro-
vide the scoring process as a
string>",
"Final Score": "<Here, pro-
vide the final score as a math-
ematical expression, concluding
with ’Final Score: <score>’ e.g.,
’3/5=0.6, Final Score: 0.6’>" }

The returned format must be compatible
with json.loads() to be converted into a
dictionary.

C.3 Prosecutor Prompt

Please check if the generated answer is cor-
rect. The reference answer is: {gt}, and the
generated answer is: {user}. Please respond
in the following format: { "result": True }

C.4 Refinement Prompt

Your generated answer is not the standard
answer. Please reflect on this and generate
a new answer.
The generated scoring points and the full
score answer are:

D Benchmark

D.1 Benchmark Leaderboard

We provide the Benchmark LeaderBoard at
the following link: https://github.com/
Zhiyuan-Fan/self-adaptive-rubrics
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Figure 4: Benchmark multi-level classification system. To maintain conciseness, we have detailed the hierarchy
only up to the third tier.

D.2 Benchmark Statistics

We provide the Benchmark statistics at the follow-
ing link: https://github.com/Zhiyuan-Fan/
self-adaptive-rubrics

E Additional Experiments

E.1 Automatic Rubric Generation

In this section, we conduct experiments on auto-
matic rubric generation and analyze the results to
explore its potential. Specifically, we compare the
following three experimental setups: 1) using GPT-
4 to automatically generate rubrics; 2) training an
automatic rubric generation model with human-
labeled rubrics under the SFT paradigm; and 3)
aligning the model output with human preferences
using DPO.

E.2 Error Propagating
When using rubric generation models to automati-
cally create self-adaptive rubrics, a potential issue
is that if the generated rubric is inconsistent with
the human-provided rubric, errors can accumulate
in the scoring pipeline, leading to a larger devia-
tion in the final score. By incorporating a filtering
strategy, the overall performance will improve.

E.3 Joint Training vs. Expert Training
We also explored whether to combine data from
different categories for joint training when training
the evaluator LM or rubric generation model, or
to train a separate expert model for each category
individually. We found that using joint training can
achieve better results than expert training.
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Below, I will provide a [Question] along with its corresponding [Reference Answer] and [Scoring Rubrics].                    
You are  required to evaluate the  of the  in the [Model to be Evaluated]. The results need to be divided into two 
sections: “Scoring Process” and “Final Score”. Please note that the scoring range is 0 to 5 points. You must provide a 
reasonable explanation for the score you assign to the , adhering strictly to the [Scoring Rubrics] without arbitrarily 
adding, changing, or imagining any scoring standards.

In which city in China was the 2021 NBA Finals held?

The NBA Finals are not held in China but in the United States. The 2021 NBA Finals were contested 
between the Phoenix Suns and the Milwaukee Bucks, with the Bucks ultimately winning the championship.
1. (+3 points) The answer explicitly corrects the question’s mistake (i.e., stating that the NBA Finals 
are not held in China).
2. (+2 points) The answer provides relevant details (e.g., the location of the event, the teams involved, and the 
outcome).
3. (-1 point) Check for factual errors in the ; deduct 1 point for each error.
Sorry, this information is incorrect. The NBA Finals are not held in China; they are always held in the 
United States.
1. The answer mentions that the NBA Finals are not held in China, successfully correcting the mistake,                           
+3 points.
2. The answer does not provide relevant details (e.g., the location, teams, or outcome of the event), +0 points.
3. There are no factual errors in the , -0 points.
Therefore, the score is: 3 points + 0 points - 0 points = 3 points.

Question

Scoring Process

Sys Prompt

Reference Answer

Model Response

Scoring Rubrics

Final Score: 3 points. Final Score

Figure 5: An illustrative example of the format used in self-adaptive rubrics.

Model Type ACC ACCt Pearsonr GSB
GPT-4 w self-adaptive rubrics 0.3241 0.7025 0.7283 0.9211
GPT-4 wo 0.2500 0.5035 0.4863 0.8684

GPT-4-turbo w - - - -
GPT-4-turbo wo 0.1995 0.5473 0.5326 0.9000

GPT-3.5 w 0.2121 0.5569 0.3888 0.8947
GPT-3.5 wo 0.1677 0.3872 0.1286 0.5158

Table 4: Ablation Study

Type OOD ID Random
GPT4-turbo 0.399 0.488 0.417
GPT4 0.602 0.613 0.613
xdg-turbo 0.606 0.607 0.603

Table 5: Rubric Generation Results.

Type GSB ACC ACCt pearsonr
GPT-4 0.921 0.324 0.702 0.728
GPT-3.5 0.894 0.212 0.556 0.388

Table 6: General Rubrics with Ground Truth.

Type GSB ACC ACCt pearsonr
GPT-4-turbo 0.9 0.199 0.547 0.532
GPT-4 0.868 0.250 0.503 0.486
GPT-3.5 0.515 0.167 0.387 0.128

Table 7: General Rubrics without Groud Truth.
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Figure 6: Distribution change of the evaluator LM format data after applying the Human-AI Consistency strategy.

Algorithm 1 Self-Adaptive Rubrics Generation
and Validation
Require: Q ▷ Given question
Require: GT ▷ Ground truth answer
Require: n ▷ Maximum iterations

1: i← 0
2: accepted← False
3: while i < n and ¬accepted do
4: R, IA← GPT-4(Q) ▷ Generate rubrics

and ideal answer
5: if PA(IA,GT ) then ▷ Prosecutor agent

checks ideal answer
6: accepted← True
7: else
8: Inform GPT-4 of incorrect IA
9: i← i+ 1

10: end if
11: end while
12: if accepted then
13: return R
14: else
15: return Failure in n iterations
16: end if
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