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Abstract

Recent advancements in Large Language Mod-
els (LLMs) have facilitated the development of
Multimodal LLMs (MLLMs). Despite their im-
pressive capabilities, MLLMs often suffer from
over-reliance on unimodal biases (e.g., lan-
guage bias and vision bias), leading to incorrect
answers in complex multimodal tasks. To in-
vestigate this issue, we propose a causal frame-
work to interpret the biases in Visual Ques-
tion Answering (VQA) problems. Within this
framework, we conduct an in-depth causal anal-
ysis to assess the causal effect of these biases on
MLLM predictions. Based on the analysis, we
introduce 1) a novel MORE dataset with 12,000
challenging VQA instances requiring multi-
hop reasoning and overcoming unimodal bi-
ases. 2) a causality-enhanced agent framework
CAVE that guides models to comprehensively
integrate information from different modalities
and mitigate biases. Our experiments show that
MLLMs perform poorly on MORE, indicating
strong unimodal biases and limited semantic
understanding. However, when integrated with
our CAVE, promising improvements in reason-
ing and bias mitigation can be seen. These find-
ings provide important insights for the devel-
opment of more robust MLLMs and contribute
to the broader goal of advancing multimodal
AI systems capable of deeper understanding
and reasoning. Our project page is at https:
//github.com/OpenCausaLab/MORE.

1 Introduction

Following the success of Large Language Mod-
els (LLMs) (Ouyang et al., 2022; Touvron et al.,
2023b), Multimodal LLMs (MLLMs) (OpenAI,
2023; Team et al., 2023) have been proposed for
various vision-language tasks (Fu et al., 2023; Liu
et al., 2023b). Despite their promising results, it

*This work was done during her internship at Shanghai AI
Laboratory.

†Corresponding author.

(a) Language Bias

Question: Which country is hosting
the next World Cup after this venue?

🤖
The next World Cup is the 2022 
FIFA World Cup, which will be 
held in Qatar.

Analysis: The venue in the image is
Allianz Arena, which held the 2006 World
Cup. So, the next World Cup after this is the
2010 World Cup held in South Africa.

(b) Vision Bias

Question: What is the representative 
building of the designer of this 
building in Berlin?

🤖
The representative building is
The Shard.

Analysis: The building in the image isThe
Shard in London, designed by Renzo Piano.
His representative work in Berlin is
Potsdamer Platz master plan.

Figure 1: Examples of over-reliance on unimodal biases.
MLLMs (e.g., LLaVA) erroneously generate answers
due to language bias (indicated by the underlined text
below the left image) and vision bias (the right image).

remains unclear if they truly understand images
and text in the context of multimodal reasoning.

As shown in the knowledge-based Visual Ques-
tion Answering (VQA) problems of Figure 1, when
prompted with “Which country is hosting the next
World Cup after this venue?” MLLMs such as
GPT-4V (OpenAI, 2023) and LLaVA (Liu et al.,
2023a) may capture the language bias of “the next
World Cup” and think that the next World Cup
will be “the 2022 FIFA World Cup held in Qatar”
(which is also outdated knowledge), while ignoring
the exact venue presented in the image. Similarly,
when presented with an image of “The Shard” in
London, MLLM directly identifies “The represen-
tative building is The Shard” influenced by vision
bias, overlooking the specific constraint “in Berlin”
mentioned in the question. These inherent issues
pose significant challenges to the reasoning capa-
bilities of MLLMs, particularly when faced with
more complex questions.

To investigate the issue of MLLMs’ Over-
REliance (MORE) on such unimodal biases, we pro-
pose a causal framework to interpret and quantify
language and vision biases. We begin by defining a
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Datasets Knowledge-
based

Multi-hop
Reasoning Answer Type Unimodal Biases

Evaluation Rationale # Size

Visual7W (Zhu et al., 2016) ✗ ✗ Open-ended ✗ ✗ 327.9K
VQA (v2) (Goyal et al., 2017) ✗ ✗ Open-ended ✗ ✗ 1.1M

FVQA (Wang et al., 2017) ✓ ✗ Open-ended ✗ ✓ 5.8K
OKVQA (Marino et al., 2019) ✓ ✗ Open-ended ✗ ✗ 14K
S3VQA (Jain et al., 2021) ✓ ✗ Open-ended ✗ ✗ 7.5K
A-OKVQA (Schwenk et al., 2022) ✓ ✗ Multi-choice ✗ ✓ 23.7K
INFOSEEK (Chen et al., 2023) ✓ ✗ Open-ended ✗ ✗ 1.4M

MORE (Ours) ✓ ✓ Multi-choice ✓ ✓ 12K

Table 1: Comparison of MORE with other VQA datasets, highlighting its incorporation of external knowledge,
multi-hop reasoning, unimodal bias evaluation, and rationale for interpretability.

causal graph of MLLM’s prediction on VQA prob-
lems, built on key causal factors like images and
questions. Then, we identify a set of interventions
in the context of VQA problems, thereby ascertain-
ing the causal effect of unimodal biases on MLLM
predictions via do-calculus (Pearl, 1995). This al-
lows us to evaluate the sensitivity and robustness
of MLLMs against unimodal biases.

Based on the above causal analysis, we curate
a novel dataset termed MORE, comprising 12,000
VQA instances. This dataset advances existing
VQA datasets by introducing a dedicated evalu-
ation of unimodal biases. We adopt a Multiple
Choice Question (MCQ) format to facilitate the
evaluation, where each instance consists of an im-
age, a question, and four candidate options. The im-
age is sourced from an existing VQA dataset (Chen
et al., 2023). For question and option curation,
we incorporate a knowledge graph (KG) (Wang
et al., 2021), allowing us to simulate MLLMs to
navigate potential paths within the causal graph.
Specifically, the options consist of one correct an-
swer, and three distractors targeting language bias,
vision bias, and multi-hop reasoning, respectively.
We also provide the reasoning path, designated as
causal rationale, in the KG for each instance, offer-
ing interpretability for evaluation. As summarized
in Table 1, compared to existing VQA datasets,
MORE features better comprehensiveness.

Furthermore, motivated by the causal analysis,
we propose CAVE, a causality-enhanced method
to mitigate unimodal biases in MLLMs. CAVE en-
compasses a diverse set of workflows, including
question decomposition, causality-based enhanced
self-reflection, external knowledge retrieval, and
answer verification. This framework guides models
in explicitly and comprehensively integrating infor-
mation from multiple modalities while helping to

prevent biased decision-making and the selection
of incorrect shortcuts.

Through extensive experiments on MORE with
several leading MLLMs, we observe that: 1)
most MLLMs perform much poorly on MORE,
showing strong reliance on unimodal biases and
low robustness to disturbances; 2) MLLMs still
struggle to achieve precise semantic understand-
ing in multimodal reasoning; 3) With our pro-
pose method CAVE, we can mitigate the unimodal
bias in MLLMs, yet it still falls short of the ideal.
This indicates that addressing the unimodal bias in
MLLMs is a highly challenging issue that merits
further exploration. Overall, our main contribu-
tions are as follows:

• We propose a causal framework to interpret and
quantify the biases in VQA problems.

• We construct a new dataset, MORE, which re-
quires multi-hop reasoning and overcoming bi-
ases, demonstrating superior comprehensiveness
to existing VQA datasets.

• We conduct extensive experiments on MORE and
propose a causality-enhanced method CAVE to
mitigate the unimodal biases, providing insights
for future work.

2 A Causal Framework

Inspired by Stolfo et al. (2023), we introduce a
causal graph for MLLM predictions on VQA prob-
lems, highlighting language and vision biases and
assessing their causal effects via controlled inter-
ventions (Pearl, 1995).

2.1 Problem Setup
We consider an entity-centric VQA problem, M ,
involving a question Q := (S, T ) and an image
I := (E,C). Here, S is the core semantic content
of Q, and T is the textual form unrelated to Q’s
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Figure 2: Causal graph of MLLM’s Prediction on VQA problems. We use the green subgraph Gh to represent the
desired causal mechanisms and compare it with the undesired effects of unimodal biases. We quantify the causal
effects of each factor by performing controlled interventions of the images (I, E,C) and of the questions (Q,T ).

main meaning. I includes the primary entity E and
surrounding visual context C. The model outputs
an answer, A. Notation: lowercase letters denote
instances of corresponding uppercase variables.

2.2 Causal Graph of MLLM Predictions

Inspired by human cognitive processes (Zellers
et al., 2019; Stolfo et al., 2023), we formulate the
causal mechanisms in human problem-solving for
a VQA problem m: s = fc1(q), e = fc2(i), g =
fc3(s, e). This involves decoding the question q
to extract its semantic meaning s through cogni-
tive process fc1 , and identifying the core entity e
from the image i through fc2 . These are combined
by fc3 to produce the result g, as shown in the
green subgraph Gh of Figure 2. In contrast, the
model’s approach to the same VQA problem em-
ploys a = fb(q, i), a black-box function where it is
unclear how question and image inputs are utilized
and interact to form the prediction a. For deeper
analysis, we illustrate possible causal mechanisms
in Figure 2. Notable mechanisms include:

Language Bias The model may directly process
the question Q in two ways: by focusing on the
core semantics S via Q → S → A, or on the
irrelevant part T via Q → T → A. Both pathways
lead to language bias, e.g., the focus on “the next
World Cup ” in Figure 1 (a).

Vision Bias The model may attend directly to the
entity E of the image I via I → E → A, or to the
irrelevant part C via I → C → A. Both pathways
lead to the emergence of vision bias, e.g., the focus
on the “The Shard” entity in Figure 1 (b).

Desired Causal Mechanisms Correct reasoning
in VQA problems hinges on understanding causal
mechanisms, as depicted in Figure 2. The subgraph
Gh represents comprehension of how image and
question jointly affect the ground-truth result G,
through E → G and S → G. This understanding
should lead to model predictions that are sensitive
and robust to changes in G, namely G → A, with
no spurious effects on A unless it passes the me-
diator G. Model performance could therefore be
evaluated by its: 1) Sensitivity, which assesses how
well the model adapts to changes in the correct
answer, i.e., A responds to changes in G. 2) Ro-
bustness, which measures resistance to unimodal
biases, e.g., C → A and T → A, where mini-
mal bias effects imply higher robustness to input
changes that do not alter the ground-truth answer.

2.3 Causal Analysis of VQA Biases

We adopt the controlled interventions as outlined
by Pearl (1995) to quantify the causal effects of
questions and images on model predictions.

Causal Interventions for VQA 1) Interventions
on Q. The question Q can be modified in two
ways: (i) altering both S and T , or (ii) altering T
but keeping S unaffected. 2) Interventions on I .
The image I can be replaced with an alternative
image I ′ in three ways: (i) altering both E and C ,
or (ii) altering C but keeping E unaffected, or (iii)
altering E but keeping C unaffected. Note that we
do not solely alter S within Q, because it is not
feasible to intervene on the core semantics S of a
question without affecting the surface text T of it.
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Formulation of Causal Effects We assess the
causal effects using do (X : x → x′), where X ∈
{Q,T, I, C,E} is a factor in the VQA problem M .
The pre-intervention probability distribution P(A |
I,Q) is denoted as P , and the post-intervention
distribution as P ′. Following Pearl (1995), the
causal effect is evaluated using a distance met-
ric δ, as CE = δ(P, P ′), where CE denotes the
causal effect. It can refer to 1) the total causal ef-
fect (TCE), signifying the joint effect across all
causal paths from one variable to another; or 2) the
direct causal effect (DCE), indicating the effect
of the directed causal path devoid of intermedi-
ary variables (Pearl, 2022). Following Stolfo et al.
(2023), we assess the causal effect of factor X on
the model’s answer A by comparing the change in
predicted results, δcp(P, P ′) := I(a ̸= a′), where
a = argmaxx P (x) and a′ = argmaxx P

′(x),
with I indicating a change in the answer.

Causal Effects of Questions We assess TCE of
a question Q on an answer A by intervening on Q:

TCE(Q on A) := Eq′∼P(Q)

[
δ
(
P, P ′)] ,

where P ′ = P
(
A | I, do

(
Q = q′

))
.

(1)

This TCE contains two different types of paths
that show how Q affects A, as illustrated in Fig-
ure 2: 1) The intended decision-making pathway:
Q → S → G → A, responding to changes in the
ground truth. 2) Potential spurious correlations,
e.g., Q → T → A, where the model may depend
on certain linguistic patterns from training data.

Maintaining the core semantics S constant, we
can assess DCE of the textual surface T on A:

DCE(T → A) := Eq′∼P(Q|S)
[
δ
(
P, P ′)] ,

where P ′ = P
(
A | I, do

(
Q = q′

))
.

(2)

As discussed in “Causal Interventions for VQA”,
solely intervening on S without altering T is im-
practical. However, Understanding S’s causal im-
pact on A is feasible by comparing two known
quantities: TCE(Q on A) and DCE(T → A).

Causal Effects of Images The causal structure
of images mirrors that of questions, as shown in
Figure 2. Thus, we can derive TCE of image I on
the answer as follows:

TCE(I on A) := Ei′∼P(I)
[
δ
(
P, P ′)] ,

where P ′ = P
(
A | Q,do

(
I = i′

))
.

(3)

Likewise, maintaining E constant during each
intervention on I allows us to quantify the DCE of

the irrelevant visual context C on A:

DCE(C → A) := Ei′∼P(I|E)

[
δ
(
P, P ′)] ,

where P ′ = P
(
A | Q,do

(
I = i′

))
.

(4)

Maintaining C and G constant during each inter-
vention on I instead allows us to quantify the DCE
of the core entity E on A:

DCE(E → A) := Ei′∼P(I|C,G)

[
δ
(
P, P ′)] ,

where P ′ = P
(
A | Q,do

(
I = i′

))
.

(5)

Overall, calculating TCE helps us assess mod-
els’ sensitivity (response to changes in ground
truth), while DCE evaluates its robustness (stabil-
ity of predictions against spurious correlations).

3 the MORE Dataset

From Section 3.1 to 3.3, we construct the MORE
dataset that exploits the unimodal biases defined in
Section 2.2 and requires multi-hop reasoning. In
Section 3.4, we discuss how to quantify the causal
effects of images and questions (defined in Section
2.3) using our constructed dataset.

3.1 Preparatory Steps

Images and Knowledge Graph Collection We
begin with an existing VQA dataset, INFOS-
EEK (Chen et al., 2023), which links image entities
to Wikipedia information, requiring a VQA model
to answer related questions. For instance in Fig-
ure 3, the entity “Chrysler PT Cruiser” prompts
the question, “What equipment or engine is used
by this vehicle to provide power?” Here, terms
like “Chrysler PT Cruiser” and “this vehicle” all
refer to the same entity in the image. We then
identify all n-order neighbors (n ∈ {1, 2}) of the
associated entity within a knowledge graph (KG),
Wikidata5M (Wang et al., 2021), which is built
upon Wikipedia data.

Subgraph Sampling Then, we identify a sub-
graph of an entity and its n-order neighbors in the
KG. We filter paths in this subgraph that meet two
criteria: 1) Uniqueness of Paths: the path from the
associated entity to the selected neighbor is unique,
and 2) Shared-Type Relations: they share a unique
relation pointing to different entities. These crite-
ria guarantee the uniqueness of the correct answer
and introduce interference to challenge MLLMs’
reasoning ability. For example, the filtered path in
Figure 3 shows “Fiat 500X” linked to “Chrysler PT
Cruiser” by a unique “followed by” relation, and
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Image & KG
Collection

Chrysler PT Cruiser

KG

…

Subgraph Sampling

Chrysler PT Cruiser

Fiat 500X

Fiat Automobiles 
S.p.A.

The Chrysler 
Corporation

Brand

Brand

Same
relation

Followed
By

Step 1 Step 2

Multiple-Choice
Question Construction

Step 3

Question: 
What brand follows this vehicle 
in its product line?

"this vehicle"

Original question

Associated
entity

Language Bias Option:
Tesla

Vision Bias Option:
Chrysler PT Cruiser

🤖
?

Semantic Misleading Option:
The Chrysler Corporation

Ground Truth Option:
Fiat Automobiles S.p.A.

🤖
Entity-relation
path

"What equipment or engine is used by 
this vehicle to provide power?”

To answer the question, first, We need to identify what this vehicle is. From the image, this vehicle is Chrysler PT Cruiser.
Then, we need to infer which vehicle follows Chrysler PT Cruiser, which is Fiat 500X.
Then, we need to infer the brand of Fiat 500X, which is Fiat Automobiles S.p.A.
Therefore, the answer is: Fiat Automobiles S.p.A.

Causal Rationale
Generation

Figure 3: Our framework for generating data of MORE. We first prepare the image source and link the visual entity in
a knowledge graph. Then, motivated by the visual and language bias analysis through the causal lens, we construct
multiple-choice questions that require MLLMs to overcome unimodal biases and conduct multi-hop reasoning in a
sampled subgraph. We also generate the causal (reasoning) rationale for each instance to provide interpretability.

both connected to their respective companies via a
“brand” relation. This forms the multi-hop query:

“Chrysler PT Cruiser”
followed by−→ “Fiat 500X” brand−→

“Fiat Automobiles S.p.A”. Entities in the subgraph
may act as distractors to challenge MLLMs’ rea-
soning, which will be discussed in the next section.

3.2 Multiple-Choice Question Construction

We detail the multiple-choice questions construc-
tion with four options, guided by the unimodal bias
definition in Section 2.2.

Question Generation We generate questions by
analyzing entity-relation paths within a specified
subgraph, converting these paths into fluent, coher-
ent queries with an LLM. We utilize the in-context
learning (ICL) technique (Brown et al., 2020) and
a standardized prompt (shown in Appendix A.1)
to ensure quality. Among various LLMs tested,
ChatGPT was selected for its superior multi-hop
question generation. To avoid information leakage,
entity names in the question are anonymized as
“this <ENTITY_NAME>”. For instance, a final
generated question asks “What brand follows this
vehicle in its product line?” in Figure 3.

Language Bias Option Language bias occurs
when models overly attend to question-related in-
formation via pathways like Q → T → A. To
assess this, we simulate conditions where only
the question is provided and evaluate MLLMs’ re-
sponses. We use the answers of GPT-4 (i.e., the text-
only version of GPT-4V), to ensure uniform final
options across MLLMs. For example, in Figure 3,
GPT-4 reponds “Tesla” to the question. Additional
results using different models for generating lan-
guage bias options are detailed in Section 5.3 and
the prompt template is available in Appendix A.2.

Vision Bias Option Vision bias occurs when vi-
sual information dominates (e.g., via I → E → A).
We use the visually associated entity name (e.g.,
“Chrysler PT Cruiser”) as an option, to see if the
model directly selects it upon encountering an op-
tion that aligns with the visual information.

Semantic Misleading Option We introduce a se-
mantic misleading option, such as “The Chrysler
Corporation”, to challenge MLLMs’ multi-hop rea-
soning. This option refers to the entity that is
pointed by the relation commonly owned by both
the associated entity and its sampled neighbor. For
example in Figure 3, upon encountering a question
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containing “brand” and “Chrysler PT Cruiser”,
MLLMs might simply output a direct answer (e.g.,
“The Chrysler Corporation”), ignoring other con-
straints in the question (e.g., “followed by”), hence
struggling to choose the correct answer (e.g., “Fiat
Automobiles S.p.A.”).

Ground Truth Option Corresponding to the
causal path via E → G and S → G, this option
represents the final entity in the entity-relation path
(e.g., “Fiat Automobiles S.p.A.”). Finally, we check
and ensure that each option is unique to prevent
overlap samples.

Causal Rationale Generation Using entity-
relation paths, we generate a causal rationale that
aids in answering questions through a heuristic rule-
based approach. As shown in Figure 3, this process
begins with the associated entity and proceeds step-
by-step to the ground truth. These rationales help
confirm the accuracy of MLLMs’ reasoning and
improve their interpretability. They also can con-
tribute to fine-tuning MLLMs for better multi-hop
reasoning.

3.3 Dataset Statistics and Quality Analysis

Statistics of Different Hops We automatically
generate training data from INFOSEEK’s train set,
and development/test data from its validation set,
as shown in Table 3 in Appendix. Focusing on
questions with 2-hop and 3-hop depths, we set n =
1, 2 respectively. We avoid longer-hop questions to
prevent potential ambiguity and complexity.

Question Distribution We categorize the gen-
erated questions into distinct types based on their
starting n-grams in Figure 15 in the Appendix. The
MORE dataset showcases an extensive lexical diver-
sity in the questions generated.

Question Quality We analyze the lexical diver-
sity and fluency of the generated questions, with
baselines and metrics detailed in Appendix C.1.
From Figure 4, MORE shows superiority in lexical
diversity and fluency, even compared to human-
generated datasets.

Human Evaluation Our human evaluation con-
firms the high quality of generated questions and
rationales, with 91% of questions and 98% of ra-
tionales deemed valid by annotators (details are in
Appendix C.2).
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Figure 4: Question quality of MORE compared to other
VQA datasets in terms of lexical diversity and fluency.

3.4 Causal Effect Calculation on MORE

Based on the analysis in Section 2.3, we discuss
how to quantify the causal effects of unimodal bi-
ases on model predictions using MORE.

Causal Effect of Questions When intervening
on questions, we keep the images constant: (1)
For TCE(Q on A), we alter the question to an-
other from the dataset pertaining to the same entity,
changing both its text and core semantics, which
shifts the ground truth. (2) For DCE(T → A), we
let ChatGPT rephrase the question, altering its tex-
tual form but preserving its semantic meaning, re-
sulting in no ground truth change post-intervention.

Causal Effect of Images When intervening on
images, we keep the questions constant: (1) For
TCE(I on A), we replace the image with another
from the dataset corresponding to the same ques-
tion but featuring different entities, altering both
core entity and visual context to change the ground
truth post-intervention. (2) For DCE(C → A),
we replace the image with another that depicts the
same entity, to keep the ground truth consistent
after the intervention. Besides, it is practically
challenging to calculate DCE(E → A). Because
intervening on core entity E while maintaining the
constancy of the question Q, visual context C, and
ground truth answer G is hard to achieve, hence
not considered in further analysis.

Given the impracticality of testing all perturba-
tions of T and C, we randomly select 100 samples
for each type of intervention and compute the aver-
age effects to determine TCE and DCE in Section
5.3. Overall, a higher TCE indicates better sensitiv-
ity, while a lower DCE indicates better robustness.
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4 CAVE for Bias Mitigation

To mitigate unimodal biases in MLLMs and im-
prove their reasoning capabilities, we propose
CAVE, a causality-enhanced agent framework in
this section.

For a given instance, CAVE starts by using a
question decomposer to break down complex ques-
tions into simpler, step-by-step subquestions, ex-
plicitly avoiding spurious paths that may lead to
incorrect answers. For each subquestion, CAVE
uses a causality-enhanced reasoner to evaluate the
correctness of the decomposed subquestion. Specif-
ically, based on the aforementioned causal analy-
sis in Section 2, it assesses whether the decom-
posed subquestion changes under two conditions:
1) rephrasing the question text, or 2) replacing the
image with another captured by the same entity
from a different angle or at a different time. If it
identifies that the decomposed subquestion needs
to be altered, this indicates that the previous un-
derstanding is influenced by irrelevant factors or
biases, failing to capture the true semantics. In
such cases, it will enforce a new round of question
decomposition until it determines that the current
subquestions are appropriate and accurate. Next,
CAVE uses a verifier to strategically employ ex-
ternal tools and evaluate their outputs, acquiring
the necessary context or information, such as im-
age and text retrieval, to provide a precise answer.
This iterative process of answering and verifying
continues until all subquestions are resolved. By
incorporating external knowledge, the final veri-
fied output integrates information from the entire
reasoning process to provide a correct answer. A
detailed illustration of CAVE and the prompt tem-
plate is provided in Appendix E.

5 Experiments

5.1 Experimental Setup

Datasets We evaluate all test data from the MORE
dataset using the Multi-choice settings, where
MLLMs select answers from four provided options,
with a random baseline accuracy of 25%.

Baselines We evaluate various leading MLLMs
on our MORE dataset in a zero-shot fashion, includ-
ing three limited-access MLLMs: GPT-4v, GPT-
4o (OpenAI, 2023), and Gemini Pro Vision (Team
et al., 2023), and four open-source MLLMs: In-
structBLIP (13B) (Dai et al., 2023), mPLUG-Owl
(7B) (Ye et al., 2023), LLaVA (v1.5, 13B) (Liu

et al., 2023a), and Qwen-VL (7B) (Bai et al.,
2023b) the details are in Appendix D. For consis-
tent evaluation, we use standard accuracy metrics
for all the models. We further quantify the causal
effects of images and questions on model predic-
tions following Section 5.3.

5.2 Evaluation Results

The results of MLLMs on MORE are shown in Ta-
ble 2 and further exemplified in Appendix F. We
observe that:

1) All baselines perform poorly on MORE (e.g.,
even the best-performing model, Gemini Pro Vi-
sion, achieves only 22.3% accuracy, which does not
surpass the random baseline), indicating MLLMs’
vulnerability to biases.

2) Most models perform better on two-hop data
than on three-hop data, suggesting that MLLMs’
reasoning capabilities are challenged when the
problems become more complex.

3) GPT-4v falls short versus Gemini Pro Vi-
sion, possibly because we use homologous GPT-
generated distractors when constructing the lan-
guage bias options in Section 3.2, which particu-
larly challenges GPT-4v’s judgment. This point is
further analyzed in Section 5.3.

4) Our proposed CAVE significantly enhances
GPT-4o and Gemini Pro Vision on MORE, vali-
dating the effectiveness of our method. However,
the relatively low absolute values indicate ongoing
challenges related to biases, suggesting the need
for further research efforts.

5.3 Causal Analysis of VQA Biases

In this subsection, we select several representative
MLLMs and analyze their performance through a
causal lens.

Option Distribution In Figure 5, we show the
option distribution of selected MLLMs. Here we
mainly utilize language bias options generated by
GPT-4v and Gemini Pro Vision for comparison
because they explicitly provide corresponding text-
only versions. The observations are as follows:

1) Severe unimodal biases. More than 40% of
the options show either language or vision bias
in all models, underscoring the prevalence of uni-
modal biases.

2) Limited understanding ability. Models’ selec-
tion of semantically misleading options indicates
some ability to combine visual and textual informa-
tion, though not fully grasping the problem. This
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Model LLM # Params Two-Hop, acc (%) Three-Hop, acc (%) Overall, acc (%)

Random / / 25.0 25.0 25.0

InstructBlip Vicuna 13B 17.0 16.2 16.6
mPLUG-Owl Llama 7B 12.4 11.4 11.9
LLaVA Llama 13B 20.8 13.6 17.5
Qwen-VL Qwen 7B 17.4 15.6 16.5

GPT-4v - - 17.3 16.0 16.5
GPT-4o - - 18.0 17.0 17.5
GPT-4o + CAVE - - 33.7 27.3 30.5

Gemini Pro (V) - - 25.4 20.7 22.3
Gemini Pro (V) + CAVE - - 35.6 28.8 33.2

Table 2: MLLMs’ results on the test set of MORE. We report the VQA accuracy (%) under the multi-choice settings
on two-hop, three-hop, and all data, respectively.“-” denotes not released information.

Lan. bias option are generated by Gemini ProLan. bias option are generated by GPT-4

Figure 5: Option distribution of MLLMs.

highlights the challenge our MORE dataset poses to
current MLLMs.

3) Obvious selection tendency. GPT-4v often in-
correctly chooses language bias options generated
from GPT-4 (i.e., the text-only version of GPT-4v).
Switching to Gemini Pro (i.e., the text-only ver-
sion of Gemini Pro Vision) shifts this trend, with
GPT-4v’s language bias selections decreasing and
Gemini Pro’s increasing. These observations align
with our prior analysis of GPT-4v.

Please note that discrepancies may exist between
the proportions of ground truth options presented
here and the accuracy values reported in Table 2,
as some models’ outputs may not align with the
provided option format (e.g., mPLUG-Owl), thus
affecting the count of valid answers.

Causal Effects of Images and Questions To
further analyze the impact of unimodal biases on
the model predictions, we assess the causal effects
based on the discussion in Section 3.4. As shown in
Figure 6, we select several representative MLLMs:

1) Current MLLMs exhibit high sensitivity (high
TCE), a possible reason is that instruction tun-
ing makes models sensitive to variations in in-

Figure 6: Comparison of direct and total effects of im-
age and question on prediction for MLLMs.

put (Stolfo et al., 2023).
2) However, the model’s robustness is relatively

low, as indicated by a high DCE, meaning its pre-
dictions fluctuate even when the ground truth re-
mains constant. This phenomenon becomes par-
ticularly pronounced when irrelevant text surface
forms are introduced. This suggests that, although
MLLMs can adapt well to answers, they exhibit a
lack of robustness when exposed to interference,
relying on spurious correlations rather than genuine
causal features.

6 Related Work

Multimodal Large Language Models (MLLMs)
Recent advances in large language models (LLMs)
have led to the emergence of MLLMs, which
demonstrate exceptional performance in multi-
modal tasks (OpenAI, 2023; Team et al., 2023;
Liu et al., 2023a; Hu et al., 2023; Yu et al., 2024).
However, in contrast to the extensive evaluation of
reasoning capabilities in LLMs (Wei et al., 2022;
Chen et al., 2024a), currently, the evaluation of
MLLMs primarily emphasizes basic visual tasks
(Liu et al., 2023b; Fu et al., 2023; Lu et al., 2024;
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Chen et al., 2024b), with limited investigation into
their reasoning capabilities.

Knowledge-based VQA Datasets Existing
VQA datasets (Wang et al., 2017; Marino et al.,
2019; Chen et al., 2023) are limited by their focus
on image-related information, lack of multi-hop
reasoning, open-ended answers, and reasoning
rationales. They also fail to measure the effect of
language and vision biases. Our MORE dataset,
outlined in Table 1, addresses these shortcomings
by providing a more comprehensive assessment.

Language and Vision Biases in VQA Research
reveals that some VQA models primarily depend
on statistical priors from training data instead of
genuinely comprehending image content (Agrawal
et al., 2018). These models exhibit language and
vision biases; the former arises from strong correla-
tions between specific questions and answers (Ab-
basnejad et al., 2020; Zhu et al., 2020), and the
latter from frequent co-occurrences of textual and
visual elements in the dataset (Si et al., 2022; Gupta
et al., 2022). Recent efforts to address these biases
mostly involve data augmentation (Niu et al., 2021).
Besides, several studies (Rohrbach et al., 2018;
Parcalabescu et al., 2022; Parcalabescu and Frank,
2023) use examples derived from language biases
to assess object hallucination in models. However,
these constructed examples are typically counter-
factual, with the answer types limited to yes/no,
essentially judging whether the constructed state-
ments are correct or incorrect.

7 Conclusion

This paper presents a comprehensive approach to
quantifying and mitigating the unimodal biases in
MLLMs. Through our causal inference framework,
we provide an in-depth analysis to assess the causal
effects of such biases on the model’s prediction
in VQA problems. The introduced MORE dataset
challenges MLLMs to engage in multi-hop reason-
ing and to overcome language and vision biases,
thereby pushing the boundaries of their reasoning
capabilities. Our proposed CAVE method demon-
strates significant potential in enhancing the rea-
soning abilities of MLLMs.

Limitations

Our current generation of rationales is based on
heuristic rules. Previous works have demonstrated

the effectiveness of incorporating rationales into in-
structions (Wei et al., 2022). Therefore, we believe
that refining and polishing these rationales with an
LLM (e.g., ChatGPT) could be beneficial. Besides,
the Wikidata5M dataset we employed was released
in 2021, and some information in the knowledge
graph may be outdated. Although we have made
efforts to manually verify the test set and try to
ensure it does not contain incorrect information, it
is still inevitable that errors may occur within the
extensive training data.
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Question Generation
Task Description:
Provide a question according to the starting entity and path (relations split by ‘,’) in a knowledge graph.

Template:
Starting entity: <HEAD_ENTITY>
Path: <RELATION_PATH_IN_KG>

Examples:

Starting entity: Coca-Cola
Path: discoverer or inventor, place of birth
Generated Question: Which city is the birthplace of the inventor of Coca-Cola?

Starting entity: James Berkeley
Path: place of birth, owned by
Generated Question: Who is the owner of the building where James Berkeley was born?

Starting entity: Conwy Castle
Path: country, highest point, material used
Generated Question: What material is used in the highest point of the country where Conwy Castle is located?

Figure 7: Prompt template of multi-hop question generation.

Language Bias Option Generation
Task Description:
Given a question, provide a specific answer.

Examples:

Question: What is the parent taxon of the main food source of this animal?
Answer: Animalia

Question: What is the heritage designation of the burial place of the person who commissioned this building?
Answer: UNESCO World Heritage Site.

Figure 8: Prompt template of language bias option generation.

Dataset #I, Q, A Len of Q / A # Ent

MORE-train 10,000 14.3 / 2.1 1,261
- 2-hop 4,134 11.6 / 2.0 886
- 3-hop 5,866 16.1 / 2.2 686

MORE-dev 1,000 13.8 / 2.3 118
- 2-hop 548 12.2 / 2.2 71
- 3-hop 452 15.8 / 2.5 73

MORE-test 1,000 13.9 / 2.4 251
- 2-hop 500 12.3 / 2.2 153
- 3-hop 500 15.6 / 2.6 143

Table 3: Dataset statistics of different hops.

A Prompt Templates

A.1 Question Generation

We present the prompt template for generating lan-
guage bias options of Section 3.2 in Figure 7.

A.2 Language Bias Option Generation

We present the prompt template for generating lan-
guage bias options of Section 3.2 in Figure 8.

B Question Distribution

In Figure 15, we categorize the generated questions
into distinct types, based on their starting n-grams.
The dataset MORE showcases an extensive lexical
diversity in the questions generated. This diversity
is evidenced by variations in the introductory in-
terrogative words (e.g., “what”, “who”, “where”,
etc.), exemplified by phrases like “What is the...”,
“In which country...”, and more. Such lexical rich-
ness is crucial for mitigating the vulnerability of
MLLMs to linguistic variations.

C Quality Analysis Details

C.1 Question Quality
To ensure the quality of the comprising datasets,
we analyze the lexical diversity and the fluency
of the generated questions, which are useful for
conducting a robust evaluation using questions that
are linguistically diverse and coherent.

Baselines We select extensive VQA datasets for
comparison, including Visual7W (Zhu et al., 2016),
VQA (v2) (Goyal et al., 2017), FVQA (Wang
et al., 2017), OK-VQA (Marino et al., 2019),
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Figure 9: Human evaluation results of MORE.

S3VQA (Jain et al., 2021), A-OKVQA (Schwenk
et al., 2022), and INFOSEEK (Chen et al., 2023)
(contains both automated generation version and
human-annotated version).

Evaluation Metrics For lexical diversity, we uti-
lize three metrics that are not dependent on length:
moving average type-token ratio (MATTR) (Cov-
ington and McFall, 2010), measure of textual lexi-
cal diversity (MTLD) (McCarthy, 2005), and hyper-
geometric distribution diversity (HDD) (McCarthy
and Jarvis, 2010). We average these three metrics
for a unified assessment and employ the Lexical-
Richness package (Shen, 2022) (version 0.5.03) for
calculation. For fluency, we employ a pre-trained
language model GPT2-large (Radford et al., 2019)
with 774M parameters to compute the perplexity
of the questions, which is often used as a measure
by previous work (Wang et al., 2019; Cahyawijaya
et al., 2021).

C.2 Human Evaluation

Questions We conduct a human evaluation of
100 questions randomly chosen from the MORE
dataset to validate and assess the quality of the
generated questions. This evaluation is carried out
by three human annotators independently, who are
provided with detailed guidelines and illustrative
examples before starting the evaluation process.
For each question, given the visual context and
ground truth answer, we first ask two junior annota-
tors to determine whether: 1) the question is valid,
2) the question allows for an alternative answer, 3)
the question does not match the answer, or 4) the
question is unclear or ambiguous. If the choices
of the two annotators are inconsistent, a senior an-
notator checks the answers and makes the final
decision. The average inter-annotator agreement is
88.6% (Cohen’s kappa).

Rationales We also conduct a human evaluation
of the causal rationales, following the same proce-
dure as described above. The difference is that here
we provide annotators with only two options: to
assess whether the generated rationales are valid.

As shown in Figure 9, the results are encourag-
ing, with 91% questions and 98% rationales being
classified as valid by the annotators, further demon-
strating the quality of our datasets.

D Baselines

For open-source MLLMs, we consider the follow-
ing baselines:

1) InstructBLIP (Dai et al., 2023), an instruction-
tuned version of BLIP-2 on various tasks including
VQA. We employ its InstructBLIP-Vicuna (Chiang
et al., 2023)-13B variant.

2) mPLUG-Owl (Ye et al., 2023), which pro-
poses a new two-stage training method for align-
ing images and text. We employ its mPLUG-Owl-
Llama (Touvron et al., 2023a)-7B variant.

3) LLaVA (Liu et al., 2023a), which translates
images into texts of captions and bounding boxes,
and prompts GPT-4 to generate a multimodal
instruct-tuning dataset in the context of seed ex-
amples. We employ its LLaVA-Llama (Touvron
et al., 2023a)-13B variant.

4) Qwen-VL (Bai et al., 2023b), which builds
upon Qwen (Bai et al., 2023a) and employ multi-
stage training pipeline. Qwen-VL facilitates
grounding and text comprehension by aligning
image-caption-box tuples. It processes inputs of
images, text, and bounding boxes, and produces
corresponding text and bounding boxes as outputs.

E Details of the CAVE Framework

In this section, we first present the overall frame-
work as shown in Figure 10, and then we will go
over each part of it in detail.

E.1 Overall Framework

Given a question Q and an image I , the VQA task
demands the system to return an output A that con-
cisely answers the question. As shown in Figure 10,
we first initialize a question decomposer D to an-
alyze Q and break it down into manageable sub-
questions. For each subquestion, we introduce a
causality-enhanced reasoner C to evaluate the cor-
rectness of the decomposed subquestion. Then, we
employ a verifier V to confirm the accuracy of the
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Question: Which country is 
hosting the next World Cup 
after this venue?

Input

To answer the question, first, we need to identify what this 
venue is.

Question Decomposition

Image Retrieval: Original Image.

Verification

Based on the information provided, the venue is Allianz
Arena. Due to the Allianz Arena hosted the 2006 World Cup,
the question becomes which country hosted the next
World Cup after Allianz Arena.

Question Decomposition

Text Retrieval: Which country hosted the 2010 World Cup?

Verification

Based on the information provided, South Africa hosted
the 2010 World Cup.

Final Output

Image Retrieval

Captions of retrieved images: 
[1] Image of Allianz Arena.
[2] Allianz Arena Muenchen
[3] Allianz Arena Munich 
Germany

…

Text Retrieval

Contents of retrieved documents:
[1](Title: 2010 FIFA World Cup): 2010 FIFA World Cup The 2010 
FIFA World Cup was the 19th FIFA World Cup, the world 
championship for men's national association football teams. 
It took place in South Africa from 11 June to 11 July 2010.
[2](Title: 2010 FIFA World Cup): that he and the other 
members of FIFA's executive committee were bribed in order 
to promote the South African 1998 and 2010 World Cup bids. 
Blazer stated, "I and others on the Fifa executive committee 
agreed to accept bribes in conjunction with the selection of 
South Africa as the host nation for the 2010 World Cup.…

If this image is replaced with shot at the same venue at a 
different time or from a different angle, will the sub-
questions I have decomposed change?

Causality-enhanced reflection

If the question becomes "Which country is hosting the 
immediately following  World Cup after this venue?", will 
the sub-question I have decomposed change?

Causality-enhanced reflection

Figure 10: An overview of our proposed CAVE Framework.

original answer to each subquestion. The genera-
tion verifier typically involves active information-
seeking and answer-verification, which acquires
the necessary context or information needed to in-
vestigate and revise the answers. This includes
two optional operations: image retrieval to seek
images similar to I and determine their titles, or
text retrieval with a specific query to fetch perti-
nent documents and summarize their content. This
iterative process of answering and verifying will
continue until we resolve each subquestion. Fi-
nally, the verified answer A is output following the
aforementioned reasoning process and retrieved
information.

E.2 Question Decomposer

For a given VQA problem, MLLMs may simply
exploit a spurious shortcut to make predictions. In

order to alleviate this issue, motivated by Chain-of-
Thought reasoning (Wei et al., 2022), we encourage
MLLMs to decompose the question Q before out-
putting the answer, so as to gradually solve a com-
plex question that requires multi-hop reasoning. As
shown in Figure 10, for the question “Which coun-
try hosted the next World Cup after this venue?”,
our decomposer breaks it down into two subques-
tions :

1. “What this venue is?

2. “Which country hosted the next World Cup
after Allianz Arena?

Such decomposition will explicitly constrain the
model to comprehend and extract the truth seman-
tics of the question, thus avoiding simply exploring
a spurious path to give the answer.
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E.3 Causality-enhanced Reasoner

The accuracy of sub-question decomposition plays
a crucial role in the subsequent reasoning process.
To address this, we introduce causality-enhanced
self-reflection, which explicitly guides the model
in validating the sub-question it has decomposed.
Specifically, based on the proposed causal frame-
work, we guide the model to assess whether the
decomposed subquestion changes under two condi-
tions: 1) rephrasing the question text, or 2) replac-
ing the image with another captured by the same
entity from a different angle or at a different time.
If the model identifies that the decomposed sub-
question needs to be altered, this indicates that its
initial understanding is influenced by irrelevant fac-
tors or biases, failing to capture the true semantics.
In such cases, we will enforce a re-decomposition
of the question.

E.4 Verifier

Some works have found that vision illusion and
language hallucination may appear in the pro-
cess of MLLMs’ response generation (Guan et al.,
2023; Yang et al., 2023). To alleviate this issue,
we adopt the retrieval-augmented generation ap-
proaches (Khandelwal et al., 2020; Chen et al.,
2022). Specifically, we consider two different re-
trieval ways for the verifier to choose during each
verification step: image retrieval and text retrieval.

Image Retrieval Although our framework is ap-
plicable to any image retrieval method, in this pa-
per, we mainly utilize Google Image Search to
obtain a broad range of information related to the
image as provided by Google Lens API1. This in-
formation encompasses various details, such as
knowledge graph entities and captions of analo-
gous or identical images. The availability of these
details can vary based on the image input provided
to Google Image Search. Then, the verifier gleans
relevant information from captions associated with
visually similar images, so as to verify the original
answer and conduct the next round of reasoning.

Text Retrieval Similarly, our framework is ap-
plicable to any text retrieval method, we explore a
simple, off-the-shelf dense retriever for Wikipedia,
GTR (Karpukhin et al., 2020), as our text retriever.
First, the verifier constructs a query to perform
text retrieval according to the currently generated
context, and then the query is input into a GTR

1Web interface available at https://images.google.com.

model to get related document titles and contents.
Finally, the verifier will fetch pertinent documents
and summarize their content to verify the immedi-
ate answer.

E.5 Final Verified Answer
Finally, the improved response that takes verifica-
tion into account is generated. This is executed by
a final prompt where the context takes into account
all of the previous reasoning steps, the baseline re-
sponse, and the verification question-answer pairs,
so that the corrections can take place.

F Case Study

We conduct a case study on the development set of
MORE in Figure 11∼14, including both the “Open-
ended” and “Multi-Choice” settings.
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2-hop case

The vehicle in the image is a Chrysler PT Cruiser Convertible. The Chrysler PT Cruiser is a 
model from the Chrysler brand, which is part of Stellantis, a multinational automotive 
manufacturing corporation.

GPT-4V

Gemini Pro Vision

The Chrysler PT Cruiser is a front-wheel drive, four-passenger convertible that was 
produced by Chrysler from 2001 to 2010. The PT Cruiser was based on the Chrysler Neon 
platform and was available in two trim levels: the base model and the GT. The PT Cruiser 
was powered by a 2.4-liter four-cylinder engine that produced 150 horsepower and 165 
lb-ft of torque. The PT Cruiser was discontinued after the 2010 model year.

Question: What brand follows this vehicle in its product line?

LLaVA

Followed By

Brand

Chrysler PT Cruiser Fiat 500X

Fiat Automobiles S.p.A.

The Chrysler Corporation

Brand

The chrysler pt cruiser
BLIP2

chrysler
InstructBLIP

mPLUG-Owl

The vehicle follows the brand BMW in its product line.

Fiat

Vision Bias

Vision Bias

Visual Illusion

Ground Truth

Semantic Misleading

Semantic Misleading

Figure 11: Two-hop case in the dev set of MORE. The wrong answers are marked in red and the correct is in green.
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2-hop case (Option)

Question: What brand follows this vehicle in its product line?
Choose from the following four options:
A. Chrysler PT Cruiser B. Tesla
C. The Chrysler Corporation D. Fiat Automobiles S.p.A.

The vehicle in the image is a Chrysler PT Cruiser, which is a model produced by Chrysler. 
Therefore, the brand that follows the model which this vehicle follows is Chrysler.

GPT-4V

Gemini Pro Vision

Chrysler PT Cruiser

LLaVA

The Chrysler PT Cruiser
BLIP2

Chrysler PT Cruiser
InstructBLIP

mPLUG-Owl

Chrysler PT Cruiser
The brand of the car that follows the model which this vehicle follows is Chrysler PT 
Cruiser. This is the correct answer.

Chrysler PT Cruiser

Vision Bias

Vision Bias

Vision Bias

Vision Bias

Vision Bias

Followed By

Brand

Chrysler PT Cruiser Fiat 500X

Fiat Automobiles S.p.A.

The Chrysler Corporation

Brand

Semantic Misleading

Figure 12: Two-hop case (multi-choice setting) in the dev set of MORE. The wrong answers are marked in red.
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3-hop case

Question: What is the mountain range of the highest point on the continent 
where this mountain is located?

The mountain in the image is the Salève. The Salève is a mountain located in the 
Prealps, near Geneva, Switzerland, and France. 

GPT-4V

Gemini Pro Vision

The mountain range is the Chugach Mountains, which are part of the larger Coast 
Mountains.

LLaVA

The alaska range
BLIP

rocky
InstructBLIP

mPLUG-Owl

The mountain of Mount McKinley, also known as Denali, is located in Alaska, USA. It is 
the tallest mountain in North America and the tallest mountain in the world when 
measured from the base of its sea-level summit. The mountain range that Mount 
McKinley is a part of is the Alaska Range.

The highest mountain range is the Alps, the highest peak is Mont Blanc. 

Visual Illusion

Visual Illusion

Visual Illusion

Visual Illusion

Language Bias

Continent
Salève Europa

Caucasus MajorFrench Prealpes

Mountain
range

Elbrus

Mountain
range

Highest point

Semantic Misleading

Figure 13: Three-hop case in the dev set of MORE. The wrong answers are marked in red.
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3-hop case (Option)

Question: What is the mountain range of the highest point on the continent 
where this mountain is located?
Choose from the following four options:
A. Salève B. the Himalayas
C. French Prealps D. Caucasus Major

The highest point of the mountain range is Mont Blanc, which is located in the French 
Prealps. The French Prealps are located in Europe.

GPT-4V

Gemini Pro Vision

Based on the options provided, the highest point on the continent where the Salève
mountain is located would be Mount Everest, as Salève is part of the Prealps, a region in 
Europe, and Mount Everest is the highest point on the Asian continent. The Greater 
Caucasus Mountains are also in Asia but are not as high as Mount Everest. Therefore, the 
correct answer from the options given is the Himalayas.

LLaVA

The Himalayas
BLIP2

French Prealps
InstructBLIP

mPLUG-Owl

The mountain range of the highest point on the continent where this mountain is 
located is Salève.
Salève, which is located in the Rhône-Alpes region of France, is a small mountain range 
that extends from the city of Geneva to the city of Annecy. The summit of this range, 
Mont Salève, is the highest point on the continent where this mountain is located.
Salève is a popular destination for hiking and skiing, and it offers spectacular views of 
the surrounding Alps, including the Mont Blanc massif and the Swiss Alps. It is also a 
popular destination for rock climbing, and the steep cliffs and rocky faces of Salève
provide a challenging climbing experience.

Caucasus Major

Vision Bias

Semantic Misleading

Ground Truth

Language Bias

Language Bias

Continent
Salève Europa

Caucasus MajorFrench Prealpes

Mountain
range

Elbrus

Mountain
range

Highest point

Semantic Misleading

Figure 14: Three-hop case (multi-choice setting) in the dev set of MORE. The wrong answers are marked in red and
the correct is in green.
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Figure 15: Question prefix distribution in MORE. The arc length is proportional to the number of questions containing
the word.
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