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Abstract

Audio-Visual Question Answering (AVQA) is
a challenging task that involves answering ques-
tions based on both auditory and visual infor-
mation in videos. A significant challenge is in-
terpreting complex multi-modal scenes, which
include both visual objects and sound sources,
and connecting them to the given question. In
this paper, we introduce the Source-aware Se-
mantic Representation Network (SaSR-Net), a
novel model designed for AVQA. SaSR-Net uti-
lizes source-wise learnable tokens to efficiently
capture and align audio-visual elements with
the corresponding question. It streamlines the
fusion of audio and visual information using
spatial and temporal attention mechanisms to
identify answers in multi-modal scenes. Ex-
tensive experiments on the Music-AVQA and
AVQA-Yang datasets show that SaSR-Net out-
performs state-of-the-art AVQA methods.

1 Introduction

Recent contributions to the field of audio-visual
question answering (AVQA) include the creation
of diverse datasets and sophisticated models (Yun
et al., 2021; Yang et al., 2022; Li et al., 2022,
2023; Jiang and Yin, 2023). For example, the
Pano-AVQA dataset (Yun et al., 2021) contains
360-degree videos paired with corresponding QA
sets, while the AVQA-Yang dataset (Yang et al.,
2022) is designed for answering audio-visual ques-
tions in real-world scenarios. The MUSIC-AVQA
dataset (Li et al., 2022) further broadened the re-
search scope by focusing on spatio-temporal un-
derstanding in audio-visual scenes. This dataset
uses a dual attention mechanism, identifying sound-
producing areas visually first and then applying
attention for spatio-temporal reasoning. More re-
cently, PSTP-Net (Li et al., 2023) was introduced,
which progressively identifies key regions relevant
to audio-visual questions using refined attention
mechanisms.

Figure 1: Leveraging semantic representation for AVQA
involves: (1) Extracting features of various instrument
types based on semantic tokens, (2) Identifying the lo-
cation of the relevant sounding instruments, and (3) Es-
tablishing connections between the extracted semantic
features, identified instrument locations, and the crucial
parts of the question, guiding the model to answer the
question accurately.

Existing AVQA methods typically employ gen-
eral audio and visual encoders to extract features
from videos. However, this strategy often fails to
link certain sound-producing objects in the video
with the responses. Consider questions like What
is the instrument on the left of the cello? which ne-
cessitates specific type and location awareness, as
shown in Fig. 1. Current models often find it diffi-
cult to associate the cello mentioned in the question
with its actual representation in the video scene.

To address these challenges, we propose the
Source-aware Semantic Representation Network
(SaSR-Net). This model enhances the understand-
ing and integration of individual sound sources
and visual objects in AVQA by two strategies:
(1) Source-wise Learnable Tokens: Embedded
within the Source-aware Semantic Representation
Block, these tokens capture essential semantic fea-
tures from both audio and visual data. This fa-
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cilitates precise alignment and enhances semantic
richness, enabling the model to accurately associate
auditory and visual elements based on the query
context. (2) Attention Mechanisms: The model
utilizes spatial and temporal attention mechanisms
to identify and synchronize relevant visual and au-
dio regions with the query. This not only enhances
the accuracy of localization but also strengthens
cross-modal associations, crucial for forming a co-
herent understanding of the scene.

The efficacy of SaSR-Net is demonstrated by
its performance on the Music-AVQA (Li et al.,
2022) and AVQA-Yang (Yang et al., 2022)
datasets, where it surpasses state-of-the-art AVQA
approaches. The results highlight the effective-
ness of the model’s source-aware and semantically
driven approach in managing complex audio-visual
data. Our key contributions are as follows:

1. We introduce SaSR-Net, a novel framework
that enriches the understanding of sound and
visual information, leveraging Source-wise
Learnable Tokens to extract semantic-aware
audio and visual representations for AVQA.

2. SaSR-Net integrates multi-modal spatial and
temporal attention mechanisms to adaptively
leverage visual and audio information in
videos for accurate scene understanding.

3. Our comprehensive experiments and ablation
studies demonstrate the effectiveness of our
proposed method.

2 Related Works

Audio-Visual Scene Understanding: Audio-
visual learning focuses on understanding and corre-
lating information from both modalities, aiming to
mimic the human’s multi-modal perception. This
field has been extensively researched in various
directions, showing remarkable progress in tasks,
e.g., sound source localization (Hu et al., 2021; Liu
et al., 2022; Qian et al., 2020; Mo and Tian, 2023),
action recognition (Gao et al., 2020), event localiza-
tion (Mahmud and Marculescu, 2023; Brousmiche
et al., 2021; Tian et al., 2018; Zhou et al., 2021),
video parsing (Wu and Yang, 2021; Tian et al.,
2020; Rachavarapu et al., 2023), captioning (Iashin
and Rahtu, 2020; Tian et al., 2019), separation (Gao
and Grauman, 2021; Tian et al., 2021; Zhao et al.,
2018; Chen et al., 2023), and dialog (Zhu et al.,
2020; Alamri et al., 2019; Hori et al., 2019). De-
spite this progress, these models still face chal-

lenges in integrating the audio modality with visual
scene understanding. Effectively leveraging both
audio and visual inputs for comprehensive video
understanding remains concern. It is essential to
consider both audio and visual signals holistically
for effective video comprehension. In this work,
we propose using Source-wise Learnable Tokens
to leverage semantically-aware representations for
audio-visual scene understanding.
Audio-Visual Question Answering: Audio-Visual
Question Answering (AVQA) integrates both
modalities, offering a more holistic understand-
ing of scenes. Recent efforts in AVQA include
the introduction of datasets such as the Pano-
AVQA dataset (Yun et al., 2021), which features
360-degree videos (Yun et al., 2021), the real-life
AVQA-Yang dataset (Yang et al., 2022), and the
MUSIC-AVQA dataset (Li et al., 2022), which fo-
cuses on various musical performances (Li et al.,
2022). The MUSIC-AVQA v2.0 dataset was re-
cently introduced to further reduce dataset bias
(Liu et al., 2024). Innovations like PSTP-Net (Li
et al., 2023), which identifies key regions relevant
to audio-visual questions through refined attention
mechanisms, have been instrumental. Addition-
ally, LAVISH (Lin et al., 2023) introduced a novel
parameter-efficient framework for encoding audios
and videos, enhancing the potential for practical
applications. Despite these advancements, chal-
lenges remain in accurately learning video seman-
tics, which can limit the effectiveness of AVQA.
Our approach aims to enhance video understanding
by modeling semantic entities and strengthening
the connections between questions and video con-
tent, thereby achieving competitive accuracy.

3 The Proposed SaSR-Net

Given a video with both visual and audio tracks,
along with a question related to the content within
the video, the objective of the AVQA task is to pre-
dict an accurate answer response. To achieve this,
we propose a novel SaSR-Net architecture. This
model is designed to generate compact, semantic-
aware embeddings by identifying salient sounding
objects present in the audio-visual input that are
relevant to the given query. The overview of our
proposed framework is illustrated in Figure 2.

3.1 Representations for Different Modalities

Given a video with both visual and audio tracks, VT

and AT , we split it into 1-second non-overlapping
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Figure 2: The architecture of the proposed SaSR-Net.

segment pairs {(vt, at)}Tt=1, where vt and at are the
video and audio clips during time [t−1, t). Besides,
each sample has a related question QL = {ql}Ll=1

and answer y, i.e., ({(vt, at)}Tt=1, {ql}Ll=1,y),
where ql is a word and y is a one-hot encoding
representing the correct answer.
Audio Feature: Each audio segment at is con-
verted into a raw feature vector f rat using the pre-
trained VGGish (Gemmeke et al., 2017) model,
which works on transformed audio spectrograms.
In all, the full audio will be transformed to a set of
raw feature vectors f rAT

= {f rat}Tt=1.
Visual Feature: Using ResNet-18 (He et al., 2016),
we process the initial frames from VT into raw vec-
tors f rVT

= {f rvt}Tt=1 and feature maps Xr
PT =

{Xr
P t}Tt=1 = {{xr

pt
}Pp=1}Tt=1, where p denotes po-

sitions on the feature maps, up to P positions.
Question Feature: For a question QL = {ql}Ll=1,
word embeddings are passed through an LSTM.
The resulting feature vectors fQL

= {fql}Ll=1 are
derived from the LSTM’s final hidden state. Here,
L is the max sequence length. The encoder is
trained from scratch along with the entire model.

3.2 Source-wise Learnable Tokens

Distinguishing between audio sources and visual
objects in videos fundamentally requires the associ-
ation of these two modalities. A video may contain
several visual objects and sound sources. To accu-
rately respond to questions related to these video
scenes, it is essential that our model effectively
aligns and associates audio and visual content that
are semantically synchronized. To achieve this, we
introduce a series of Source-wise Learnable Tokens
(SLT). Each token represents a distinct semantic

category, such as a guitar or piano. These tokens
will be utilized to align the two modalities and ag-
gregate multimodal source-aware contexts for QA.

We denote Source-wise Learnable Tokens as
GC = {gi}Ci=1. Here, C represents the total num-
ber of distinct categories of sounding objects within
our dataset.

Initially, we align the Source-wise Learnable
Tokens with features from both video and audio by
concatenating them. This computation will help
ensure each token matches one of our intended
categories, such as guitar or piano. To achieve
this, we prepare category annotations in the labels
and guide the model by applying penalties to the
tokens during training. This will be elaborated in
the following sections.

Subsequently, we apply self-attention SelfAttn
to aggregate the auditory features f rat and visual
features f rvt separately. Here, we use the notation
[a;b] to represent the concatenation operation be-
tween tensor a and tensor b, or the split operation
between tensor a and tensor b

[f sat ;G
a
C ] = SelfAttn([f rat ;GC ]),

[f svt ;G
v
C ] = SelfAttn([f rvt ;GC ]).

After applying self-attention and splitting, we
obtain source-aware audio embedding f sat , source-
aware visual embedding f svt , and tokens Ga

C and
Gv

C . In detail, if we assume D is the dimension
for each single feature embedding above, the self-
attention S can be represented as (f is an input
feature),

S(f) = σ(
f · f⊺√

D
) · f ,

where σ represents Softmax function.
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The obtained representation f sat , f
s
vt , G

a
C and

Gv
C will be used next to compute the source-aware

semantic representation.

3.3 Source-aware Semantic Representation
In this section, we assign semantic attention more
directly and introduce training penalties to ensure
that all learnable tokens accurately represent spe-
cific semantic categories. This design aims to im-
prove our model’s capability to precisely represent
multi-modal scenes in videos and generate source-
aware audio and visual semantic embeddings.

We introduce a source-aware semantic represen-
tation block. In the previous section, we have al-
ready got both semantically enriched audio and
visual embeddings which enhanced with token in-
formation. Instead of treating the embeddings and
Source-wise Learnable Tokens within the same
modality as a single entity as we did in Sec. 3.2,
we hope the model to learn specific information fu-
sion / weighting relationships between the Source-
wise Learnable Tokens and the embeddings. As
a result, as for the audio/video features that are
contained in the embedding and we are also inter-
ested in, the model will finally enhance them by
properly-learned tokens. To achieve it, we will use
our Source-aware Semantic Representation Block
to perform cross attention from learnable tokens
Ga

C and Gv
C to the semantically enriched audio

and visual embeddings.
The resulting semantically-enriched audio em-

bedding fgAT
= {fgat}Tt=1 and video embedding fgVT

= {fgvt}Tt=1 are computed as the following equations
performing cross-attention:

Ga′
C = Ga

C + FC((CrossAttn(Ga
C , f

s
AT

)),

Gv′
C = Gv

C + FC((CrossAttn(Gv
C , f

s
VT

)),

fgAT
= FC((CrossAttn(f sAT

,Ga′
C)),

fgVT
= FC((CrossAttn(f sVT

,Gv′
C)),

where f sAT
= {f sat}Tt=1, f sVT

= {f svt}Tt=1, Ga′
C and Gv′

C

are source-aware represented tokens, FC represents
a fully-connected layer, LN is layer normalization,
and the cross-attention works as:

CrossAttn(a,b) = σ(
FC(a) · FC(b)√

D
) · FC(b).

The calculation of cross-attention for
CrossAttn(Ga′

C , f
s
AT

) and CrossAttn(Gv′
C , f

s
VT

)
follows the equations above. The fully-connected
layer FC is used to align the dimensions of features
from different latent spaces.

While the entire set of trainable parameters in
SaSR-Net is optimized for minimizing the AVQA
loss function that we will define later, it is also
important to incorporate auxiliary loss functions
specifically targeting the Source-wise Learnable
Tokens. These additional loss functions are ba-
sically utilizing the prior knowledge to force the
Source-wise Learnable Tokens to become the cen-
troids in the hidden space. It will highlight the
task-specific significance of these tokens, ensur-
ing that they capture the characteristics of sound
sources present in the audio and video. At last,
they facilitate the extraction of more meaningful,
source-aware representations, which are essential
for the AVQA task.

The first auxiliary loss function is the binary
cross-entropy (BCE) loss, which focuses on iden-
tifying individual sound sources’ presence in the
input audio and video channel,

Lsource = BCE(σ(FC(Ga′
C)),pC)+

BCE(σ(FC(Gv′
C)),pC),

where pC is the ground truth label for the source
class. This label is compared against the predicted
labels generated by applying the sigmoid activation
function σ to a fully connected layer, operating on
the semantically enriched audio embedding fgAT

and video embedding fgVT
.

The second auxiliary loss function serves as a
regularization term to ensure that each learned to-
ken uniquely represents a distinct type of sound
source. Specifically, we aim for each token vector
gi to exclusively represent a single type of sound
source. To achieve this, we define the loss using
cross-entropy (CE) for sound source classification:

Lreg = CE(FC(gi), {c}Cc=1).

3.4 Multi-modal Spacial Attention

One significant challenge involves localizing visual
areas relevant to the given question in the AVQA
task. This entails two tasks: firstly, identifying ar-
eas with key items by allocating reasonable spatial
attention on the visual feature map, and secondly,
establishing a temporal connection between the
weighted feature map and the question.

Fortunately, the sections from 3.1 to 3.3 have
already provided us with semantic-aware audio and
visual embeddings. The semantic information in
these embeddings proves beneficial in creating a
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Figure 3: Visualization of Spatial Attention (SA) and Temporal Attention (TA) Blocks. The SA Block heatmaps
pinpoint sounding object locations, and the TA Block displays audio-visual feature scores. SA localizes critical
visual areas, while TA synchronizes video moments with questions, boosting overall audio-visual comprehension.

meaningful association between the two modalities
through shared semantic tokens.

To address the first task, in our model, visual
features differentiate semantic items from the back-
ground spatially based on their associated sounds.
This involves applying a multi-modal spatial atten-
tion between the source-aware audio embedding
fgat and the initial video encoding feature maps Xr

P .
By incorporating the source-aware video embed-
ding fgvt , we derive the spatially-attended video
representation f savt :

fattnvt = σ(Xr
P
⊺
t ⊛ fgat)) ·Xr

P t,

f savt = FC(tanh([fgvt ; f
attn
vt ])),

where ⊛ represents the convolution operation,
which means this incorporating is broadcasting to
all locations on the feature map.

In practice, based on the computations above,
we also observed the presence of contrastive infor-
mation, allowing the model to better learn how to
accurately extract semantic object embeddings spa-
cially on the feature maps. Essentially, it is crucial
not only allow the model to learn how to success-
fully align visual and audio information but also
to penalize those errors in cases where visual and
audio inputs do not belong to the same scene at all.
This will ultimately enhance SaSR-Net’s spatial
attention capabilities.

To achieve this, during training, we supple-
ment both a matched (positive) audio-video pair
{(vt, at)}Tt=1 along with a mismatched (negative)
pair, {(v′t, at)}Tt=1, where v′t is from a 1-second
random video clip that belongs to a different video

than at. Let f savt be the spatially-attended represen-
tation for a matched sample, and f sav′t

be that for a
mismatched sample. For the optimization of the
traning process, we employ a loss function to distin-
guish between matched and mismatched samples
using a binary classifier:

Lmatch = CE(f savt , 1) + CE(f savt , 0).

By minimizing this loss function, the learned rep-
resentations become more discriminative.

3.5 Multi-modal Temporal Attention
In this section, we address the second task outlined
in Sec. 3.4.

Traditional QA methods treat questions as single
entities, as in (Alamri et al., 2019). Our AVQA
approach, however, utilizes the temporal sequences
of data, such as frames and audio, to align ques-
tions with specific content moments. For example,
a violin query directs the focus to relevant video
segments. This alignment leads to contextually ac-
curate responses by linking question tokens to the
correct temporal embeddings.

To achieve this, we introduce multi-modal tem-
poral attention block that employs cross-attention
through t = 0 to T − 1 for updated audio embed-
ding f taAT

and visual embedding f taVT
based on the

question’s embedding fQL
. The cross attention is

calculated as follows,

f taAT
= σ(

fQL
fgAT

⊺
√
D

)fgAT
, fgAT

= {fgat}Tt=1,

f taVT
= σ(

fQL
f saVT

⊺
√
D

)f saVT
, f saVT

= {f savt }Tt=1.
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3.6 Answer Prediciton
To predict the final answer to the question, we
utilize the multi-modal temporal embeddings and
semantically-enriched embeddings, as they have
already been proven to contain competent high-
dimensional values after attention masks. The im-
plementation includes a shortcut connection struc-
ture and a necessary fusion network.

For the shortcut connection structure, we (av-
eragely) reduce the semantically-enriched embed-
dings across their time dimension and aggregate
them with the multi-modal temporal embeddings,
modality by modality. This operation is expected
to help maintain global information and facilitate
gradient back-propagation.

We hope the fusion network could integrate both
the audio-text modal and visual-text modal into
a final mixed modal that could be directly taken
advantage of by its classifier and output predic-
tions. Hence, we concatenate the two embeddings
after the shortcut connection structure and employ
a fully-connected layer as a classifier to predict the
answer. The full operation is formulated as follows,

fav = FC(tanh([f taAT
+ fgAT

; f taVT
+ fgVT

)]),

ŷ = σ(FC(tanh(fav · fQL
))).

Here y denotes the right answer id encoded by an
one-hot vector, and ŷ represents the probabilities of
selection among all the answers, to match y closely.
Therefore, we use cross-entropy loss for AVQA to
penalize incorrect predictions,

Lavqa = CE(y, ŷ).

At last, the overall training loss is:

L = Lavqa + λ1Lsource + λ2Lreg + λ3Lmatch.

4 Experiment

4.1 Experiments Setting
Datasets: The MUSIC-AVQA dataset (Li et al.,
2022) includes 9,290 videos, featuring 7,423 real
and 1,867 synthetic examples, and 45,867 question-
answer pairs. This dataset spans 9 audio-visual
question types and 33 templates, showcasing 22
instruments categorized into Strings, Winds, Per-
cussion, and Keyboards. Each video is annotated
with instrument category labels. The dataset, de-
signed for answering questions about the appear-
ance, sounds, and associations of different ob-
jects in videos, is published under the Creative

Commons Attribution-NonCommercial 4.0 Inter-
national License and is public for research use.
The question type primarily involves estimating
answers.

The AVQA-Yang dataset (Yang et al., 2022) con-
tains 57,015 videos paired with 57,335 questions
that require understanding both audio and visual
clues. The question type in this dataset is multiple-
choice.
Implementation: The audio data has a sampling
rate of 16 Hz, and video data has 1 fps. Videos are
segmented into non-overlapping 1-frame segments,
each yielding a 512D feature vector. We sample
1-second video segments every 6 seconds. Audio
segments, also 1-second long, are processed using
a linear layer, converting them from 128D VGGish
features to 512D feature vectors. Word embed-
dings are set to 512 dimensions. Our batch size
is 16, and we train for 80 epochs using the Adam
optimizer with an initial learning rate of 1e − 4,
which decreases by a factor of 0.3 every 16 epochs.
Also, we set λ1 = λ2 = λ3 = 0.5. Our model
and related utility codes are based on PyTorch. We
use torchinfo to summary our model’s configura-
tion. Our model contains 65,117,283 parameters
(approximately 205.24 MB storage). We put our
model trained as well as evaluated on an NVIDIA
GeForce GTX 1080 Ti.
Evaluation: Following (Li et al., 2022), we use an-
swer prediction accuracy as our evaluation metric.

4.2 Comparison to Prior Work
In this study, we introduced SaSR-Net, a novel
multi-modal AVQA framework, and compared it
with established unimodal and cross-modal ques-
tion answering systems in Tab. 1 to demonstrate
its effectiveness. The baselines include: (1)
Audio Question Answering: FCNLSTM (Fayek
and Johnson, 2020), CONVLSTM (Fayek and
Johnson, 2020). (2) Visual Question Answering:
HCAttn (Lu et al., 2016), MCAN (Yu et al., 2019)
(3) Video Question Answering: PSAC (Li et al.,
2019b), HME (Fan et al., 2019), HCRN (Le et al.,
2020). (4) Audio-Visual Question Answering:
AVSD (Schwartz et al., 2019), Pano-AVQA (Yun
et al., 2021), AVST (Li et al., 2022). PSTP-Net (Li
et al., 2023) and TJSTG (Jiang and Yin, 2023).

These baselines primarily use general encoders
to extract video features, which are then processed
through attention mechanisms for question answer-
ing. In contrast, our SaSR-Net uses Source-wise
Learnable Tokens to extract semantically compact
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Task Method Audio Question Visual Question Audio-Visual Question All
Count Comp Avg. Count Local Avg. Exist Local Count Comp Temp Avg. Avg.

AudioQA FCNLSTM 70.45 66.22 68.88 63.89 46.74 55.21 82.01 46.28 59.34 62.15 47.33 60.06 60.34
CONVLSTM 73.55 67.17 71.20 67.17 55.84 61.44 82.49 63.08 51.85 62.13 50.36 62.56 63.79

VisualQA HCAttn 70.25 54.91 64.57 64.05 66.37 65.22 79.10 49.51 59.97 55.25 56.43 60.19 62.30
MCAN 77.50 55.24 69.25 71.56 70.93 71.24 80.40 54.48 64.91 57.22 47.57 61.58 65.49

VideoQA HME 74.76 63.56 70.61 67.97 69.46 68.76 80.30 53.18 63.19 62..69 59.83 64.05 66.45
HCRN 68.59 50.92 62.05 64.39 61.81 63.08 54.47 41.53 53.38 52.11 47.69 50.26 55.73

AVQA

AVSD 72.41 61.90 68.52 67.39 74.19 70.83 81.61 58.79 63.89 61.52 61.41 65.49 67.44
Pano-AVQA 74.36 64.56 70.73 69.39 75.65 72.56 81.21 59.33 64.91 64.22 63.23 66.64 68.93

AVST 77.78 67.17 73.87 73.52 75.27 74.40 82.49 69.88 64.24 64.67 65.82 69.53 71.59
PSTP-Net 73.97 65.59 70.91 77.15 77.36 77.26 76.18 73.23 71.80 71.79 69.00 72.57 73.52

TJSTG 80.38 69.87 76.47 76.19 77.55 76.88 82.59 71.54 64.24 66.21 64.84 70.13 73.04
SaSR-Net(ours) 73.95 69.81 73.56 73.76 71.84 73.28 69.76 73.43 73.64 79.15 77.46 74.66 74.21

Table 1: Different methods on Music-AVQA dataset. The top-2 results are highlighted.

features from videos and employs Source-aware
Semantic Representation to align these with visual
and audio features. This enhances the model’s
capability to integrate and understand individual
sound sources and visual objects in AVQA queries,
enriching the features semantically.

SaSR-Net not only delivers robust performance
in audio and visual QA but also showcases excep-
tional results in audio-visual QA, a domain where
previous AVQA methods have been less effective.
We have made substantial improvements in this
area. SaSR-Net excels particularly in Audio-Visual
Questions, significantly outperforming AVST (Li
et al., 2022) with notable improvements in Count-
ing (3.55%), Localization (9.4%), Comparative
(14.48%), and Temporal (11.64%) questions.
Moreover, our method surpasses AVSD by 9.22%,
Pano-AVQA by 7.9%, AVST by 5.13%, PSTP-Net
by 2.09%, and TJSTG by 4.53% in average accu-
racy,indicating a strong advancement in AVQA. In
Audio QA, SaSR-Net achieves an average accu-
racy of 73.56%, exceeding specialized models like
FCNLSTM and CONVLSTM.

These exceptional results provide strong evi-
dence of the effectiveness of our proposed Source-
wise Learnable Tokens and Source-aware Seman-
tic Representation. By embedding audio and vi-
sual features with semantic context relevant to the
queries, these innovations significantly enhance the
representational capabilities of the framework. The
effective use of Source-wise Learnable Tokensfa-
cilitates a deeper integration of audio and visual
modalities, allowing SaSR-Net to accurately iden-
tify and address complex multimodal interactions
inherent in AVQA tasks.

4.3 Computational Efficiency

In this section, we conducted performance compar-
isons on the Music-AVQA dataset to evaluate the
computational efficiency of our SaSR-Net model
in comparison with recent state-of-the-art AVQA
methods: AVST (Li et al., 2022), PSTP-Net (Li
et al., 2023) and TJSTG (Jiang and Yin, 2023). Ta-
ble 2 summarizes the FLOPs and accuracy of each
model.

Method FLOPs (G) Acc (%)

AVST (Li et al., 2022) 3.19 71.59
PSTP-Net (Li et al., 2023) 1.22 73.52

TJSTG (Jiang and Yin, 2023) 1.22 73.52
SaSR-Net (ours) 2.11 74.21

Table 2: Comparison of methods by FLOPs and accu-
racy

Our SaSR-Net achieves the highest accuracy
of 74.21 with a moderate computational cost of
2.11 GFLOPs, balancing efficiency and perfor-
mance. Although its FLOPs are slightly higher
than those of PSTP-Net and TJSTG, which are
both at 1.22 GFLOPs, SaSR-Net significantly out-
performs them in accuracy. Compared to AVST,
which requires 3.19 GFLOPs for a lower accuracy
of 71.59, our model is both more efficient and more
accurate.

These results suggest that SaSR-Net is suitable
for real-world applications where both accuracy
and computational efficiency are important. The
model’s ability to achieve high performance with
moderate computational requirements makes it
practical for deployment in scenarios with limited
computational resources.

4.4 Ablation Studies

In this section, we conducted ablation studies
on Music-AVQA dataset to quantitatively evalu-
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Figure 4: Comparison of our SaSR-Net and AVST (Li et al., 2022). Our SaSR-Net provides more precise answers
to complex questions by effectively integrating semantic information into audio and visual features.

SLT SaSR Accuracy Improvement

✗ ✗ 70.31% -
✗ ✓ 71.78% ↑ 1.47%
✓ ✗ 72.16% ↑ 1.85%
✓ ✓ 74.21% ↑ 3.90%

Table 3: Ablation on Source-wise Learnable To-
kens (SLT) and Source-aware Semantic Representation
(SaSR)

TA SA Accuracy Improvement

✗ ✗ 70.17% -
✓ ✗ 72.03% ↑ 1.03%
✓ ✓ 74.21% ↑ 2.18%

Table 4: Ablation studies on Multi-modal Special Atten-
tion (SA), Multi-modal Temporal Attention (TA) blocks

ate the Source-wise Learnable Tokens (SLT) and
the Source-aware Semantic Representation (SaSR)
block, as presented in Table 3. Additionally, we
performed ablation studies to quantitatively assess
the Multi-modal Spacial Attention (SA) and Multi-
modal Temporal Attention (TA) blocks, as pre-
sented in Table 4.
Effectiveness of SLT and SaSR: The inclusion
and removal of the SLT (Source-wise Learnable
Tokens ) and SaSR (Source-aware Semantic Rep-
resentation) blocks impact the performance of the
AVQA model. Removing both blocks leads to a
considerable accuracy drop to 70.31%. This de-
cline occurs primarily because the model struggles
to extract distinct semantic visual and auditory fea-
tures without the SLT and fails to integrate these
features without the SaSR, highlighting the criti-
cal roles these components play in comprehending
complex audio-visual content. Conversely, intro-
ducing the SLT block in the baseline model in-
creases the AVQA accuracy by 1.85%, demonstrat-
ing its effectiveness in enhancing video compre-
hension by extracting more semantic information
from diverse sources. Additionally, retaining the
SaSR block while eliminating the SLT block re-

Method Avg(%)
HME (Fan et al., 2019)+HAVF (Yang et al., 2022) 85.0
PSAC (Li et al., 2019b)+HAVF (Yang et al., 2022) 87.4

LADNet (Li et al., 2019a)+HAVF (Yang et al., 2022) 84.1
HGA (Jiang and Han, 2020)+HAVF (Yang et al., 2022) 87.7

HCRN (Le et al., 2020)+HAVF (Yang et al., 2022) 89.0
SaSR-Net(ours) 89.9

Table 5: Results of different methods on AVQA-Yang
dataset.

sults in a 1.47% increase in accuracy, emphasizing
the SaSR’s crucial role in integrating diverse audio
and visual features. More importantly, incorporat-
ing both SLT and SaSR into the model leads to
a substantial improvement in accuracy by 3.90%.
These findings underscore the importance of both
SLT and SaSR in aligning auditory elements with
their corresponding visual cues and enhancing the
model’s question-answering capabilities.
Effectiveness of SA and TA: Removing the TA
(Multi-modal Temporal Attention) and SA (Multi-
modal Spatial Attention) blocks significantly re-
duces accuracy to 70.17%, underscoring their im-
portance. Without SA, the model cannot accurately
locate sounding instruments in videos, and without
TA, it struggles to understand temporal dynamics,
severely impairing its ability to identify key frames
and localize sound sources. Introducing SA en-
hances the model’s ability to link sounding objects
with their sounds in complex scenes, improving
spatial precision. Adding TA helps align temporal
sequences, pinpointing key video frames relevant
to the query. Together, SA and TA increase AVQA
accuracy by 1.03%, highlighting their synergistic
effect in boosting the model’s comprehension of
audio-visual content.

4.5 Visualization

Visualization of SA and TA: In Fig. 3, we visual-
ize the results of the Spatial Attention and Tempo-
ral Attention Blocks.
Comparative Results: In Fig. 4, we present the
results of our SaSR-Net method, compared with
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the results of AVST (Li et al., 2022). Our ap-
proach more accurately answers complex questions
with specific semantic information due to our SLT
and SaSR blocks. The SLT extracts and aggre-
gates semantic category information from various
sources, while the SaSR effectively integrates these
semantic-aware features into both audio and visual
features. These aggregated featuires outperform the
original features, leading to superior performance.

Previous AVQA methods often fail to accurately
associate visual objects with corresponding sounds
in complex scenes, leading to incorrect answers.
In contrast, our SaSR-Net, with its SLT and SaSR
blocks, effectively connects sounding objects with
mixed audio sources and accurately pinpoints their
locations using spatial attention. It also employs
temporal attention to identify key timestamps re-
lated to the posed question. This enhances the
model’s ability to map sound sources accurately,
significantly improving audio-visual analysis in dy-
namic multi-modal environments.

4.6 Experiments on AVQA Dataset

While most existing methods are tested on the
MUSIC-AVQA dataset (Li et al., 2022), we extend
the validation of our method to the AVQA-Yang
dataset (Yang et al., 2022) to further demonstrate its
effectiveness. This confirms its applicability across
different question formats and more complex sce-
narios. Following the approach in (Yang et al.,
2022), we integrate various strategies (Fan et al.,
2019; Li et al., 2019b,a; Jiang and Han, 2020; Le
et al., 2020) with HAVF (Yang et al., 2022) as our
evaluation metric. The comparative results in Table
5 show that our method outperforms others on the
AVQA dataset. This underscores the robustness
of our proposed SaSR-Net in diverse audio-visual
question answering environments.

5 Conclusion

In this paper, we present SaSR-Net, a novel AVQA
approach that introduces source-aware learnable to-
kens to effectively capture and integrate semantic-
aware audio-visual representations. This enhances
alignment between audio elements and visual cues,
crucial for identifying relevant scene regions and
their association with questions. By excelling at ex-
tracting and understanding single-source informa-
tion within complex scenes, SaSR-Net significantly
improves performance on AVQA tasks.
Limitation: While SaSR-Net achieves remarkable

performance on multi-modal tasks, its results on
single-modality (audio-only or visual-only) ques-
tions are not as outstanding. This may be due to
training data bias, as the dataset contains a higher
proportion of audio-visual questions, leading the
model to be better tuned for multi-modal scenarios.
To address this issue, we can fine-tune SaSR-Net
on single-modality tasks, aiming to enhance its per-
formance on audio-only and visual-only questions
while maintaining its strong capabilities in multi-
modal contexts.

Additionally, SaSR-Net may still face challenges
in handling extremely noisy audio-visual data or
scenarios with highly complex and overlapping
audio sources. These situations could affect the
model’s ability to accurately extract and align se-
mantic representations, highlighting areas for fu-
ture improvement and research.
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