ACCEPT: Adaptive Codebook for Composite and Efficient Prompt Tuning

Yu-Chen Lin" ", Wei-Hua Li" ", Jun-Cheng Chen?, Chu-Song Chen'
'National Taiwan University, 2Academia Sinica

Correspondence: chusong @csie.ntu.edu.tw

Abstract

Prompt Tuning has been a popular Parameter-
Efficient Fine-Tuning method attributed to its
remarkable performance with few updated pa-
rameters on various large-scale pretrained Lan-
guage Models (PLMs). Traditionally, each
prompt has been considered indivisible and up-
dated independently, leading the parameters
increase proportionally as prompt length grows.
To address this issue, we propose Adaptive
Codebook for Composite and Efficient Prompt
Tuning (ACCEPT). In our method, we refer
to the concept of product quantization (PQ),
allowing all soft prompts to share a set of learn-
able codebook vectors in each subspace, with
each prompt differentiated by a set of adaptive
weights. We achieve the superior performance
on 17 diverse natural language tasks includ-
ing natural language understanding (NLU) and
question answering (QA) tasks by tuning only
0.3% of parameters of the PLMs. Our approach
also excels in few-shot and large model settings,
highlighting its significant potential.

1 Introduction

With the blooming of large language models, Pa-
rameter Efficient Fine-Tuning becomes an effective
solution to leverage the power of pretrained lan-
guage models (LMs). Among various approaches,
Prompt Tuning (PT) has been recognized for its
simplicity and efficacy by adding tokens in front of
the inputs. Though prompting pretrained LMs with
specific or human-designed instructions makes
model transferable to downstream tasks, additional
effort is needed for elaborating the prompts as the
output produced are often sensitive to them. To
address this issue, learning the prompts becomes a
solution. Prompt tuning (Lester et al., 2021), Pre-
fix tuning (Li and Liang, 2021) and P-tuning (Liu
et al., 2022b) replace explicit instructions with con-
tinuous prompt embeddings and provide flexibili-
ties for the pretrained models to adapt themselves

“Equal Contribution.

with superior performance. Following the concept,
ATTEMPT (Asai et al., 2022), MPT (Wang et al.,
2023), DePT (Shi and Lipani, 2024), and TPT (Wu
et al., 2023) demonstrate the capability of learnable
PT in both single and multitask training scenarios.

However, previous studies often treat the
prompts as independent units in learning. Though
the learned prompts can be further clustered for
noise filtering (Bhardwaj et al., 2022), the parame-
ters needed for training are not reduced since learn-
ing occurs before clustering. In this work, we intro-
duce a method that represents the prompt based on
a set of learnable codewords. All prompts share a
codebook with N codewords. Compared with up-
dating the prompts independently and thus prevent-
ing word embeddings from sharing information
with each other, our codebooks are sharable across
all prompts in a downstream task, making code-
books’ parameters size independent of the prompt
length.

In addition, our approach does not follow the
common practice of regarding each prompt as in-
separable. When treating a prompt as an indivisible
word embedding, we may overlook the possibility
that, say, certain words may align with other words
in the first half of the embedding and match dif-
ferent words in the second half. To tackle this
issue, we adopt the idea of product quantization
(PQ) (Jegou et al., 2010) by dividing a prompt’s
word embedding into several subsections and con-
struct a codebook for each subsection. In the past,
PQ is effective for approximate nearest-neighbor
search (Jegou et al., 2010; Yu et al., 2018) and neu-
ral network compression (Wu et al., 2016). How-
ever, if we directly apply PQ to the learned param-
eters, their amount will not be lowered for train-
ing. Hence, we simply follow PQ’s concept where
the codebooks are subsection-specific, and provide
a set of learnable codewords for each subsection.
This makes prompts share some identical subvec-
tors, which allows part of tokens to have the same

15345

Findings of the Association for Computational Linguistics: EMNLP 2024, pages 15345-15358
November 12-16, 2024 ©2024 Association for Computational Linguistics

mailto:chusong@csie.ntu.edu.tw

characteristics in a more fine-grained dimension.

To ease the learning process and make it dif-
ferentiable, we allow each subvector to be softly
combined (via linear coefficients) with the code-
words, rather than being assigned by only one of
the codewords as in PQ. This increases both di-
versity and flexibility of the representation. In the
past, learning-based PT can be typically done by in-
creasing the input length with prepended prompts
(Lester et al., 2021; Asai et al., 2022; Wu et al.,
2023), or further adding the original embedding of
words with the same number of additional prompts
(Shi and Lipani, 2024). Our method, referred to as
ACCEPT, is generally applicable and works for
both. We conduct experiments on 17 natural lan-
guage tasks and show that our method consistently
outperforms previous PT approaches.

2 Related Work

Parameter-efficient fine-tuning enhances the capa-
bilities of pretrained LMs by updating a small set of
parameters. The approach varies, such as training
extra modules (Houlsby et al., 2019; Sung et al.,
2022) or modifying specific parts like biases or at-
tention weights (Zaken et al., 2022; Hu et al., 2021).
Among these, as Prompt Tuning (PT) is popular for
its simplicity and effectiveness, we focus on PT.

2.1 Prompt Tuning Methods

This track focuses on enhancing the quality and ef-
ficiency of prompts. Schick and Schiitze (2021) and
Brown et al. (2020) incorporate manually crafted
instructions into the input sequence to provide task-
specific guidance helping steer the model’s out-
put. When the instructions are well-designed, mod-
els with frozen parameters exhibit excellent per-
formance. However, additional effort is required
for human adjustment since the output is sensi-
tive to the prompts. To address the issue, Wang
et al. (2021) and Gao et al. (2021) further gen-
erate hard prompt templates by model automati-
cally. Nonetheless, optimizing discrete prompts is
challenging. Thus, Prompt Tuning (Lester et al.,
2021), Prefix tuning (Li and Liang, 2021), and
P-tuning (Liu et al., 2022b) turn prompts into con-
tinuous vectors, known as soft prompt, which are
prepended to the word embeddings. The learn-
able prompts are trained with the pretrained LMs
frozen. By turning discrete prompts to a continuous
space, the optimization can be achieved by a sim-
ple gradient descent. Recently, Su et al. (2021) and

SPoT (Vu et al., 2022) explore the advantages of
initializing prompts by pretrained ones from other
tasks. They demonstrate that learning prompts on
one or more source tasks, and subsequently utiliz-
ing these learned prompts as initializations for a
target task, is notably effective. ATTEMPT (Asai
etal.,2022), MPT (Wang et al., 2023) and TPT (Wu
et al., 2023) further design various architectures
for multitask transfer learning. On the other hand,
DePT (Shi and Lipani, 2024) focuses on reduc-
ing the training and inference time by decompos-
ing prompt as a shorter one and a low-rank matrix
added on word embeddings. Nevertheless, earlier
approaches treat prompt as monolithic units, caus-
ing the number of trainable parameters to increase
linearly with to the prompt length. In contrast, our
method introduces a shared codebook in each sub-
space, which remains unaffected by the prompt
length and facilitates information sharing among
different prompts.

2.2 Quantization in NLP

Vector quantization (VQ) is a related technique to
PQ which is widely employed in NLP. VQ provides
an effective discretization of latent sentence repre-
sentations, making it especially suitable for NLP
tasks due to the inherently discrete nature of text,
as demonstrated in Van Den Oord et al. (2017), Roy
et al. (2018), Roy and Grangier (2019), Mercatali
and Freitas (2021) and Angelidis et al. (2021). VQ
is also used in PT. Bhardwaj et al. (2022) initially
train a contextualized prompt for each input and
cluster them using VQ to reduce variance.
However, in the previous approaches, the num-
ber of parameters remains substantial since the
training of original representations occurs before
clustering. Different from these methods, we in-
troduce learnable codebooks and adaptive weights
which enable end-to-end training, thereby maintain-
ing parameter efficiency throughout the process.

3 Methodology

We first give a preliminary of PT for downstream
tasks and PQ, and then present our method.

3.1 Prompt Tuning for Downstream Tasks

Given a pretrained LM with parameters 6, we want
to transfer it to a target task with the training data
D = {(xj, yj)}|‘ji|1. We first map x; to a sequence
of word embeddings e; as input, where e; € R4,
[is the maximal input sequence length and d is

15346

(a) Soft-weighted Codebook Prepended Prompt

(b) Soft-weighted Codebook Added Prompt

(c) Main Architecture (ACCEPT)

K codebooks for Prepended Prompts

K codebooks for Added Prompts

|
The company once again —»| Tokenizer

vix [v - i< _ 7| .
e R e W

r codewords r codewords dazzle and delight us. (x;) Ve
Codebook 1 coseroo 1 [T [
& @ scrp &) scap
codebook2 [[| [] [Codebook 2 |:|:|:|:| N
t :
oo I W) || | coswsx CTRI] Hl
Soft-weighted Codebook pi €ji Soft-weighted Codeboo
wix []+wex[] -+wix[0 [IIIE i x [+ wh x [-+ wi <[] Dl

wu><I:I+wlZ I:I +W”XI:I [
wix [w0

?ri%% Pretrained Model]

L positive (9;)

Figure 1: The overall model architecture of ACCEPT. We subdivide both (a) Soft-weighted Codebook Prepended
Prompt (SCPP) and (b) Soft-weighted Codebook Added Prompt (SCAP) to K subspaces. Each subspace has a
codebook with r codewords shared by all prompts. Each sub-prompt is linearly combined by the codewords and
weights. (c) In the main architecture of ACCEPT, the final input is formed by prepending SCPP to the word
embedding updated with SCAP. The pretrained model, with its parameters fixed, learns to output correct labels

through tunable SCPP and SCAP.

the word-embedding dimension. PT prepends a set
of trainable continuous prompt embeddings P =
{p1,D2, .-.pm} (p; € RY) to the input embeddings
while keeping the pretrained model parameters ¢
fixed. The training goal is to maximize the output
probability of target y; as below,

|D|
max » _ po(yj[0: [P ¢5)). (1)

j=1
3.2 Review of PQ and Method Motivation

VQ is known as the process of mapping a vector
x to the closest codeword c¢* in a codebook C' =
{c1,ca,...,cn} containing N codewords. As an
extension, PQ divides the vector z € R into K
subspace, = [z, 22, ..., 2%], with d = tK and
z¥ € R!. Each subspace possesses a codebook
C* which contains N}, codewords of dimension ¢
for K = 1--- K. PQ thus exploits the Cartesian

product of the codeword sets,

C=0C'"xC?x---xCFK,)
to encode the vector . The total number of code-
words becomes N = IIX | N, for entire space.
When K = 1, PQ degenerates to VQ.

PQ has the advantage of enabling more code-
words for the representation of x by consum-
ing fewer parameters. Eg., if Nj is the same
for all k£, PQ can take the storage cost of only
O(tKNy) = O(dNy) to provide the codewords
amount of (V, k)K . For VQ, however, only N, code-
words are provided under the same storage cost, or
the storage should be increased to O(d(Ny)¥) to

get the same amount of codewords. Hence, PQ is
more parameter-efficient and suitable for PT. The
codewords distributed in subsections can enrich the
diversity and flexibility of representation for the
sub-problem solving.

However, as mentioned above, parameter-
efficient learning is not attainable if we perform
PT first and then PQ. Hence, our method does not
really do the ‘quantization’ step but only takes PQ’s
idea of efficient representation and makes the code-
words of all subspaces learnable for PT. Moreover,
for each subspace, we do not use only one code-
word to express the input x for that subsection, but
softly combining the codewords with linear coef-
ficients for a more precise representation. Details
are given below.

3.3 Proposed Method - ACCEPT

Previous methods often view each prompt as a sin-
gle and indivisible word embedding, independent
to other prompts. We suppose that tokens can share
the same characteristics in a more fine-grained di-
mension. Our method leverages the concept of
PQ and partition embedding space into K smaller
subspaces The k-th subspace has a codebook
= {ck,ck,...,ck} containing r codewords of
d1mens10n t, with t = d/ K. Specifically, the total
K codebooks are shared across all prompts.
Remember that there is a set of trainable prompts
P ={p1,p2, ..., Pm} (p; € R?) for a downstream
task in PT. Similarly, we divide each p; into K
sub-prompts p; = {p},p?,...,pX} (p; e RY). We
assign a group of weights, W; = {w}, w?, ..., wX}
(wgC € R"), to the i-th prompt in every subspace. A

15347

sub-prompt pf is then expressed as a linear combi-
nation of the codewords in C* using the coefficient
weights wf = {wfl,wa, ...,wfr}. Thus, the k-th
subvector of the ¢-th prompt is calculated as

k k k 1 k k k
pi:Clxwi1+62xwi2+...+crxw' (3)

r?

where c? is the j-th codeword (j = 1,--- ,r) in
the k-th codebook and wfj is the weight for c? in
the ¢-th prompt, respectively.

The prompts in P thus depend on both the sets
of codewords, C = {C¥|k = 1,--- , K} and com-
bination weights, W = {W;|i = 1,--- ,m}, in our
method. To reflect this, we denote it as P(C, W)
in the following. Our goal is to maximize the out-
put probabilities of the ground truth label y; as

|D|
g%{i}pe(?/ﬂ& [P(C,W),¢j]), “)
j=

where P(C, W) € R™*4_ We refer Eq. 4 to as
the Soft-Weighted codebook Prepended Prompt
(SCPP) tuning in our method, as the prompts are
prepended to the inputs. Fig. 1(a) gives an illustra-
tion of SCPP learning.

As mentioned in Sec. 1, PT can also be done
by adding complementary prompts to the original
embedding (Shi and Lipani, 2024), and our method
works for both. To achieve this, we conduct another
prompt set () that contains the same number of (/)
prompts of the same length (d) to the input word
embedding e; (e; € R™*?). Similar mechanisms
are applied to (), which depends on the learnable
codewords C’ and combination weights W' too.
We optimize C’ and W’ by solving

|D|

(Ijr,{%(/ Z:lpg(ij; [ej + Q(C,, Wl)]): (%)
j=

where Q(C’, W’) € R"*? having the same shape
of ej. We refer Eq. 5 to as the Soft-Weighted
codebook Added Prompt (SCAP) tuning, as the
prompts are added to the original word embeddings
as updates. Fig. 1(b) illustrates the SCAP learning.
Combing SCPP and SCAP then forms our final
ACCEPT (shown in Fig. 1(c)). At the same scale
of parameters, combining the two types of prompts
reduces the total input length, which makes train-
ing and inference more efficient (Shi and Lipani,
2024). ACCEPT then learns by maximizing

|D|

. . ! /
oax ;pe(w,P(c,W),e] +Q(C,W)). 6

With only [C, W], [C’, W] trainable and 6 frozen.
Number of Parameters. With the vanilla PT, for
a model having embedding dimension d and m
prompts, the number of parameters is md. As we
subdivide the embedding into K subspaces, each
t-dimensional (t = d/K) subspace has r code-
words, and thus the number of parameters of each
codebook is rt. Total K codebooks then need rt K
parameters. As for the weights, each prompt has r
weights in K subspaces, which contains total » K
parameters. Multiplied by the number of prompts
m forms a total of rm K parameters. Finally, the
total parameters of our method is as below,

rtK + rmK =rd+rmkK.
~~ ——
#para.ofcodebook #para.ofweight
(7

Note that the number of parameters for the code-
book is independent of the number of prompts,
preventing linear growth with m. To maintain the
same scale of the trainable parameters with vanilla
PT for a better comparison, we set r by letting
rd + rmK < md. This ensures the number of
parameter usage is no greater than the vanilla PT.

4 Experiments

We present the experimental results and compar-
isons to other approaches in this section.

4.1 Experimental Settings

Datasets and Tasks. Following previous works,
we evaluate our method on 13 NLU tasks and 4
QA tasks, including (1) MNLI (Williams et al.,
2018), QQP, QNLI (Demszky et al., 2018), SST-2
(Socher et al., 2013), STS-B (Cer et al., 2017),
MRPC (Dolan and Brockett, 2005), RTE (Gi-
ampiccolo et al., 2007) and CoLA (Warstadt et al.,
2019) from GLUE (Wang et al., 2018) bench-
mark; (2) MultiRC (Khashabi et al., 2018), BoolQ
(Clark et al., 2019), WiC (Pilehvar and Camacho-
Collados, 2018), WSC (Levesque et al., 2012) and
CB (De Marneffe et al., 2019) from SuperGLUE
(Wang et al., 2019) benchmark; (3) MRQA 2019
Shared Task (Fisch et al., 2019), including Natural
Questions (Kwiatkowski et al., 2019), HotpotQA
(Yang et al., 2018), SearchQA (Dunn et al., 2017)
and NewsQA (Trischler et al., 2016). We use Sc-
iTail (Khot et al., 2018) additionally for few-shot
learning.

Baselines. We compare the proposed approach
with various PEFT baselines including: (1) Fully
fine-tuning (FT), where all the parameters of

15348

the pretrained backbone models are updated; (2)
Prompt Tuning (PT) (Lester et al., 2021), where
prompts are initialized by randomly sampled top
vocabularies; (3) Some variants of PT, changing
prompt architectures or utilizing knowledge trans-
fer from other tasks such as SPoT (Vu et al., 2022),
ATTEMPT (Asai et al., 2022), MPT (Wang et al.,
2023), TPT (Wu et al., 2023) and DePT (Shi and
Lipani, 2024); (4) Other PEFT methods includ-
ing Adapter (Houlsby et al., 2019) and Adapter-
Drop (Riickl€ et al., 2021), inserting lightweight
modules in the middle blocks of the pretrained
models; BitFit (Zaken et al., 2022), updating the
bias terms in the attention mechanism; LoRA (Hu
et al., 2021), updating the attention weights with
two additional low-rank matrices; LST (Sung et al.,
2022), transferring by a ladder-side network-based
adapter; Hyperformer (Mahabadi et al., 2021) and
HyperDecoder (Ivison and Peters, 2022), train-
ing a module to output the weights of adapters.
(IA)? (Liu et al., 2022a), scaling activations by
learned vectors.

Models. To provide a fair comparison with the
previous methods, the main experiments are per-
formed on the T5-base (Raffel et al., 2020) model
with 220M parameters and d = 768. We also
conduct experiments on other models with various
scales including T5-small, T5-large, T5-3B and
Flan-T5-11B models with 60M, 770M, 3B, and
11B parameters, respectively. The model dimen-
sions are 512, 1024, 1024 and 1024, respectively.
Note that Flan-T5-11B is an enhanced version of
T5 model that has been fine-tuned in a collection
of tasks.

Implementation Details. In the main experiments
on GLUE, SuperGLUE and MRQA datasets, we
divide the embedding into K = 24 and K =
2 subsections for SCPP and SCAP, respectively,
where the parameters are chosen based on the per-
formances on a small dataset RTE (detailed in
Sec. 4.4). We primarily use a grid search to deter-
mine the learning rates (Ir) for both the codebook
and weights in SCPP and SCAP. For SCPP, the Ir
searched are {3e-1, 4e-1, 5e-1}, while for SCAP,
we searched {le-4, 5e-4, le-3, 5e-3}. Addition-
ally, we observe that a larger Ir is more suitable
for SCAP on the MRQA 2019 Shared Task. There-
fore, we extend our search to include higher values
{1,5,10} for SCAP. Note that for the experiments
that train SCPP or SCAP alone, the backbone fol-
lows DePT (the length of prompt is 60 and the rank
of LoRA matrices equals to 30).

88 1
* w ‘: P ® FT
W g7 o 754 Adapter
3 g e o *® ® BitFit
< 86 2 m T
5 a
s L s70{ A SPoT
<851y ® 3 A ATTEMPT
< MPT
< 84 J 65 L 4
% . 2 e TPT
283 o Vv DePT
260 lm * ACCEPT (Ours)
N R R N R

of parameters # of parameters

Figure 2: Average performance on the GLUE and Super-
GLUE benchmarks relative to the number of trainable
parameters for the T5-base model. ACCEPT achieves
the best performance with the fewest parameters.

We train 30k steps for small datasets with less
than 10k samples, and 300 steps for large datasets
more than 10k samples, following Vu et al. (2022).
We perform evaluations every 1,000 steps and save
the best checkpoint based on performance on the
evaluation dataset. The results on the test dataset
are then reported using these best checkpoints. We
choose a batch size of 16 for T5-small, T5-base
and T5-large models, 2 for T5-3B and 1 for Flan-
T5-11B due to the GPU memory limitation. The
warmup step and weight decay are 1, 800 and 0.01,
respectively. Experiments are conducted on a sin-
gle Nvidia 3090 GPU with 24 GB memory or 2
Nvidia V100 GPUs with 32 GB memory.

We set the associated number of codewords r
to maintain the total number of parameters no
bigger than PT with m = 100. We conduct
three initialization strategies for the codebooks and
weights of SCPP and SCAP in ACCEPT: (1) ran-
domly initialized, (2) initialized by the pretrained
weights of the intermediate tasks (we use MNLI for
GLUE/SuperGLUE task and SQuAD (Rajpurkar
et al., 2016) for QA tasks following Vu et al.
(2022)), and (3) initialized by the target task itself.
For the latter two strategies, we first train SCPP
and SCAP and use the pretrained weights as initial-
ization for ACCEPT. On each dataset, we select the
best strategy as the final results following Wu et al.
(2023). In the few-shot experiments, following Ma-
habadi et al. (2021) and Asai et al. (2022), we sam-
ple v = {4, 16, 32} training instances three times
with different seeds and report the average and stan-
dard deviation of our results. SCPP and SCAP are
pretrained with one of the selected source dataset
(MNLI, QQP, SST-2, SQUAD (Rajpurkar et al.,
2016), and ReCoRD (Zhang et al., 2018)) follow-
ing the previous methods (Su et al., 2021), (Asai
et al., 2022), (Shi and Lipani, 2024). More detailed
experiment setup is listed in Appendix A.

15349

Method #Para GLUE SuperGLUE

* MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg. Multi Bool WiC WSC CB Avg.
Fine-tuning 220M 86.8 91.6 930 94.6 89.7 902 719 61.8 849 72.8 81.1 70.2 59.6 85.7 73.9
Adapter 19M 86.5 90.2 932 938 90.7 853 719 64.0 845 759 825 67.1 67.3 857 75.7
AdapterDrop 1.IM 863 90.2 932 93.6 914 863 712 627 844 729 823 683 67.3 85.7 75.3
BitFit 280K 853 90.1 930 942 909 86.8 67.6 58.2 833 745 79.6 70.0 59.6 78.6 72.5
LoRA 38M 86.3 89.0 932 943 909 90.1 755 63.3 853 72.6 81.3 68.3 67.3 929 76.5
LST 3.8M 85.6 88.8 933 941 90.7 904 719 581 841 - - - - - -
HyperFormer(m) 638K 85.7 90.0 93.0 94.0 89.7 872 754 637 84.8 729 82.5 69.0 67.3 85.7 754
HyperDecoder(m) 1.8M 86.0 90.5 934 94.0 905 87.7 71.7 559 83.7 704 788 67.1 61.5 82.1 72.0
PT 76.8K 81.3 89.7 92.8 909 89.5 68.1 547 10.6 722 587 61.7 489 519 679 57.8
PT! 76.8K 834 90.2 93.1 919 90.2 90.1 788 60.7 84.8 65.7 63.7 50.8 51.9 67.9 60.0
SPoT 76.8K 854 90.1 93.0 934 90.0 79.7 69.8 57.1 823 74.0 77.2 67.0 50.0 46.4 62.9
ATTEMPT 232K 843 903 930 932 89.7 857 734 574 834 744 78.8 66.8 53.8 78.6 70.5
MPT 77.6K 859 90.3 93.1 938 904 89.1 79.4 624 856 748 79.6 69.0 67.3 79.8 74.1
DePT 76.8K 85.0 904 932 942 90.8 90.7 79.1 63.8 859 743 793 68.7 67.3 929 76.5
TPT! 539K 855 90.1 932 947 89.8 89.7 823 59.8 85.6 744 80.1 69.8 67.3 94.6 77.2
ACCEPT (Ours) 749K 859 904 933 945 91.0 93.1 863 68.8 87.9 749 823 70.5 67.3 96.4 78.3

Table 1: Performance on GLUE and SuperGLUE with T5-base model. For comparisons with prior works, we use
Pearson Correlation for STS-B, Matthews Correlation for CoLA, F1 for MultiRC (Multi), and accuracy for other
tasks as metrics. ! sourced from Wu et al. (2023) and the others sourced from Shi and Lipani (2024). $The values
are the improved results tuned by Shi and Lipani (2024).(m) refers to multi-task training.

MRQA
Method #Para. NQ HP SQA News Avg.
Fine-tuning 220M 75.1 775 8l.1 652 74.7
Adapter 19M 742 77.6 8l4 656 747
BitFit 280K 70.7 755 7777 64.1 72.0
LoRA 3.8M 724 623 725 569 66.0
PT 76.8K 679 729 757 61.1 694
SPoT 76.8K 682 748 753 582 69.1
ATTEMPT 232K 704 752 773 628 714
MPT 77.6K 72.00.1 75.80.1 77.20.1 63.70.1 72.2
DEPT 76.8K 73.20.1 76.80.3 77.60.2 64.49.1 73.0

ACCEPT (Ours) 74.2K 73.60.0577.10.0978.90.0164.60.06 73.6

Table 2: Performance on the MRQA 2019 Shared Task.
We report the average F1 score and standard deviation
of three experiments with different seeds. The proposed
method achieves promising performances with the lim-
ited number of parameters.

4.2 Results on NLU and QA Tasks

In Tab. 1, we compare the performances and the
number of parameters during training of the pro-
posed method with various methods on GLUE and
SuperGLUE benchmarks. As can be seen, our
method outperforms previous PT methods by a
large margin, especially on MRPC, RTE and CoLA
datasets of the GLUE benchmark, while consis-
tently improving on other datasets such as MNLI,
QQP, etc. Similar results can be found on the Su-
perGLUE benchmark. Our method achieves a great
improvement on the Bool, WiC and CB datasets,
while also yielding promising performances on
MultiRC and WSC. It is worth noting that our
method surpasses previous PEFT methods exploit-
ing much more tunable parameters such as Adapter,
and also outperforms FT by 3.0% and 4.4% on the

average performances of GLUE and SuperGLUE
with only 0.3% parameters tuned. We further visu-
alize the average performances against the number
of trainable parameters for each method in Fig. 2.
Our approach achieves the highest average accu-
racy while using the fewest parameters, making it
more suitable for both performance and parameter
efficiency than the others.

Besides having favorable results on the NLU
tasks above, the proposed method also achieves
nice performances on QA tasks. Tab. 2 demon-
strates that our method achieves a 4.2% improve-
ment on the average of MRQA 2019 Shared Task
than PT with fewer parameters, further reducing
the performance gap between FT and PT methods.

To conclude, the proposed method achieves
state-of-the-art performances on the challenging
GLUE/SuperGLUE benchmarks and MRQA 2019
Shared Task with fewer trainable parameters, high-
lighting its efficiency and effectiveness.

4.3 Results on Few-shot Adaptation

Following Gao et al. (2021), Asai et al. (2022),
Wang et al. (2023), Wu et al. (2023), Shi and
Lipani (2024), we conduct the experiments with a
limited number of training samples available on the
BoolQ, CB, and SciTail datasets to verify the ca-
pability of ACCEPT in resource-limited scenarios.
The experimental process involves initially train-
ing prompts on the intermediate tasks (e.g., MNLI)
followed by transferring them to the target datasets
with 4, 16, or 32 randomly sampled instances. In

15350

Task v-shot FT AD PT ST HF (JA)3 ATP MPT TPT DePT | ACCEPT (Ours)
#Para. 220M 19M 768K 768K 638K 553K 232K 77.6K 538K 76.8K 74.9K
4 505 534 616 505 480 567 618 622 622 62754 70.516
BoolQ 16 565 514 619 50.6 502 620 600 633 635 66944 71.913
32 584 545 617 612 583 672 653 689 674 67234 72.51.0
4 577 51.1 535 714 607 655 821 73.6 78.6 75.05; 78.63.6
CB 16 710 748 635 643 763 714 785 786 804 78.643 81.02,
32 80.0 748 678 643 814 750 857 821 863 82153 83.320
4 79.6 795 577 69.6 820 654 802 802 81.0 78125 79.04.4
SciTail 16 80.0 832 608 719 865 744 795 873 855 78514 80.53.1
32 819 850 60.2 719 858 804 802 863 852 8543 84.80.4

Table 3: Few-shot learning results with v = {4, 16, 32} on BoolQ, CB, and SciTail datasets. FT: Fine-tuning, AD:
Adapter, PT: Prompt tuning, ST: SPoT, HF: HyperFormer, ATP: ATTEMPT. ACCEPT significantly outperforms
other methods on BoolQ and offers comparable performance on CB and SciTail with fewer parameters.

LC PS PP AP|SuperGLUE
X X v X 60.0
v XV X 75.5
vV vV VX 76.3
X X v v 76.5
v X vV 77.7
aaaxs 78.3

Table 4: Effectiveness of learnable codebook and subdi-
vision. Our designs of shared learnable codebook (LC)
and prompt embedding subdivision (PS) allow a perfor-
mance gain with the same scale of parameters (76.8k)
as other approaches. PP and AP denote the prepended
and added prompt tunings, respectively.

Tab. 3, our method accomplishes impressive results
on BoolQ dataset, which is consistent with Tab. 1.
It also outperforms the previous methods on CB
dataset with 4 shots. Note that for the CB dataset
with 16 and 32 shots, our approach outperforms
most of the methods except for ATTEMPT and
TPT both using much more parameters than ours.
The results demonstrate that ACCEPT remains ef-
fective in the few-shot adaptation scenarios.

4.4 Ablation Study

Learnable Codebook and Subdivision. To
demonstrate the effectiveness of ACCEPT, we first
conduct an ablation study of PQ, utilizing the
shared learnable codebook and prompt embedding
subdivision, with the prepended and added prompt
tunings. Tab. 4 shows that by sharing the learnable
codebook among prompts, there is a noticeable per-
formance improvement over the original architec-
tures. Moreover, by dividing prompt embeddings
into more fine-grained pieces, the performances are
further enhanced. The results reveal the efficacy of
PQ by subdividing the prompt embedding space.

Different Granularity of Subdivision. We fur-
ther study on the impact of using different sub-

Soft-weighted Codebook Prepended Prompt (SCPP)

(t,r) [(32,20)(64, 30)(128, 40)(256, 48)(384, 51)(768, 55)
#Para. 74,880 75,360 75,840 76,224 76,008 76,260
Acc. | 8273 79.14 79.14 7770 82.73 81.29

Soft-weighted Codebook Added Prompt (SCAP)
(t,r) [(32,4) (64, 8) (128, 13)(256, 20)(384, 24)(768, 30)
#Para. 73,728 76,800 76,032 76,800 76,800 76,800
Ace. | 7770 7698 79.86 8129 82.73 78.42

Table 5: Performance on RTE dataset with dividing
SCPP and SCAP into different granularities. For T5-
base, t = 768 means the prompt is NOT divided. Con-
figs surpass non-division settings are highlighted in gray.

dimension (¢) and codebook size (r) pairs in our
approach. We choose multiple values for K and di-
vide the embeddings of dimension d into multiple
vectors with sub-dimension ¢. We then determine r
to satisfy rt K 4+ rmK < 100d, ensuring fewer pa-
rameters are used compared to PT with m = 100.
Note that with T5-base model, ¢ = 768 means
no division on the embedding dimension. Tab. 5
shows that with an appropriate division, there is
a performance gain compared to treating the em-
bedding as a whole. SCPP achieves an optimal
performance with ¢ = 32, chosen for its fewer pa-
rameters than ¢ = 384. For SCAP, optimal perfor-
mance is achieved with ¢ = 384. More complete
experiments are in Appendix C.2. Note that the
optimal parameters (f = 32, K = 24,r = 20 for
SCPP and t = 384, K = 2,r = 24 for SCAP)
chosen from this small task (RTE) are then applied
to ALL the datasets when using our approach with
the T5-base model in the experiments.

Ablation on SCPP and SCAP. We train SCPP and
SCAP individually, initializing them with a random
Gaussian distribution. Tab. 6 shows that when us-
ing SCPP individually, the average performance on
GLUE, SueprGLUE and MRQA improves 1.2%,

15351

- FT = PT
Adapter ~ —4— ATTEMPT

—— MPT —e— TPT —&— ACCEPT (Ours)

80

=)
o

o

S
~
=)

75

N

o
o
«

704

F1 (%)

3
Accuracy (%)
g

Accuracy (%)

w
o

65

o
o

L

T T T 60 T T T T T
small base large small base large small base large

(a) BoolQ (b) MultiRC (c) wiC

Figure 3: Performance on BoolQ, MultiRC and Wic
datasets with different model sizes (T5-small, T5-base
and T5-large). Our method shows improved perfor-
mance as the model size increases and reaches SOTA on
larger model, showcasing the potentional of ACCEPT.

SCPP SCAP|GLUE [SuperGLUE|MRQA
X X | 859 76.5 73.0
v X | 87.1 77.8 73.5
X v | 87.0 71.5 73.3
v v | 879 78.3 73.6

Table 6: Effectiveness of Soft-weighted Codebook
Prepended and Added prompts. The optimal perfor-
mance is achieved by both SCPP and SCAP combined.

1.3% and 0.5%, respectively. Similarly, there are
1.1%, 1.0% and 0.3% performance gain when us-
ing SCAP individually. We find that the perfor-
mance gain is relatively small on QA tasks. Im-
provement in the generation of longer sentences
with ACCEPT is left as a future work. With both
SCPP and SCAP, our approach achieves the best
performances with 2.0%, 1.8% and 0.6% gain on
each of the three benchmark, indicating the impor-
tance of both our designs. More detailed results on
each dataset are in Appendix C.3.

Model Scaling. We explore the effect of different
model sizes (T5-small, T5-base and T5-large) with
our method on BoolQ, MultiRC and WiC datasets
in Fig. 3. Our method demonstrates increased per-
formance improvement with larger language model
backbones, highlighting ACCEPT’s adaptability
with bigger models. We also provide the results
of fully fine-tuning (FT), Adapter, Prompt Tuning
(PT), MPT, and TPT for comparison. ACCEPT
demonstrates competitive performance across all
model scales. Notably, the tunable parameters of
our approach are much fewer than those in FT,
Adapter, and ATTEMPT. Despite this, we achieve
state-of-the-art performance on all three datasets
with T5-large (770M), which is a highly encourag-
ing result given the reduced parameter count.

To further study the capabilities and possibilities

g’ITe““’d Gg‘;‘éE Method RTE
: PT' 88.49

DePT 86.4 !

TPT 98 4 DePT 89.92

ACCEPT (Ours)| 88.5 ACCEPT (Ours)|91.37

Table 8: Performance
of Flan-T5-11B on RTE
dataset. Our method out-
performs both PT and
DePT. {The results are
reproduced by us.

Table 7: Performance
on GLUE with T5-3B.
We outperform all PT,
DePT and achieve a 0.1
improvement over TPT
with less parameters.

Method #Para. | SST-2
PT 417.8K | 94.48
DePT 413.4K | 94.95
ACCEPT (Ours) 405K 95.64

Table 9: Performance of Llama-2-7B model on SST-2
dataset. Our method outperforms PT and DePT. PT and
DePT results are sourced from (Shi and Lipani, 2024).

of ACCEPT on large language models, We con-
duct the experiments with billion-parameter mod-
els including T5-3B, Flan-T5-11B and Llama-2-
7B. Tab. 7 shows that ACCEPT achieves the state-
of-the-art average accuracy on GLUE benchmark
with T5-3B. ACCEPT surpasses the vanilla PT
and other prompt tuning methods including DePT
and TPT. Notably, we achieve a 0.1% improve-
ment with much fewer parameters than TPT, which
is an impressive result. Flan-T5 is an enhanced
version of TS5 model by fine-tuning TS on 1,800
downstream tasks. We further select the 11 billion-
parameter version and investigate the effectiveness
of ACCEPT on large language models. Due to the
huge computation resource required, we select the
RTE dataset for evaluation. Tab. 8 shows that AC-
CEPT outperforms both PT and DePT on the RTE
dataset. This indicates the potential and capabil-
ity of ACCEPT incorporating large-scale models.
We also evaluate our method using Llama-based
models. Initially, we attempted to reproduce the
results from (Shi and Lipani, 2024) which uses the
auto-regression generated output for classification.
However, we found it challenging to achieve the
same level of accuracy by this approach. To tackle
this, we added a trainable linear head to output
the probability distribution for classification. The
results are shown in Tab. 9. Our approach outper-
forms both PT and DePT on the SST-2 dataset by
1.16 and 0.69 with Llama-2-7B. This demonstrates
the excellent capability of our method with large
language models (LLMs), highlighting its potential
for adaptation to future LLM architectures.

15352

Method GLUE | SuperGLUE
PT' 84.8 60.0
DePT 85.9 76.5
Init. method of ACCEPT

Random 87.1 76.5
Intermediate task 87.5 77.6
Target task 87.1 77.2

Table 10: Performance of ACCEPT on GLUE and
SuperGLUE with different prompt initialization. All
three strategies outperforms PT and DePT, showing our
method’s robustness.

Prompt Initialization. We further analyze how
initialization affects the performance. We con-
duct three initialization settings, (1) Random ini-
tialization: Both the codebooks and weights are
initialized with a random Gaussian Distribution;
(2) Intermediate task initialization: SPoT (Vu et al.,
2022) has shown that initializing prompts with
the pretrained weights from the tasks of a sim-
ilar nature can benefit the training of the target
task. (3) Target task initialization: By first pre-
training the codebooks and the weights of SCPP
and SCAP respectively on the target task, both of
them are then served as the initialization of AC-
CEPT. Tab. 10 shows that our method achieves
better performances than PT and DePT with all
three strategies, revealing the robustness and effec-
tiveness of ACCEPT. Moreover, intermediate task
initialization strategy yields the best performances.
We conjecture that the pretrained codebooks and
weights from intermediate task of a similar nature
helps the target task transfer more easily, provid-
ing additional knowledge and surpasses the per-
formances of random or target task initialization.
Detailed results are provided in Appendix C.1.
Prompt Length.We evaluate the impact of dif-
ferent prompt lengths (m) on model performance
and training time, as shown in Fig. 4. The exper-
iments are conducted on the MRPC and STS-B
datasets with m values of {0, 20, 40, 60, 80, 100},
while maintaining the same level of training pa-
rameters across all settings. The results indicate
that as m increases, the training time also rises.
Notably, our approach achieves peak accuracy in
both datasets with m = 60, making it our optimal
choice for the prompt length setting.

5 Conclusion

In this paper, we present ACCEPT, a novel prompt
tuning method based on product quantization. As
compared with other PT methods, the proposed
method allows versatile and efficient prompt learn-

Accuracy (%)
Relative Training Time Cost (%)

0 20 40 60 80 100
Length of prepended prompt, m

Figure 4: Performance on the MRPC and STS-B
datasets and their relative training time (normalized to
the one with m = 100) for various prompt lengths
m = {20, 40, 60, 80, 100}. Both datasets show the best
performance at m = 60.

ing by subdividing prompt embeddings and com-
puting each subprompt with the linear combination
of learnable codewords and weights. Extensive
experiments demonstrate that ACCEPT achieves
outstanding performance across various NLP tasks.
Furthermore, we also show the proposed approach
is capable of being effectively adapted to billion-
parameter models and achieves decent results.
While we currently use all codewords for linear
combination, we aim to explore sparse representa-
tions in the future work. Besides, we plan to extend
our research scope by applying ACCEPT to a wider
range of tasks with a more diverse set of LLMs.

Limitations

While our extensive experiments across 17 datasets
highlight the effectiveness of ACCEPT, it’s im-
portant to acknowledge some additional consid-
erations. Our method introduces some extra hy-
perparameters, such as determining the optimal
sub-dimension ¢, which requires some extra com-
putational efforts. Moreover, ACCEPT involves
managing two distinct learning rates for SCPP and
SCAP. Additionally, due to the significant resource
requirements of the models with tens of billions of
parameters, our experiments were conducted on a
limited number of datasets. Future work will aim
to explore ACCEPT on a broader range of datasets
and larger models to further validate its efficacy.

Acknowledgements

This work was supported in part under grants
NSTC 112-2634-F-002-005, NSTC112-2634-F-
006-002, NSTC 112-2221-E-002 -132 -MY3, and
NTU under grants 113L.900902.

15353

References

Stefanos Angelidis, Reinald Kim Amplayo, Yoshihiko
Suhara, Xiaolan Wang, and Mirella Lapata. 2021.
Extractive opinion summarization in quantized trans-
former spaces. Transactions of the Association for
Computational Linguistics, 9.

Akari Asai, Moh ammadreza Salehi, Matthew E Peters,
and Hannaneh Hajishirzi. 2022. Attempt: Parameter-
efficient multi-task tuning via attentional mixtures of
soft prompts. In EMNLP.

Rishabh Bhardwaj, Amrita Saha, Steven CH Hoi,
and Soujanya Poria. 2022. Vector-quantized input-
contextualized soft prompts for natural language un-
derstanding. In EMNLP.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In NeurIPS.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017 task
1: Semantic textual similarity-multilingual and cross-
lingual focused evaluation. In Proceedings of the
11th International Workshop on Semantic Evaluation
(SemEval-2017).

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In NAACL.

Marie-Catherine De Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Investi-
gating projection in naturally occurring discourse. In
proceedings of Sinn und Bedeutung.

Dorottya Demszky, Kelvin Guu, and Percy Liang. 2018.
Transforming question answering datasets into nat-

ural language inference datasets. arXiv preprint
arXiv:1809.02922.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third international workshop on paraphrasing
(IWP2005).

Matthew Dunn, Levent Sagun, Mike Higgins, V Ugur
Guney, Volkan Cirik, and Kyunghyun Cho. 2017.
Searchqa: A new g&a dataset augmented with
context from a search engine. arXiv preprint
arXiv:1704.05179.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo,
Eunsol Choi, and Danqi Chen. 2019. Mrqa 2019
shared task: Evaluating generalization in reading
comprehension. In Proceedings of the 2nd Workshop
on Machine Reading for Question Answering.

Tianyu Gao, Adam Fisch, and Danqgi Chen. 2021.
Making pre-trained language models better few-shot
learners. IJCNLP.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
William B Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and
paraphrasing.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In
ICML. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. In ICLR.

Hamish Ivison and Matthew E Peters. 2022. Hyperde-
coders: Instance-specific decoders for multi-task nlp.
In EMNLP.

Herve Jegou, Matthijs Douze, and Cordelia Schmid.
2010. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and
machine intelligence, 33(1).

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In NAACL.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. volume 32.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In EMNLP.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth international conference on the principles of
knowledge representation and reasoning.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
IJCNLP.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay
Mohta, Tenghao Huang, Mohit Bansal, and Colin A
Raffel. 2022a. Few-shot parameter-efficient fine-
tuning is better and cheaper than in-context learning.
NeurlPS, 35.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2022b.
P-tuning v2: Prompt tuning can be comparable to
fine-tuning universally across scales and tasks. ACL.

15354

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In ACL.

Giangiacomo Mercatali and André Freitas. 2021. Disen-
tangling generative factors in natural language with
discrete variational autoencoders. In EMNLP.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2018. Wic: the word-in-context dataset for evaluat-
ing context-sensitive meaning representations. In
NAACL.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. 21(140).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In EMNLP.

Aurko Roy and David Grangier. 2019. Unsupervised
paraphrasing without translation. In ACL.

Aurko Roy, Ashish Vaswani, Arvind Neelakantan,
and Niki Parmar. 2018. Theory and experiments
on vector quantized autoencoders. arXiv preprint
arXiv:1805.11063.

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. Adapterdrop: On the efficiency
of adapters in transformers. EMNLP.

Timo Schick and Hinrich Schiitze. 2021. It’s not just
size that matters: Small language models are also
few-shot learners. In NAACL.

Zhengxiang Shi and Aldo Lipani. 2024. Dept: De-
composed prompt tuning for parameter-efficient fine-
tuning. In ICLR.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In EMNLP.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan,
Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan
Liu, Peng Li, Juanzi Li, et al. 2021. On transferability
of prompt tuning for natural language processing. In
NAACL.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022.
Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. In NeurIPS, volume 35.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris,
Alessandro Sordoni, Philip Bachman, and Kaheer
Suleman. 2016. Newsqa: A machine comprehension
dataset. In ACL.

Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural
discrete representation learning. NeurIPS, 30.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou,
and Daniel Cer. 2022. Spot: Better frozen model
adaptation through soft prompt transfer. In ACL.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. NeurlPS, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In /CLR.

Sinong Wang, Han Fang, Madian Khabsa, Hanzi Mao,
and Hao Ma. 2021. Entailment as few-shot learner.
arXiv preprint arXiv:2104.14690.

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Roge-
rio Feris, Huan Sun, and Yoon Kim. 2023. Multitask
prompt tuning enables parameter-efficient transfer
learning. In ICLR.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7.

Adina Williams, Nikita Nangia, and Samuel R Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In NAACL.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu,
and Jian Cheng. 2016. Quantized convolutional neu-
ral networks for mobile devices. In CVPR.

Muling Wu, Wenhao Liu, Jianhan Xu, Changze Lv, Zix-
uan Ling, Tianlong Li, Longtao Huang, Xiaoqing
Zheng, and Xuan-Jing Huang. 2023. Parameter ef-
ficient multi-task fine-tuning by learning to transfer
token-wise prompts. In EMNLP.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. In EMNLP.

Tan Yu, Junsong Yuan, Chen Fang, and Hailin Jin. 2018.
Product quantization network for fast image retrieval.
In ECCV.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2022. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. ACL.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, Kevin Duh, and Benjamin Van Durme. 2018.
Record: Bridging the gap between human and ma-
chine commonsense reading comprehension. arXiv
preprint arXiv:1810.12885.

15355

Appendix

A Experimental Setting

We use PyTorch!, huggingface transformers?

and huggingface PEFT? to implement our work.
GLUE*, SuperGLUE?® and MRQA 2019 Shared
Task® are downloaded from huggingface dataset.
We use the original T5 checkpoint rather than the
LM-adapted 1.1 version (Lester et al., 2021). We
modified codes based on DePT’s repository’. We
mainly cite the experiment results from Wu et al.
(2023) and Shi and Lipani (2024). We typically
use m = 60 for the length of SCPP, and set the
maximum sequence length [to 256, which also cor-
responds to the length of SCAP (except using 348
for MultiRC following Shi and Lipani (2024)). We
partition SCPP and SCAP into K =24 and K = 2
subsections, respectively. The associated r is cal-
culated by the equation rd + rmK < md for each
model with dimension d. As for the experiments
using the Llama-2-7B model, we modified codes
based on Petals’ repository®. We use a learning rate
of 3e-3 for SCPP and 5e-5 for SCAP. The weight
decay is le-2 and 1le-3, respectively, with a batch
size of 32.

B Task and Dataset Details

We list the detailed information, including numbers
of training, evaluation and testing samples, task
types and evaluation metrics of each dataset which
has been used in our experiments in Tab. 11. We
utilize a diverse range of datasets covering various
NLU tasks, including Natural Language Inference
(NLI), Paraphrase Detection, and Sentiment Anal-
ysis. Additionally, we explore different types of
Question Answering (QA) tasks, such as extractive
and boolean QA. The effectiveness and generaliz-
ability of ACCEPT are demonstrated across these
tasks in Tab. 1 and Tab. 2.

C More Details of Experiments

In this section, we present more comprehensive
experiments.

1https://pytorch.org/
https://github.com/huggingface/transformers
3https://github.com/huggingface/peft
4https://huggingface.co/datasets/glue
5https://huggingface.co/datasets/super_glue
6https://huggingface.co/lucadiliello
7https://github.com/ZhengxiangShi/DePT
8https://github.com/bigscience—workshop/
petals

QQP-Training Curve QQP-Validation Accuracy

06 —— random

—— intermediate 90
0.3
0.2
0.1

—— target
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000
Iteration Iteration
QNLI-Validation Accuracy

&

Accuracy

® ®
3

—— random
—— intermediate
— target

~
&

QNLI-Training Curve

— random 955
0.30 — intermediate
— target 95.0

0.15 4.0
0.10 935

0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000
Iteration Iteration
SST2-Training Curve SST2-Validation Accuracy

Loss
o
9
5
Accuracy

© ©

—— random
— intermediate
— target

05 —— random
—— intermediate 90

0.4 — target
" 80
203
s
0.2 0
01 60

0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000
Iteration Iteration

Accuracy

—— random
— intermediate
—— target

Figure 5: Training curve (left) and validation accuracy
curve (right) comparison between different prompt ini-
tialization strategies across QQP, QNLI and SST-2.

C.1 Details of Prompt Initialization

Tab. 13 and Tab. 15 present the results for each
dataset using three initialization strategies. The
majority of performances improved with either
intermediate task initialization or target task ini-
tialization, demonstrating the effectiveness of pre-
learning knowledge before transferring it to the
target tasks, aligning with SPoT (Vu et al., 2022).

In addition, we present a comparison of the train-
ing curves and validation curves using different
methods of prompt initialization across QQP, QNLI
and SST-2 datasets, as shown in Figure 5. It can be
observed that initializing with an intermediate task
or target task helps the target task transfer more
easily, resulting in faster convergence and better
performance.

C.2 Details of Different Granularity of
Subdivision.

We have shown the performance of different sub-
dimension (¢) and codebook size (r) pairs in Tab. 5.
We present more results in Tab. 12 by selecting total
8 factors of the model dimension (d = 768 for T5-
base) and conduct the experiments for each setting
on RTE dataset. Tab. 12 shows that with an appro-
priate division, multiple configurations surpass the
performance of not dividing prompts (! = 768),
which demonstrate the effectiveness of PQ. We
select t = 32, K = 24, r = 20) for SCPP and
t = 384, K = 2, r = 24) for SCAP as the fi-

15356

https://pytorch.org/
https://github.com/huggingface/transformers
https://github.com/huggingface/peft
https://huggingface.co/datasets/glue
https://huggingface.co/datasets/super_glue
https://huggingface.co/lucadiliello
https://github.com/ZhengxiangShi/DePT
https://github.com/bigscience-workshop/petals
https://github.com/bigscience-workshop/petals

Dataset Name Benchmark #Train #Valid #Test Task Type Metric
MNLI GLUE 392,702 9,832 9,815 Natural Language Inference (NLI) accuracy
QQP GLUE 362,846 1,000 40431 Paraphrase Detection accuracy/F1
QNLI GLUE 103,743 1,000 5,463 NLI accuracy
SST-2 GLUE 66,349 1,000 872 Sentiment Analysis accuracy
STS-B GLUE 5,749 750 750 Sentence Similarity Pearson/Spearman corr.
MRPC GLUE 3,668 204 204 Paraphrase Detection accuracy/F1
RTE GLUE 2,490 138 139 NLI accuracy
CoLA GLUE 8,551 521 522 Acceptability Matthews corr.
MultiRC SuperGLUE 27,243 2,424 2,424 Question Answering (QA) F1/EM
BoolQ SuperGLUE 9,427 1,635 1,635 Boolean QA accuracy
WiC SuperGLUE 5,428 319 319 Word Sense Disambiguation accuracy
WSC SuperGLUE 554 52 52 Commonsense Reasoning accuracy
CB SuperGLUE 250 28 28 NLI accuracy
ReCoRD SuperGLUE 137,484 1,370 15,176 Commonsense Reasoning F1/EM
NaturalQuestions | MRQA 2019 103,071 1,000 12,836 Extractive QA F1/EM
HotpotQA MRQA 2019 71,928 1,000 5,901 Extractive QA F1/EM
SearchQA MRQA 2019 116,384 1,000 16,980 Extractive QA FI/EM
NewsQA MRQA 2019 73,160 1,000 4,212 Extractive QA FI/EM
SQuAD MRQA 2019 86,599 1,000 10,570 Extractive QA FI/EM

Table 11: Detailed information of all datasets used in our experiments. For datasets that originally use two metrics,
we designate the underlined metric as our primary evaluation measure following prior works (Asai et al., 2022; Shi
and Lipani, 2024).

Soft-weighted Codebook Prepended Prompt (SCPP)

t, 1) (16, 12) (32,20) (64,30) (96,36) (128,40) (192,45) (256,48) (384,51) (768, 55)

#Para. | 74496 74880 75360 = 75648 75840 76080 76224 76008 76260

Acc. 77.70 82.73 79.14 82.73 79.14 81.29 77.70 82.73 81.29
Soft-weighted Codebook Added Prompt (SCAP)

t, 1) (16,2) (32,4) (64,8) (96,10) (128,13) (192,17) (256,20) (384,24) (768, 30)

#Para. | 72192 73728 76800 = 74240 76032 76544 76800 76800 76800

Acc. 78.42 77.70 76.98 76.98 79.86 78.42 81.29 82.73 78.42

Table 12: Performance on RTE dataset with dividing the SCPP and SCAP into different granularities. Note that for
T5-base, t = 768 means the prompt is NOT divided.

GLUE SuperGLUE

Init. Method

MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.|Multi Bool WiC WSC CB Avg.
Random 85.7 902 93.0 943 91.0 931 842 652 87.1|745 81.0 70.5 67.3 929 77.2
Intermediate task| 85.9 90.2 93.3 942 91.0 927 863 664 87.5|73.5 823 68.7 67.3 96.4 77.6
Target task 859 904 9311 945 91.0 917 813 68.8 87.1| 749 81.8 69.0 67.3 929 77.2
Table 13: Performance on GLUE and SuperGLUE with different prompt initialization.
SCPP SCAP GLUE _ SupngLUE
MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.|{Multi Bool WiC WSC CB Avg.
X X 85.0 904 932 942 90.8 90.7 79.1 63.8 859|743 793 68.7 67.3 929 76.5
v X 859 903 932 943 91.0 91.7 827 675 87.1|743 809 70.2 67.3 96.4 77.8
X v 86.0 904 932 943 911 90.7 827 668 87.0|754 812 674 673 964 77.5
v v 859 904 931 945 910 931 86.3 68.8 87.9| 749 823 70.5 67.3 96.4 78.3

Table 14: Ablation study of SCPP and SCAP on GLUE and SuperGLUE benckmarks. We provide the performance
of each dataset.

nal decision considering both the performance and C.3 Details of Ablation on SCPP and SCAP.

parameter efficiency, applying to all datasets.

In the main paper, we provide the average perfor-
mances on GLUE/SuperGLUE benchmarks and

15357

Init. Method

MRQA

NQ HP SQA News Avg.

Random

Intermediate task
Target task

73.47 76.74 78.59 64.63 73.36
72.71 76.98 78.47 64.44 73.15
73.61 77.10 78.91 64.62 73.55

Table 15: Performance on MRQA 2019 Shared Task
with different prompt initialization.

MRQA
SCPP SCAP NQ HP SQA News Avg.
X X 73201 76.803 T7.602 64.401 73.0
v X 73.80_05 76.90_01 78-80_2 64.70,1 73.5
X v 73402 76.805 78502 64307 733
v v 136005 77101 789001 64.6006 73.6

Table 16: Ablation study of SCPP and SCAP on MRQA
2019 Shared Task. We report the average F1 and stan-
dard deviation of three experiments with different seeds.

MRQA 2019 Shared Task in Tab. 6. Here we pro-
vide the performance on each dataset in Tab. 14
and Tab. 16. The results of most datasets show
improvements when using either SCPP or SCAP
individually, and are the best performances when
both are applied simultaneously, further validating
the effectiveness of ACCEPT.

15358

