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Abstract

Recently, very large language models (LLMs)
have shown exceptional performance on several
English NLP tasks with just in-context learn-
ing (ICL), but their utility in other languages
is still underexplored. We investigate their ef-
fectiveness for NLP tasks in low-resource lan-
guages (LRLs), especially in the setting of zero-
labeled cross-lingual transfer (0-CLT), where
no labeled training data exists for the target lan-
guage but data from related medium-resource
languages (MRLs) and unlabeled test data for
the target language are available. We introduce
Self-Supervised Prompting (SSP), a novel ICL
approach tailored for the 0-CLT setting.

SSP leverages the key observation that LLMs
output more accurate labels if in-context ex-
emplars are given from the target language,
even if their labels are slightly noisy. To oper-
ationalize this, since target language training
data is not available in 0-CLT setup, SSP op-
erates in two stages. In Stage I, using source
MRL training data, target language’s test data
is noisily labeled. In Stage II, these noisy test
data points are used as exemplars in ICL for
further improved labeling. Additionally, our
implementation of SSP uses a novel Integer
Linear Programming (ILP)-based exemplar se-
lection method that balances similarity, pre-
diction confidence and label coverage. Ex-
perimental results on three tasks and eleven
LRLs (from three regions) demonstrate that
SSP strongly outperforms existing SOTA fine-
tuned and prompting-based baselines in the 0-
CLT setting.

1 Introduction

Very large language models (LLMs) such as GPT-
3.5-Turbo & GPT-4 (Ouyang et al., 2022; Achiam
et al., 2023) show remarkable performance on a
variety of NLP and reasoning tasks via In-Context
Learning (ICL) (Brown et al., 2020; Chowdhery
et al., 2023). ICL feeds a task-specific instruction
along with a few exemplars, appended with the

test input, to the LLM. As LLMs can be highly
sensitive to exemplars (Zhao et al., 2021), efficient
exemplar retrieval becomes essential for ICL.

While LLMs have shown excellent performance
on English tasks, their effectiveness in other lan-
guages remains relatively underexplored. In this
work, we study zero-labeled cross-lingual trans-
fer (0-CLT) to low-resource languages (LRLs) – a
setting where labeled task data from one or more re-
lated medium-resource languages (MRLs) is avail-
able, but no labeled data exists for the target LRL.
We additionally leverage the available test sen-
tences (unlabeled) in the target language. The high
cost of annotating the sentences in LRLs for new
tasks or domains highlights the relevance of the
0-CLT setting.

Cross-lingual transfer has been addressed
through standard fine-tuning (Muller et al., 2021;
Alabi et al., 2022), and language adapters (Pfeif-
fer et al., 2020; Üstün et al., 2020; Rathore et al.,
2023), but there is limited work on cross-lingual
ICL. There are two exceptions (Ahuja et al., 2023;
Asai et al., 2024), where ICL is employed with
exemplars from a source language, but they use
uniformly random sampling for exemplar selection,
resulting in performance inferior to cross-lingually
fine-tuned models, such as mBERT and XLM-R
(Devlin et al., 2019; Conneau et al., 2020).

In our preliminary experiments, we prompt the
GPT-4 model with exemplars from source MRLs,
and compare its performance with the same LLM
prompted with exemplars from the target LRL. We
vary the label noise on the target exemplars. Un-
surprisingly, LLMs show better performance with
less label noise. More interestingly, we find that
a reasonably-sized noise region exists (see Figure
1), such that if the exemplar noise is within that
range, then the overall performance is higher than
prompting with accurate source language data.

Armed with this observation, we present Self-
Supervised Prompting (SSP) – a novel ICL frame-
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Figure 1: GPT-4, prompted with target LRL exemplars,
along with artificially injected label noise (x-axis) for
POS tagging task in 3 Germanic LRLs. Dashed lines
represent F1 scores when prompted with source MRL
exemplars (i.e. Stage 1). Label Noise means the fraction
of labels in which noise is injected.

work for 0-CLT to LRLs. Since the target LRL
training data is not available in 0-CLT, SSP oper-
ates in two stages. In Stage I, SSP labels all test
instances of LRL using training data from MRL.
This may be done by LLM prompting (as in the
experiment above), or using any other existing
approaches for 0-CLT, such as by fine-tuning or
adapters. Once (noisy) labels on target LRL are ob-
tained, in Stage II, SSP uses ICL using these noisy
test data points (except itself) as exemplars for fur-
ther performance improvement. Additionally, to
select the best exemplars, we develop a novel In-
teger Linear Programming (ILP) based selection
approach, which balances the various objectives
of (1) similarity of exemplar with test sentence,
(2) high confidence in label predictions, and (3)
coverage of the various labels for better task un-
derstanding. Figure 2 gives an overview of our
proposed pipeline.

We define 3 scenarios for our zero-labeled setup
- (1) 0-CLT: Only the available test sentences of
the target language are used, with no additional
unlabeled data, (2) 0-CLT-U: the full wikipedia
data available for target language is utilized, and
(3) 0-CLT-T: a translation model supporting the
target language is leveraged. The primary focus
of this work is on 0-CLT (setting 1). However,
we also conduct stage 1 experiments for both 0-
CLT-U and 0-CLT-T settings. This enables us to
comprehensively assess SSP’s effectiveness across
varying degrees of noise in stage I labelings.

We perform experiments on sequence labeling

tasks (POS tagging and NER), and natural language
inference (NLI) – a text classification task. Our
datasets encompass eleven low-resource languages
from typologically diverse language families and
three regions: African, Germanic and American.
Our experiments show consistent and substantial
improvements over existing fine-tuning as well as
simpler ICL-based approaches. To encourage re-
producibility, we make our code and prompts pub-
licly available.1

Our contributions are summarized as follows:

1. We investigate ICL strategies for zero-labeled
cross-lingual transfer (0-CLT) to LRLs, using
labeled data from related MRLs and unlabeled
test data from the target language.

2. We propose SSP, a two-stage self-supervised
prompting paradigm for this task, where the
first stage may be done by an LLM or any
other cross-lingually fine-tuned models.

3. We introduce a novel exemplar selection ap-
proach utilizing Integer Linear Programming
(ILP). The ILP incorporates similarity to test
input along with confidence of stage I predic-
tions, and enforces label coverage constraints.

4. Experiments on 3 tasks and 11 languages
show that SSP outperforms existing fine-
tuning and SOTA LLM-based models in 0-
CLT, 0-CLT-U (full unlabeled) as well as 0-
CLT-T (translation-based) settings, hence im-
proving labeling in the second iteration, irre-
spective of the initial labeling method.

2 Related Work

An ICL prompt consists of (1) task description:
to facilitate the understanding of task, (2) labeled
input-output pairs: Written sequentially in order of
their relevance to input query, and (3) input itself.
Cross-lingual ICL: In general, cross-lingual ICL
has not been systematically explored in literature.
In existing works, prompting is primarily done in a
high-resource language, typically English. This is
called cross-lingual (CL) prompting. This differs
from in-language (IL) prompting, where examples
are retrieved from the candidate pool of the target
language itself. This assumes the availability of
labeled data for target LRL, which is not true in
our zero-labeled (0-CLT) setting. In response, we
develop novel techniques making use of both CL
prompting and IL prompting, while not utilizing
the gold labels during IL prompting stage.

1https://github.com/dair-iitd/SSP
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Figure 2: SSP Architecture for Cross-Lingual Transfer to Target Low-Resource Language (LRL). (1) Stage 1
(orange): Fine-tune a model or perform cross-lingual in-context learning (ICL) using medium-resource language(s)
(MRL) data. (2) The ILP Solver (green) selects exemplars for Stage 2 based on semantic similarity between the
query and candidates from the target language test set, also utilizing logits from Stage 1 predictions. (3) Stage 2
(blue): Perform in-language ICL for the target query using the selected exemplars along with their stage 1 labels.

Most existing cross-lingual ICL methods use
uniformly random input-output pairs for exem-
plar selection (Zhang et al., 2022; Winata et al.,
2021; Ahuja et al., 2023; Asai et al., 2024). Re-
cent approaches (Agrawal et al., 2022; Tanwar
et al., 2023) address this gap by utilizing semantic
similarity for cross-lingual retrieval from a high-
resource language’s labeled data, given the target
LRL’s instance as query. This is facilitated by
embedding-based multilingual retrievers such as
multilingual sentence-transformers (Reimers and
Gurevych, 2020). More recently, OpenAI-based
embeddings such as Ada-002 2 have been used ef-
fectively for cross-lingual retrieval (Nambi et al.,
2023). We extend this line of work by also in-
corporating label confidence and label coverage in
exemplar selection.

Self-Adaptive Prompting: Wan et al. (2023) pro-
posed Universal Self-Adaptive (USP) framework,
which has been explored for only monolingual (En-
glish) setting. USP uses an external unlabeled
dataset of instances and labels them using LLM in
Stage I. It then samples multiple Chain-of-thought
(CoT) paths to estimate the logits using the same
LLM, and then utilizes the entropy of logits for
exemplar selection for Stage 2. Our work has simi-
larities to USP in that both methods are two-staged
prompting approaches. USP is different from SSP
in that the former is much more expensive, since
it requires multiple LLM calls to just estimate the

2https://platform.openai.com/docs/guides/embeddings/

logits. USP also does not use any exemplars (and
only uses task description) in stage 1, which are
quite important for better performance. Finally,
USP has only been applied for English tasks, and
has not been explored for cross-lingual tasks.

Fine-tuning approaches for Cross-lingual Trans-
fer: Most approaches rely on fine-tuning a Pre-
trained LM (PLM) such as BERT or XLM-R on
the source languages (Muller et al. (2021); Alabi
et al. (2022)) and deploying on an unseen target
language. Recently, Language-Adapter-based ap-
proaches have been found more effective (Üstün
et al., 2020) for cross-lingual transfer settings.
For sequence labeling tasks (NER and POS tag-
ging), ZGUL (Rathore et al., 2023) is a recent
SOTA method that leverages ensembling Language
Adapters from multiple MRLs to label each word in
a target language. We leverage this in our proposed
SSP pipeline.

Cross-lingual label-projection techniques: Re-
cent methods (Chen et al., 2023a; García-Ferrero
et al., 2023; Le et al., 2024) utilize an off-the-shelf
translation model (NLLB Team et al., 2022) for
label-projection in 2 ways – (1) Translate-train:
translate from English to target language (X) to
generate training data in X, or (2) Translate-test:
translate test data in X to English to perform label-
projection and obtain annotations in X. Although
our focus is 0-CLT transfer, we also experiment
with these translation models in Stage I, to assess
the robustness of SSP across multiple settings.
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3 Self-Supervised Prompting

We define the setting of zero-labeled cross-lingual
transfer (0-CLT) as follows. We are given
source training data for a specific task: D =
{(xi, lgi, yi)}, where xi is the input text in lan-
guage lgi, and the output is yi. We are additionally
given a set of unlabeled test data points T = {qj}
from a target language lgt. Our goal is to train a
model/create a protocol, using D, T and a large
pre-trained LLM, that outputs good predictions on
T for the task, assuming that lgt is a low-resource
language, due to which its training data is not avail-
able, and that languages lgi are related to lgt.

Our solution approach, Self-Supervised Prompt-
ing (SSP), comprises two key stages as follows. In
Stage I, it proposes a noisy labeling for all data
points in T using source data D. This may be done
in different ways, as described next. In Stage II, it
uses the LLM and noisy labeling on T from Stage
I as exemplars to improve the labelings. Further-
more, SSP uses a novel integer-linear programming
based exemplar selection. We now describe each
component of our system.

3.1 Stage I: Initial labeling using source data

To create a first labeling for all test points, SSP
can use any existing approaches for 0-CLT, such as
fine-tuning a multilingual language model for the
task, or use of language adapters or using our LLM
with in-context exemplars from source language.
In our experiments, we experiment with adapters
and ICL, which we briefly describe next.
Cross-Lingual ICL: In the method, we use ICL
over LLM for obtaining Stage I labelings. First,
we retrieve a set of top-K exemplars from D using
each test instance qj as query. This selection is
based on cosine similarity between their Ada-002
embeddings. The selected exemplars are arranged
in descending order of similarity scores, and in-
cluded in the prompt between the task description
(TD) and the input test instance. This approach has
two drawbacks. First, since the LLM will typically
be a large expensive model – this will require an
LLM call per test data point in Stage I. Second,
generally, these LLMs do not expose their logits,
hence, we will not have access to prediction confi-
dences from Stage I labelings.
Training smaller model(s) using D: Another
possibility is to fine-tune a smaller multilingual
LM, such as mBERT or mDeBERTa-v3 (He et al.,
2021) on D for NLI task. For sequence labeling,

we can use ZGUL (Rathore et al., 2023), which
trains source language adapters using D, and uses
inference-time fusion of source adapters for label-
ing test data points. These approaches can provide
Stage I labelings for T along with prediction confi-
dences, without making any expensive LLM calls.

3.2 Stage II: in-language ICL using
ILP-based exemplar selection

After Stage I predictions for target instances T are
obtained, SSP prompts the LLM to label each test
data point q ∈ T , but uses in-context exemplars
in target language using Stage I labelings. For ex-
emplar selection, SSP implements a novel integer
linear program (ILP) that balances semantic simi-
larity, prediction confidence (when available) and
label coverage.

Our primary objective is to maximize the aggre-
gated semantic similarity of the selected exemplars,
which is obtained using cosine similarity score be-
tween their OpenAI Ada-002 embeddings. In addi-
tion, we impose two constraints:

• Label Coverage: The ILP tries to ensure the
coverage of all labels for the given task in
the selected exemplars – this has been found
effective for ICL (Min et al., 2022).

• Confidence: In case logits for Stage I model
are accessible (unlike the OpenAI LLMs), the
ILP prefers selection of more confident exem-
plars. Our hypothesis is that confident predic-
tions are also accurate (assuming the model is
well-calibrated), and previous work has shown
that performance of LLMs can be sensitive to
correctness of exemplars (Wei et al., 2023)

SSP formulates these three factors into an ILP as
follows. For a dataset D with n examples indexed
from I = {1 . . . n}, given a test data point (query)
qj , let zi be a binary variable denoting whether ith

test instance qi is selected as an exemplar. We use
a semantic similarity function sim(qi, qj) to get the
similarity between two examples. K is the number
of exemplars to be selected. Since qj cannot be an
exemplar for itself, we select exemplars from the
set I \ {j} only.

Let the set of all labels for the given task be
L, and the multiset of all labels predicted (using
argmax) for example qi be Li. The Stage I predic-
tion confidence for label l in qi is denoted as ŷil .
This confidence is computed as average of proba-
bility scores across all predictions of label l in ith
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sentence (details in Appendix A). The ILP uses a
threshold τl for prediction confidence for a label l.
Intuitively, the ILP maximizes the semantic simi-
larity of K chosen exemplars, subject to each label
l being present at least once in the exemplars, and
average prediction confidence of each data point
for each label being greater than τl.

Formally, the ILP is formulated as

max
∑

i∈I\{j}
zi · sim(qi, qj) (1)

such that
∑

i∈I\{j}
zi = K (2)

zi · (ŷil − τl) ≥ 0 ∀ i ∈ I \ {j},∀ l ∈ Li (3)
∑

i∈I\{j}
zi · count(Li, l) ≥ 1 ∀ l ∈ L (4)

Here count(Li, l) denotes the number of occur-
rences of l in Li. In our experiments, we set K = 8,
and τl = 80th percentile threshold of the set {ŷil}ni=1

for a particular label l. The idea is to have label-
specific threshold since the fine-tuned model may
not be calibrated equally for all labels.

Since logits are not accessible for OpenAI LLMs
GPT-3.5 and GPT-4x, in case Stage I labeling is
done by either of these models using ICL, we skip
the confidence thresholding constraint of ILP. This
means that for this variant of SSP, the selection is
made based on only similarity and label coverage.

4 Experiments

Our main experiments assess SSP performance
compared to existing state-of-the-art models for
0-CLT. We also wish to compare various SSP vari-
ants, and estimate the value of the ILP-based exem-
plar selection.

4.1 Tasks and Datasets

We experiment on three tasks – POS tagging, NER
and Natural Language Inference (NLI). We use
the UDPOS dataset (Nivre et al., 2020) for POS
tagging over Germanic languages, MasakhaNER
(Adelani et al., 2021) for African NER, and Amer-
icasNLI (Ebrahimi et al., 2022) for NLI task on
the indigenous languages of Americas. Overall,
we use eleven low-resource test languages as tar-
get (e.g., Kinyarwanda, Faroese, and Aymara), and
2-4 source languages per dataset (e.g., Icelandic,
Spanish and Swahili; always including English).
Further details are in Tables 5 and 6.

Recent studies have shown sensitivity of the out-
put to the template/format of input-output pairs
written in the prompt (Sclar et al., 2023; Voronov
et al., 2024). We follow the best template given
in Sclar et al. (2023) for NLI, while for sequence
labeling, we explore various templates on our own
and report our results on the best one. We refer
to Appendix B for details and the exact templates
used for each of our tasks.

For obtaining test set, we randomly sample 100
test samples for each target language for NER and
POS tasks. We justify this as each sentence has
multiple labels, bringing the total no. of instances
to be labeled per language to 2370 and 1100 for
POS and NER respectively. For the NLI task, we
sample 501 test samples (167 for each class: ‘en-
tailment’, ‘contradiction’ and ‘neutral’). We report
statistical significance (in table captions) to justify
our evaluation.

We also perform a careful contamination study,
following (Ahuja et al., 2022), by asking LLMs
to fill dataset card, complete sentence (and labels),
given partial sentence, and generate next few in-
stances of the dataset. As further detailed in Ap-
pendix F, we do not observe any evidence of con-
tamination for these languages’ test splits in the
OpenAI LLMs.

4.2 Comparison Models

LLMs: We experiment with a series of advanced
LLMs – GPT-3.5-turbo (Ouyang et al., 2022), GPT-
4x (GPT-4/GPT-4-Turbo) (Achiam et al., 2023),
and LLaMa-2-70b (Touvron et al., 2023) for each
task. For NER and NLI, we use GPT-4-Turbo due
to its superior performance compared to GPT-4.
However, for POS tagging, we opt for GPT-4 in-
stead, as GPT-4-Turbo encounters challenges in
following the instructions and generating outputs
compatible with the verbalizer utilized in our ex-
periments (details in App. B). We present the exact
version details of OpenAI LLMs in table 4.

Zero-shot Baselines: We compare our SSP ap-
proach with the SoTA fine tuning models, as well
as LLM-based ICL methods using naive random ex-
emplar selection. In particular, we fine-tune ZGUL
– mBERT Language Adapter-based SoTA zero-shot
baseline for NER and POS tagging, and mDe-
BERTa fine-tuned for NLI. We additionally utilize
the public model mDeBERTa-v3-base-xnli (Lau-
rer et al., 2022) for NLI evaluation. We term our
own fine-tuned model as mDeBERTaFT and the
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Model Hau Ibo Kin Lug Luo Avg. Fo Got Gsw Avg
zero-labeled (0-CLT)
Full Fine-Tuning (FFT) 49.9 54.9 55.4 56.3 40.2 51.3 77.6 17.8 62 52.5
CPG (Üstün et al., 2020) 48.6 50.4 52.6 54.3 38.6 48.9 77.3 16.9 63.9 52.7
ZGUL 52.2 56 53.7 54.5 44.4 52.2 77.2 21.1 65 54.4
ICL-Llama-2-70b 64.3 61.2 59.2 60.1 47.3 58.4 79.1 36.0 71.8 62.3
ICL-GPT-3.5-turbo 54.5 69.2 57.8 63.7 46.4 58.3 81.2 37.9 72.2 63.8
ICL-GPT-4x 64.7 80.8 64.6 71.0 53.3 66.9 81.3 66.5 82.3 76.7
SSP(ICL)-llama-2-70b 57.6 62.6 56.0 57.6 43.1 55.4 78.5 37.9 73.5 63.3
SSP(ICL)-GPT-3.5-turbo 62.8 68.4 64.0 63.8 47.6 61.3 82.4 63.2 79.4 75.0
SSP(ICL)-GPT-4x 67.2 79.6 63.3 74.1 54.4 67.7 81.8 73.7 85.4 80.3
SSP(ZGUL)-Llama-2-70b 68.4 58 56.1 54.7 42.3 55.9 79.9 39.9 72.9 64.2
SSP(ZGUL)-GPT-3.5 61.1 68.9 62.1 67.1 51.4 62.1 82.8 67.5 77 75.8
SSP(ZGUL)-GPT-4x 71.2 82.4 71.4 75.4 55.1 71.1 82.2 71.5 85.6 79.8
w/o Conf. thresholding 71.3 81.9 69.2 74.6 52.7 69.9 82.8 57 81.4 73.7
w/o Label Coverage 71.1 79.8 71.4 75.4 55.1 70.6 82.2 71.6 85.6 79.8
w/o both (sim-based) 70.3 81.8 68 74.8 51.9 69.4 82.4 55.8 82.3 73.5
w/o ILP (Random) 64.1 77.6 61.5 66.1 46.6 63.2 80.6 54.8 80.9 72.1
Translate-train (0-CLT-T)
ZGUL 72.5 68.5 67.9 65.5 47.3 64.3 - - - -
ICL-GPT-4x 68.7 78.1 58.7 76.3 53.8 67.1 - - - -
SSP(ZGUL)-GPT-4x 75.1 76.7 72.3 79.9 54.4 71.7 - - - -
SSP(ICL)-GPT-4x 69.9 79.8 60.6 74.7 53.8 67.8 - - - -
Translate-test (0-CLT-T)
Self-fusion (GPT-4x) (Chen et al., 2023b) 68.4 68 58.8 66.5 39.7 60.3 83 - 70 -
SSP(Self-fusion)-GPT-4x 70 78.6 64.6 77 51.3 68.3 83.7 - 83.9 -
Unlabeled data (0-CLT-U)
AfriBERTa (Ogueji et al., 2021) 75.4 79.1 64.9 54.7 39.3 62.7 - - - -
ZGUL++ (Rathore et al., 2023) 78.5 68.9 62.5 66 50.2 65.2 81.5 18.7 80.4 60.2
SSP(ZGUL++)-GPT-4x 75.6 84.7 70.3 75.4 54.6 72.1 83.9 71.7 86 80.5
Skyline (GPT-4x) 75.5 85.9 70.7 73.6 67.2 74.6 93.5 80.7 89.9 88

Table 1: Micro-F1 scores for African NER (left) and Germanic POS (right). Best 0-CLT results are bolded while
overall best results are underlined. Translate-train baselines could not be run for POS tagging due to absence of
label-projection models for POS. However, Translate-test was possible as label-projection is performed using GPT-4
(Exception being Gothic, as it’s translation is not supported in NLLB-200). Statistical significance of bold numbers
(0-CLT comparison): McNemar p-value = 0.008 and 0.0004, respectively.

public model as mDeBERTa100, as it was trained
on 100 languages (excluding our target languages).
For POS and NER, we also add full parameter
fine-tuning and Conditional Parameter Generation
(CPG (Üstün et al., 2020)) baselines, all fine-tuned
using the same underlying LM (i.e. mBERT).

SSP Variants: We implement SSP with all 3 LLMs
– LLaMa-2-70b, GPT-3.5-turbo, and GPT-4x (GPT-
4/GPT-4-Turbo). If Stage I uses ICL, then the same
LLM is used for both stages I and II. Alternatively,
ZGUL and mDeBERTa based methods are also
used in Stage I of SSP.

To understand the value of the ILP, we perform
three ablations on exemplar selection strategy –
(a) without confidence thresholding (for fine-tuned
LM), (b) without label coverage and (c) without
both, i.e. pure similarity-based. The ablations
are conducted with the best performing underly-
ing LLM i.e. GPT-4x.

Leveraging Translation Models and Unla-
beled Data: For a comprehensive evaluation, we

use the cross-lingual label projection models Codec
(Le et al., 2024) for translate-train and Self-fusion
(Chen et al., 2023b) for translate-test baselines.
More details are provided in Appendix A.1.
Additionally, we leverage unlabeled data in the tar-
get language to establish a stronger baseline. We
use the AfriBERTa encoder (Ogueji et al., 2021)
for African languages and ZGUL++ (Rathore et al.,
2023), which utilizes target Wikipedia data to pre-
train a target language adapter, and fuses it with
MRL adapters for fine-tuning on MRL data.

Skyline: To understand the current performance
gap due to lack of target language training data,
we also implement a skyline utilizing the gold an-
notated testset for target languages and perform
few-shot similarity-based exemplar selection (us-
ing Ada-002) for in-language ICL to the LLM.

5 Results and Analysis

We present the results for all tasks in Tables 1,
and 2. ICL-X represents ICL over an LLM
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Model Aym Gn Nah Avg.
0-CLT
mDeBERTa100 34.9 43.9 48.9 42.6
mDeBERTaFT 33.9 47 46.9 42.6
ICL-GPT-3.5 38.2 41.7 35.3 38.4
ICL-GPT-4-turbo 32.8 55.8 42.2 43.6
SSP(ICL)-GPT-3.5 38.4 38.8 43.2 40.1
SSP(ICL)-GPT-4-turbo 37.5 58.5 51.8 49.3
SSP(mDeBERTaFT )-Llama-2 36.5 37.8 41 38.4
SSP(mDeBERTaFT )-GPT-3.5 43.1 46 46.8 45.3
SSP(mDeBERTaFT )-GPT-4-turbo 36 61.3 59.2 52.2

Model Aym Gn Nah* Avg.

w/o Conf. 42.9 60.1 50.3 51.1
w/o Label 37 58.2 57.4 50.9
w/o both 34.3 59.7 57.1 50.4
w/o ILP (Random) 33.4 53.8 53.4 46.9
Translate Train
ICL-GPT-4-turbo 42.4 49.5 - -
SSP(ICL)-GPT-4-turbo 44.4 58.6 - -
Translate Test
ICL-GPT-4-turbo 36.4 45.5 - -
SSP(ICL)-GPT-4-turbo 42.4 57.6 - -
Skyline (GPT-4x) 49.2 55.6 60 54.9

Table 2: Micro-F1 scores for Americas NLI (Statistical significance of bold number (0-CLT comparison): McNemar
p-value = 0.054). * Nahuatl (Nah) not supported in NLLB-200.

X with source language exemplars i.e. stage 1.
SSP(model)-X represents the use of model for
Stage I followed by LLM X for Stage II. When-
ever ICL is used in Stage I, then the same LLM X
is used for both stages.

Analyzing the results, we first observe that all
ICL-X baselines perform much better than previ-
ous fine-tuning approaches for the 0-CLT task. This
reaffirms the importance of studying and improv-
ing in-context learning over very large language
models for our setting.

Comparing among SSP variants, it is not surpris-
ing that GPT-4x performance supercedes GPT-3.5,
which is much better than Llama2 70B. We next
compare ICL baselines and SSP variants, when us-
ing the same LLM. We find that SSP’s two stage
workflow consistently outperforms ICL by signifi-
cant margins. In fact, in-language exemplars with
very noisy labels from stage 1 (E.g. for Got lan-
guage with GPT-3.5-Turbo) perform quite well.
These observations underscore the value of target
language exemplars in ICL, even at the cost of hav-
ing noisy labels. Moreover, we compare SSP with
Stage I via ICL over an LLM vs. via a fine-tuning
baseline (ZGUL or mDeBERTa). Fine-tuning base-
line for Stage I has two benefits – it is cheaper (due
to no LLM calls in Stage I), and has prediction
logits available that can allow ILP to select highly
confident exemplars for stage II. Due to the latter,
in two of the three language groups, the use of
a fine-tuning baseline performs much better, and
in the third group, it is marginally behind due to
weaker performance in one language (Gothic). This
happens because ZGUL has a particularly poor per-
formance on this language, leading to much noisier
labels in Stage II exemplars.

Finally, we experiment on SSP in 0-CLT-U (full
target Wikipedia) and 0-CLT-T (Translation model)

settings, as shown in Table 1. We observe that the
order of stage I performance is 0-CLT-T (translate-
test) < 0-CLT < 0-CLT-T (translate-train) < 0-CLT-
U, and same order of performance gets translated
in stage II as well, while stage II performance being
consistently better than stage 1 in all scenarios.

We further investigate the effect of translation
errors (noise) on Stage 1 performance within a
translate-test framework and their impact on overall
Stage 2 performance. Our analysis shows that trans-
lation errors negatively affect Stage 1 performance.
This is illustrated in Figure 7 for the Guarani (Gn)
language in the NLI task. However, the SSP model
demonstrates significant robustness to this noise,
achieving a 12 F1 point improvement (from 45.5 to
57.6) in Stage 2 for Guarani. This supports our hy-
pothesis that SSP is effective under varying levels
of noise in Stage 1 labelings.

Overall, our best 0-CLT SSP solution uses a fine-
tuning baseline (ZGUL or mDeBERTa) for Stage I
and GPT-4 for Stage II, using its novel ILP-based
exemplar selection. It outperforms closest 0-CLT
baselines by around 3 F1 pts, on average, estab-
lishing a new state of the art for zero-labeled cross-
lingual transfer to low-resource languages. The
best SSP reported 0-CLT results are statistically
significant compared to the second best counterpart
using McNemar’s test (p-values in Tables 1 and
2 captions). We believe that our work is a signifi-
cant advancement to the existing paradigm (Tanwar
et al., 2023; Nambi et al., 2023), which is restricted
to optimizing only 1 round of In-context learning.

5.1 Ablation Study

We now discuss the results of removing ILP compo-
nents in Stage II exemplar selection. Tables 1, and
2 (last four rows) report the impact of removing
confidence thresholding constraint, label coverage
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Model Neu. Ent. Con. Macro-F1
mDeBERTa-FT 34.7 53 40.3 42.6
SSP(mDeBERTaFT ) 51.7 53.4 51.4 52.2
(w/o Label) 42.6 52.3 57.9 50.9

Table 3: Labelwise F1 scores for fine-tuned model
(mDeBERTaFT ) and SSP(mDeBERTaFT ) w. and w/o
label coverage variants (GPT-4-Turbo)

constraint, both of these constraints (i.e., just using
similarity) from the ILP. The final row removes ILP
completely and presents results of random exem-
plars in Stage II. All these ablations are done on
SSP with ZGUL/mDeBERTa for Stage I, as only
those output the prediction probabilities.

Impact of label coverage: We observe an av-
erage gain of 1.3 F1 points for AmericasNLI com-
pared to the ablation model that does not impose
label coverage constraint. We further compute the
average number of exemplars for each label that
are covered in the selected set for both methods,
along with their label-wise F1 scores (see Figure
3). We observe that the ‘neutral’ label is not sam-
pled in most cases for w/o label coverage variant,
while exactly one ‘neutral’ label is sampled in the
SSP(mDeBERTa-FT ), with label constraint. This
happens as the fine-tuned model mDeBERTa-FT
has very poor recall (24) for ‘neutral’ class and
hence any selection strategy has a tendency to not
sample this label, unless enforced via a constraint.
The class-wise F-1 and recall for SSP(mDeBERTa-
FT )-GPT4 with and w/o label coverage are pre-
sented in Tables 3 and 8 respectively. We observe
a difference of 22 recall points for ‘neutral’ class
(57.6 vs 35.6) between the two ILP variants. An
example illustrating this is shown in Figure 8.

Impact of confidence thresholding: For se-
quence labeling tasks, confidence thresholding
plays a key role. This is validated from ablation
results in Table 1, wherein removing confidence
thresholding from SSP leads to 5.7 points drop
for POS tagging (Germanic) and 1.3 points for
NER. The drop is particularly significant (around
13.5 points) for Gothic (Got), which shows that not
utilizing the confidence scores can lead to drastic
drop. This may be because performance of ZGUL
is already poor on Gothic (21 F1 points), but confi-
dence thresholding may have likely compensated
by picking higher quality exemplars. Removing
thresholding would increase noise in exemplars
considerably, leading to the drop (see Figure 4).

We further study its impact by computing
the quality of Stage II exemplars selected by

SSP(mDeBERTaFT ), as well as it’s ablation vari-
ants. We compute the label-wise precision over all
K×N (K=8, N=no. of test instances) samples for
each target language, and then report their macro-
average. We observe for (Figure 3) that the macro-
precision of selected exemplars by full ILP is con-
sistently higher than it’s other ablation variants,
the least value being of w/o both (similarity-based)
variant. This implies that the ILP is able to ef-
fectively sample high-precision (correctly labeled)
exemplars which, in turn, gets translated into it’s
superior downstream performance on the task.
For completeness, we also show the exemplar pre-
cision (correctness) statistics for NER and POS in
Figure 4. The trends hold similar in the sense-that
‘w/o confidence’ and ‘similarity-based’ variants
have significantly lower precision (higher noise)
than SSP. This is expected because both these es-
chew confidence thresholding, leading to sampling
of lower-confidence predictions. This translates to
worse downstream performance (see Table 1).
We also note that w/o ILP (completely random se-
lection) ablation performs much worse than SSP,
showcasing the importance of carefully selecting
the exemplar set.
We present an error analysis of SSP approach in
section B.2.

5.2 Scalability of SSP with candidate pool size

We explore how the size of candidate pool – used
for ILP during exemplar retrieval – affects the per-
formance of SSP(ZGUL)-GPT-4x. We progres-
sively sample bins from the test sets with varying
sizes (8, 32, 64, and 100 (the full set)), which serve
as candidate sets for ILP. For a fair comparison,
evaluation is performed on all 100 test samples (i.e.
our original split). The avg. F1 results for African
NER and Germanic POS are shown in Fig. 5.
While the performance for Germanic POS seems to
scale pretty well and doesn’t saturate in the given
regime, for African NER it tends to plateau when
pool size reaches 64. For completeness, we provide
detailed language-wise results in table 10.

6 Conclusions and Future Work

We study the zero-labeled cross-lingual transfer
(0-CLT) setting for low-resource languages, when
task-specific training data is available for related
medium resource languages, along with unlabeled
test data for target language. We present Self-
Supervised Prompting (SSP) – a novel two-stage
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Figure 3: Label-wise statistics for AmericasNLI: Left to right - Label-wise count per prompt, Precision of ICL
exemplars, and F1 results (averaged over target languages) using different selection strategies (GPT-4-Turbo)

Figure 4: Precision of selected exemplars for African
NER and Germanic POS

Figure 5: Avg. F1 scores for African NER and Ger-
manic POS as a function of candidate pool size in SSP

framework for the use of in-context learning over
very large language models. At a high-level, SSP
first noisily labels the target test set using source
training data (either by training a model/adapter)
or by in-context learning over an LLM. SSP then
uses these noisily labeled target data points as ex-
emplars in in-context learning over the LLM. A key
technical contribution is the use of integer-linear

program that balances exemplar similarity, labeling
confidence and label coverage to select the exem-
plars for a given test point. Thorough experiments
on three NLP tasks, and eleven low-resource lan-
guages from three language groups show strongly
improved performance over published baselines,
obtaining a new state of the art in the setting. Abla-
tions show the value each ILP component in down-
stream performance. We release our code to enable
further research in the community.3

In the future, we seek to extend our technique to
more non-trivial applications such as open genera-
tion tasks (Singh et al., 2024; Kolluru et al., 2022).
We also posit that smaller fine-tuned models, when
calibrated properly, can result in more efficient se-
lection of exemplars to an LLM, as compared to
poorly calibrated counterparts, in terms of SSP’s
downstream performance. We leave a careful and
systematic investigation into this hypothesis for
future work.
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Limitations

We show all our results and ablations on the recent
state-of-the-art LLMs including GPT4. The infer-
ence for these LLMs is expensive, and makes the
model deployment infeasible. Other potential limi-
tations are extending our method to tasks such as
fact checking, in which the LLMs suffer from hal-
lucinations and overprediction issues. The reason
why we don’t use LLM logits in ILP framework is
because they are not openly released by OpenAI
and hence, there becomes a need to rely on smaller
fine-tuned models - which can potentially lead to
sub-optimal downstream performance, in case the
fine-tuned models are poorly calibrated. Another
serious implication of using LLMs for non-roman
script languages is unreasonably high fertility (to-
kens per word split) of the LLM tokenizers, which
increases the cost as well as strips the input prompt,
which is not desirable.
We also could not evaluate our approach on open
generation tasks such as summarization, since their
evaluation metrics are not reliable as to obtain a
fair comparison of various models. Also, human
evaluation could not be done at scale. That said, we
note that every task is a generative task for LLM
and we pose NLI as a short-form generation, while
the POS and NER tasks as a templated long-form
generation in current scope of our work.
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A Implementation and Hyperparameter
Details

We use Azure OpenAI service 4 for all experiments
involving GPT-3.5-turbo and GPT-4x models. For
LLama-2-70b, we use the together API 5. We set
temperature as 0.0 consistently for all our exper-
iments, making our results directly reproducible.
The max_tokens (max. no. of generated tokens)
parameter is set to 1024 for POS and NER tasks,
while 15 for the NLI. For all experiments, the no.
of exemplars (M ) is fixed to 8 for uniform com-
parison. The selected exemplars are arranged in
decreasing order of similarity scores with query in
a prompt. For ILP solver, we use Python’s guro-
bipy 6 package. For POS and NER tagging, the
avg. run-time for ILP per test query = 0.05 sec-
onds, while that of pure similarity-based retrieval
= 0.006 seconds. For NLI, avg. ILP run-time is 0.2
seconds while similarity-based run-time is 0.024
seconds.

LLM Version
GPT-3.5-turbo gpt-3.5-turbo-0613
GPT-4 gpt-4-0613
GPT-4-turbo gpt-4-1106-preview

Table 4: LLMs with exact version details

A.1 Translation-based baselines

We explain both translate-train and translate-test
methods as follows -

• Translate-train: Following (Le et al., 2024),
we employ Codec method to generate train-
ing data in target language X, Xtrain, using
MRL labeled data. We perform stage 1 using
following ways -

1. fine-tune a model on Xtrain, and infer
on Xtest

2. perform ICL using exemplars from
Xtrain for each test query in Xtest

• Translate-test: Following (Chen et al., 2023b),
we utilize Self-fusion using GPT-4, that takes
input as target query, it’s English transla-
tion and English translation’s annotations, ap-

4https://azure.microsoft.com/en-in/products/ai-
services/openai-service

5https://www.together.ai/
6https://pypi.org/project/gurobipy/

pended as a prompt, and outputs the annotated
target query.7

A.2 Estimating confidence ŷik

For NLI task, the model always predicts a single-
word label: ‘neutral’, ‘contradiction’ or ‘entail-
ment’. We simply apply softmax on the class logits
for the predicted label to compute the confidence
ŷij (for ith test instance).
In sequence labeling tasks, suppose for an in-
put sentence having words: {w1, w2, ..., wT },
the model predicts labels {o1, o2, ..., oT } with
probabilities {p̂1, p̂2, ..., p̂T }. Let LabelSet be
{l1, l2, ..., lN}. We compute confidence ŷl for each
label for a given test example as follows:

for k ← 1 to N do
ŷk ← 0 ▷ init each label’s confidence
ck ← 0 ▷ init each label’s count

end for
for i← 1 to T do

for j ← 1 to N do
if lj == oi then

ŷj ← ŷj + p̂i ▷ Update ŷj
cj ← cj + 1 ▷ increase counter

end if
end for

end for
for k ← 1 to N do

ŷk = ŷk/ck ▷ average over all occurrences
end for

This outputs the confidence scores ŷl for a given
example, with those not predicted in a sequence
assigned a value of 0.

A.3 Dataset Details

Family Source languages Source size
Germanic {En,Is,De} 30000
African {En,Am,Sw,Wo} 19788
American {En,Es} 19998

Table 5: Size (No. of sentences) of Combined Source
language datasets (En - English, Is - Icelandic, De -
German, Am - Amharic, Sw - Swahili, Wo - Woloff, Es
- Spanish)

B Prompt details

Prompts for the Named Entity Recognition (NER)
and Part of Speech Tagging (POS) tasks are pre-

7We also tried Codec for translate-test, but could not repro-
duce the results reported in their paper for African languages
(replicated avg. F1 = 60.5 v/s reported avg. F1 = 72).
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Family Test languages Labels
Germanic {Fo, Got, Gsw} 2370
African {Hau,Ibo,Kin,Lug,Luo} 1100
American {Aym,Gn,Nah} 501

Table 6: Size (No. of labels) of Target language datasets,
per language, on average. (Fo - Faroese, Got - Gothic,
Gsw - Swiss German, Hau - Hausa, Ibo - Igbo, Kin -
Kinyarwanda, Lug - Luganda, Luo - Luo, Aym - Ay-
mara, Gn - Guarani, Nah - Nahuatl)

sented in the tab separated format shown in B.0.2
and B.0.3 respectively.

Prompts for Natural Language Inference (NLI)
initially used the framework in Ahuja et al. (2023)
. To improve our performance, we changed the
prompt to use Sclar et al. (2023)’s framework,
where the authors performed an exhaustive search
over tokens used for a prompt in order to find the
prompt with optimal performance. This increased
Macro F1 score by atleast 10% across all the tested
languages. We use the same prompt across all mod-
els used in our experiments.

B.0.1 Natural Language Inference (NLI)
Task Description: You are an NLP assistant whose
purpose is to solve Natural Language Inference
(NLI) problems. NLI is the task of determining
the inference relation between two (short, ordered)
texts: entailment, contradiction, or neutral. Answer
as concisely as possible in the same format as the
examples below:
Input format:
Premise: {premise} , Hypothesis: {hypothesis} ,
Output format:
Answer: {output}
Verbalizer:
match the one-word response from the model (neu-
tral, contradiction or entailment)

B.0.2 Named Entity Recognition (NER)
Task Description: Tag the following sentence ac-
cording to the BIO scheme for the NER task, using
the tags PER (person), LOC (location), ORG (or-
ganization) and DATE (date). Follow the format
specified in the examples below:
Input format:
Sentence: w1 w2 ... wT

Output format:
Tags:
w1<TAB>o1
w2<TAB>o2

...
wT<TAB>oT
Verbalizer:
Extract the sequence of labels o1, o2, ...o3 from
generated response.

B.0.3 Part of Speech (PoS) tagging
Task Description: Tag the following sentence ac-
cording to the Part of Speech (POS) of each word.
The valid tags are ADJ, ADP, ADV, AUX, CCONJ,
DET, INTJ, NOUN, NUM, PART, PRON, PROPN,
PUNCT, SCONJ, SYM, VERB, X. Follow the for-
mat specified in the examples below:
Input format:
Sentence: w1 w2 ... wT

Output format:
Tags:
w1<TAB>o1
w2<TAB>o2
...
wT<TAB>oT
Verbalizer:
Extract the sequence of labels o1, o2, ...o3 from
generated response.

B.1 Verbalizer details for Tagging tasks

The verbalizer for tagging tasks requires the LLM
to output the words as well as the associated labels.
The LLM’s output may not be perfect, as it may
fail to generate all words or associate a label with
each word. As a result, we find the Longest Com-
mon Subsequence between the words generated by
the LLM and the words of the example. This is
done using Dynamic Programming, as described in
(Bergroth et al., 2000).

Once we have found the longest common subse-
quence, we assign the corresponding tags generated
by the LLM to these words. If the tags are invalid,
we assign a default tag (O for NER, and X for POS).
Finally, for the words which don’t have any tags
associated with them, we assign the same default
tag as before.

It is to be noted that in most cases, the sentence
generated by the LLM perfectly matches the origi-
nal sentence. For GPT-4, less than 1% of the words
fell into the category of having an invalid tag gen-
erated, or not having the word generated.

B.2 Error Analysis

We investigate scenarios where SSP approach
systematically fails compared to other methods.
For NER, we find that ZGUL (fine-tuned LM)
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underpredicts the ‘DATE’ label. As a result,
SSP almost never samples this label in stage 2
exemplars, hence hurting the performance for
this label. For NLI task, we observe that in
order to ensure label coverage, SSP samples the
underpredicted label ‘neutral’ but while doing
so, also ends up hurting the performance for
‘contradiction’ label (as seen in last plot of Figure
3).

B.3 Prompts for GSW Examples

The base SSP-SIM prompts for the GSW examples
highlighted in Figure 6 are given below. Labels
which are misclassified in the in-context exemplars
are coloured in red, and the AUX labels which are
to be flipped in the ablations are coloured in blue.
It is interesting to note that examples 1 and 2 are
similar, as example 1 is retrieved as an in-context
exemplar for example 2.

B.3.1 Example 1
Tag the following sentence according to the Part
of Speech (POS) of each word. The valid tags
are ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ,
NOUN, NUM, PART, PRON, PROPN, PUNCT,
SCONJ, SYM, VERB, X. Follow the format
specified in the examples below:
Sentence: I main , das Ganze letscht Wuchä isch
mier scho ächli iigfaarä .
Tags:
“‘
I PRON
main VERB
, PUNCT
das DET
Ganze NOUN
letscht ADJ
Wuchä NOUN
isch AUX
mier PRON
scho ADV
ächli ADV
iigfaarä VERB
. PUNCT
“‘
Sentence: Du gsehsch uus , wi wenn de nöime no
hättisch z trinken übercho .
Tags:
“‘
Du PRON
gsehsch VERB

uus PRON
, PUNCT
wi SCONJ
wenn SCONJ
de DET
nöime ADJ
no ADV
hättisch AUX
z PART
trinken VERB
übercho VERB
. PUNCT
“‘
Sentence: Dir weit mer doch nid verzöue , di
Wäutsche heige vo eim Tag uf en anger ufghört
Chuttlen ässe .
Tags:
“‘
Dir PRON
weit VERB
mer PRON
doch ADV
nid ADV
verzöue VERB
, PUNCT
di DET
Wäutsche NOUN
heige VERB
vo ADP
eim DET
Tag NOUN
uf ADP
en DET
anger ADJ
ufghört VERB
Chuttlen NOUN
ässe VERB
. PUNCT
“‘
Sentence: es isch nämli echt usgstorbe gsi .
Tags:
“‘
es PRON
isch AUX
nämli ADV
echt ADJ
usgstorbe VERB
gsi AUX
. PUNCT
“‘
Sentence: Aso bini rächt uufgschmissä gsi und
dem entschprächend fascht verzwiiflät .
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Ds Gueten isch immerhin gsi , dass i ungerdesse söfu müed bi gsi , dass i ändlech ha chönne go schlofe .

CLT-SIM DET NOUN AUX ADV VERB PUNCT SCONJ PRON ADV VERB ADJ ADP VERB PUNCT SCONJ PRON ADV AUX AUX VERB VERB PUNCT

SSP-CLT-SIM DET NOUN AUX ADV AUX PUNCT SCONJ PRON ADV ADV ADJ ADP AUX PUNCT SCONJ PRON ADV AUX AUX PART VERB PUNCT

SSP-CLT-SIM
(Half AUX->VERB)

DET NOUN AUX ADV AUX PUNCT SCONJ PRON ADV ADV ADJ ADP AUX PUNCT SCONJ PRON ADV AUX AUX PART VERB PUNCT

SSP-CLT-SIM
(All AUX->VERB)

DET NOUN VERB ADV VERB PUNCT SCONJ PRON ADV ADV ADJ ADP VERB PUNCT SCONJ PRON ADV AUX AUX VERB VERB PUNCT

Gold DET NOUN AUX ADV AUX PUNCT SCONJ PRON ADV ADV ADJ AUX AUX PUNCT SCONJ PRON ADV AUX AUX PART VERB PUNCT

I cha der ihri Telefonnummere gä , de nimmsch mou unverbindlech Kontakt uuf .

CLT-SIM PRON VERB DET ADJ NOUN VERB PUNCT PRON VERB ADV ADJ NOUN VERB PUNCT

SSP-CLT-SIM PRON AUX PRON PRON NOUN VERB PUNCT PRON VERB ADV ADJ NOUN ADP PUNCT

SSP-CLT-SIM
(Half AUX->VERB)

PRON AUX PRON PRON NOUN VERB PUNCT PRON VERB ADV ADJ NOUN ADP PUNCT

SSP-CLT-SIM
(All AUX->VERB)

PRON VERB PRON PRON NOUN VERB PUNCT DET VERB ADV ADJ NOUN ADP PUNCT

Gold PRON AUX PRON DET NOUN VERB PUNCT ADV VERB ADV ADJ NOUN PART PUNCT

Figure 6: Label flips for CLT-SIM and SSP-SIM, for POS tagging in Swiss-German (gsw). Incorrect labels are
marked in red. SSP-SIM ablations include flipping half/all of the AUX labels in the prompt to VERB labels. Gold
labels are given for reference.

Tags:
“‘
Aso ADV
bini AUX
rächt ADV
uufgschmissä VERB
gsi AUX
und CCONJ
dem PRON
entschprächend ADJ
fascht ADV
verzwiiflät VERB
. PUNCT
“‘
Sentence: Der Ääschme wett nöd schaffe biin em .
Tags:
“‘
Der DET
Ääschme NOUN
wett AUX
nöd ADV
schaffe VERB
biin ADP
em PRON
. PUNCT
“‘
Sentence: Zerscht hends am Dani gsait , är söli
dòch Hoochdütsch redä , das gängi denn grad gaar
nöd , wenn är so redi , wiäner redi .
Tags:
“‘
Zerscht ADV
hends PRON
am ADP
Dani PROPN
gsait VERB
, PUNCT

är PRON
söli AUX
dòch ADV
Hoochdütsch ADJ
redä VERB
, PUNCT
das PRON
gängi VERB
denn ADV
grad ADV
gaar ADV
nöd ADV
, PUNCT
wenn SCONJ
är PRON
so ADV
redi VERB
, PUNCT
wiäner PRON
redi VERB
. PUNCT
“‘
Sentence: Isch das e Sach gsi , bis mer se gfunge
hei gha .
Tags:
“‘
Isch AUX
das PRON
e DET
Sach NOUN
gsi AUX
, PUNCT
bis SCONJ
mer PRON
se PRON
gfunge VERB
hei AUX
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gha VERB
. PUNCT
“‘
Sentence: Ds Gueten isch immerhin gsi , dass i
ungerdesse söfu müed bi gsi , dass i ändlech ha
chönne go schlofe .
Tags:
“‘

B.3.2 Example 2
Tag the following sentence according to the Part
of Speech (POS) of each word. The valid tags
are ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ,
NOUN, NUM, PART, PRON, PROPN, PUNCT,
SCONJ, SYM, VERB, X. Follow the format
specified in the examples below:
Sentence: I ha ar Marie-Claire gseit , es sig mer
chli schlächt und i mög jetz nümm liire .
Tags:
“‘
I PRON
ha AUX
ar PART
Marie-Claire PROPN
gseit VERB
, PUNCT
es PRON
sig AUX
mer PRON
chli ADV
schlächt ADJ
und CCONJ
i PRON
mög VERB
jetz ADV
nümm ADV
liire VERB
. PUNCT
“‘
Sentence: De Spanier hed de Kontakt vermettlet ,
d Rumäne sölled d Holländer ombrocht ha .
Tags:
“‘
De DET
Spanier NOUN
hed AUX
de DET
Kontakt NOUN
vermettlet VERB
, PUNCT
d DET

Rumäne NOUN
sölled AUX
d DET
Holländer PROPN
ombrocht VERB
ha AUX
. PUNCT
“‘
Sentence: Ds Gueten isch immerhin gsi , dass i
ungerdesse söfu müed bi gsi , dass i ändlech ha
chönne go schlofe .
Tags:
“‘
Ds DET
Gueten NOUN
isch AUX
immerhin ADV
gsi VERB
, PUNCT
dass SCONJ
i PRON
ungerdesse ADV
söfu VERB
müed ADJ
bi ADP
gsi VERB
, PUNCT
dass SCONJ
i PRON
ändlech ADV
ha AUX
chönne AUX
go VERB
schlofe VERB
. PUNCT
“‘
Sentence: Isch das e Sach gsi , bis mer se gfunge
hei gha .
Tags:
“‘
Isch AUX
das PRON
e DET
Sach NOUN
gsi AUX
, PUNCT
bis SCONJ
mer PRON
se PRON
gfunge VERB
hei AUX
gha VERB
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. PUNCT
“‘
Sentence: De Dialäkt muess zu de Gschecht und
zum Inhaut vonere Werbig passe .
Tags:
“‘
De DET
Dialäkt NOUN
muess AUX
zu ADP
de DET
Gschecht NOUN
und CCONJ
zum ADP
Inhaut NOUN
vonere ADP
Werbig NOUN
passe VERB
. PUNCT
“‘
Sentence: Mit der Zit hani mi mit mir säuber uf ei
Schriibwiis pro Wort aafo einige .
Tags:
“‘
Mit ADP
der DET
Zit NOUN
hani VERB
mi PRON
mit ADP
mir PRON
säuber ADJ
uf ADP
ei DET
Schriibwiis NOUN
pro ADP
Wort NOUN
aafo VERB
einige DET
. PUNCT
“‘
Sentence: Mit all denä Wörter hani natürli nüt
chönä aafangä .
Tags:
“‘
Mit ADP
all DET
denä DET
Wörter NOUN
hani PRON
natürli ADV
nüt ADV

chönä VERB
aafangä VERB
. PUNCT
“‘
Sentence: Aso bini rächt uufgschmissä gsi und
dem entschprächend fascht verzwiiflät .
Tags:
“‘
Aso ADV
bini AUX
rächt ADV
uufgschmissä VERB
gsi AUX
und CCONJ
dem PRON
entschprächend ADJ
fascht ADV
verzwiiflät VERB
. PUNCT
“‘
Sentence: I cha der ihri Telefonnummere gä , de
nimmsch mou unverbindlech Kontakt uuf .
Tags:
“‘

C Source and Target Languages for each
task

Code Language
En English
Am Amharic
Sw Swahili
Wo Wolof
Hau Hausa
Ibo Igbo
Kin Kinyarwanda
Lug Luganda
Luo Luo
Is Icelandic
De German
Fo Faroese
Got Gothic
Gsw Swiss German
Es Spanish
Aym Aymara
Gn Guarani
Nah Nahuatl

Table 7: Languages and their codes
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Model Neu. Ent. Con. Overall
mDeBERTaFT 24.3 72.7 38.7 45.2
SSP(mDeBERTaFT ) 57.8 46.5 51.5 52
(w/o Label) 35.3 43.8 68.5 49.2

Table 8: Labelwise Recall for fine-tuned model
(mDeBERTaFT ) and ILP variants w. and w/o Label
coverage (GPT-4-Turbo)

D NLI Analysis

We present an example of correct prediction made
by SSP as compared to the version that doesn’t en-
sure label coverage in Figure 8 (English translation
in Fig. 9).

E Qualitative Analysis: SSP-SIM

We present the analysis for the gains obtained via
SSP-SIM for Germanic POS in Figure 10. The
confusion matrix difference between SSP-SIM and
CLT-SIM suggests that the model misclassifies aux-
iliary verbs as verbs in CLT-SIM, and this is cor-
rected in SSP-SIM. These errors are a consequence
of the labels on the in-context exemplars the model
receives, and not the tokens of the language itself.

We highlight this via the two Swiss-German POS
examples in Figure 6. The misclassified verbs are
corrected by SSP-SIM, and these labels are again
misclassified when more than half of the labels in
the in-context exemplars are corrupted.

F Data Contamination Analysis

Following Ahuja et al. 2023, we conduct contami-
nation tests on test datasets for our target languages.
We perform the following tests:

• Dataset Card filling: Generate dataset card
(supported languages, dataset description, #in-
stances in each split, etc.)

• Completion: Given a few words, complete the
sentence and their labels, and

• Generation using first few instances: Given
first K instances (K=5) in the dataset, generate
next few instances following them.

We observe negligible contamination as depicted
in table 8. The 40% accuracy for Quechua was
a result of all the labels passed for the exemplars
being entailment labels. As a result, the model
repeated the same label for all the other examples,
giving a 40% accuracy. Following these results, to
prevent any chance of contamination, we remove
Quechua from our evaluation dataset.
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Figure 7: Stage 1: Impact of translation error on translate-test performance in Gn language for NLI task. Stage
2: GPT-4-turbo correctly predicts the label for given NLI query in Gn language, even though the 3rd exemplar is
incorrectly labeled. This depicts the SSP’s robustness to stage 1 noise due to errors in translation (NLLB) model.
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Figure 8: Correct case of ‘Neutral’ detected by ILP (left), while ‘w/o label’ variant misses it (right). We note that
exact one ‘neutral’ class has been sampled by ILP, while no ‘neutral’ is sampled in ‘w/o label’ version.

Figure 9: English translations of Exemplars shown in Fig. 8
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Predicted

A
D
J

A
D
P

A
D
V

A
U
X

C
C
O
N
J

D
ET

N
O
U
N

PR
O
N

PR
O
PN

PU
N
C
T

VE
R
B

X

G
ol
d

ADJ -2 0 0 0 0 2 -5 4 0 0 1 1

ADP -2 6 -3 0 0 0 0 -3 0 0 -1 4

ADV -5 -3 28 0 1 -6 -1 -5 0 0 -6 -4

AUX 0 -1 -2 17 0 0 0 -1 -1 0 -13 1

CCONJ 0 -4 -1 0 7 0 1 -3 0 0 -1 0

DET 1 1 -4 0 0 9 0 -3 -4 0 0 0

NOUN 2 0 0 -1 0 -2 7 -3 0 0 -3 1

PRON -3 -3 -5 -1 0 2 -3 24 -4 0 -4 -2

PROPN 0 0 0 0 0 0 -2 0 -1 0 0 3

PUNCT 0 0 0 0 0 0 0 0 0 -2 0 -1

VERB 0 -1 0 4 0 -1 -15 0 0 0 15 -2

X 0 0 0 0 0 0 0 0 -1 -1 0 1

Figure 10: Difference in confusion matrices between similarity-based SSP Stage 1 and Stage 2 for the POS task,
summed across all languages (tags with less than 100 instances have been omitted). The increase in correct tags is
visible along the diagonal, and misclassifications between VERB and AUX tags / NOUN and VERB tags have also
improved.

Task Card Filling Completion Few-Shot Generation

NER
Didn’t predict correct

languages; no split sizes
generated

No match found NA

POS
predicted 33 languages,

but doesn’t contain any of
our target languages

No match found NA

NLI
predicts 3 languages, of
which only one matches
with our target language
(Quechua); wrong test

split size

Refuses to generate for 3
out of 4 target languages,
except for Quechua - for

which it predicts 100% of
the tokens wrong and only
40% labels correctly (out

of 10 instances)

Repeats the premise of
last instance, copies the

premise string to
hypothesis as well (No

match detected)

Table 9: Results of Contamination Study

Pool Size Hau Ibo Kin Lug Luo Avg. Fo Got Gsw Avg
8 68.8 80.2 67.6 75.6 53.8 69.2 80.6 54.8 80.9 72.1
32 70.1 80.8 71.3 74.8 53.9 70.2 81.8 62.8 82.2 75.6
64 70.5 79.7 72 77 55.2 70.9 82.1 63.4 85.7 77.1
100 71.2 82.4 71.4 75.4 55.1 71.1 82.2 71.5 85.6 79.8

Table 10: Language-wise F1 scores for African NER and Germanic POS as a function of candidate pool size in SSP
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