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Abstract

Large language models (LLMs) have been
shown to perform better when asked to reason
step-by-step before answering a question. How-
ever, it is unclear to what degree the model’s
final answer is faithful to the stated reasoning
steps. In this paper, we perform a causal me-
diation analysis on twelve LLMs to examine
how intermediate reasoning steps generated by
the LLM influence the final outcome and find
that LLMs do not reliably use their intermedi-
ate reasoning steps when generating an answer.
To address this issue, we introduce FRODO, a
framework to tailor small-sized LMs to gen-
erate correct reasoning steps and robustly rea-
son over these steps. FRODO consists of an
inference module that learns to generate correct
reasoning steps using an implicit causal reward
function and a reasoning module that learns to
faithfully reason over these intermediate infer-
ences using a counterfactual and causal pref-
erence objective. Our experiments show that
FRODO significantly outperforms four compet-
itive baselines. Furthermore, FRODO improves
the robustness and generalization ability of the
reasoning LM, yielding higher performance on
out-of-distribution test sets. Finally, we find
that FRODO’s rationales are more faithful to its
final answer predictions than standard super-
vised fine-tuning.

1 Introduction

Chain-of-thought (CoT) reasoning techniques have
been shown to improve the performance of large
language models (LLMs) by generating step-by-
step reasoning traces before generating a final an-
swer (Wei et al., 2022). Many works suggest that
the reasoning process described in CoT explana-
tions may be a possible description of how models
make predictions (Kojima et al., 2022; Yao et al.,
2023; Sun et al., 2023). However, despite the re-
markable success of CoT in many reasoning tasks,
recent works show that LLMs-generated reasoning

Figure 1: An example of our proposed causal analysis
to measure the faithfulness of the final output to the CoT
generated by the model. We perturbed CoT rationales
and studied the causal impact on the model’s behaviour.

traces can be incorrect (Zhang et al., 2023) and
unfaithful (Turpin et al., 2023).

Reasoning implicitly involves two steps: identi-
fying the rules and facts (inference chains) neces-
sary to reach a conclusion and then robustly using
them to reach said conclusion (Levesque, 1986).
Our paper studies whether LLMs reliably use infer-
ence chains to arrive at a conclusion.1 In standard
CoT, LLMs can generate plausible explanations
with the final answer not necessarily guaranteed to
follow the reasoning chain or imply a causal rela-
tion between the reasoning chain and the model’s
outcome (Lyu et al., 2023). Most recent efforts
have either focused on the performance of LLMs
on various reasoning tasks or their faithfulness in
CoT generation, ignoring the sequential relation-
ship between CoT and the final answer (Huang and
Chang, 2023; Lanham et al., 2023).

1In our paper, reasoning faithfulness refers to how reliably
the model uses its reasoning steps to arrive at a correct answer.
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In this work, we address this gap by introducing
a methodology for interpreting the relationship be-
tween the CoT trace and the final answer based on
causal mediation analysis (Pearl, 2001). Causal me-
diation analysis is a method of causal inference that
studies the change in a response variable follow-
ing an intervention or treatment. More concretely,
we use this method to measure and interpret the
contribution of a reasoning chain (mediator) to the
final answer (observed output), as shown in Fig.1.
We propose multiple interventions on the model
inputs and mediators (reasoning chain) to unveil
the causal effect of specific reasoning steps in a
model’s output.

We apply this framework and study the causal
impact of CoT rationales on the behaviour of
twelve different state-of-the-art LLMs on three
different complex reasoning tasks (mathematical,
commonsense, and causal understanding). We
observe a large variation across tasks and mod-
els in how strongly reasoning traces causally af-
fect the model’s prediction. In particular, we find
that instruction-tuned models (GPT-3.5-Instruct,
Brown et al., 2020b; Mistral-Instruct-7B, Jiang
et al., 2023b) have a stronger causal effect on the
final answer when conditioned on the reasoning
trace than models trained with RLHF (e.g., Chat-
GPT; Llama-2-7B-Chat, Touvron et al., 2023). Sim-
ilar to Turpin et al. (2023), when we intervene in
the reasoning problem, we observe that ChatGPT
and GPT-3.5-Instruct are inconsistent at generating
plausible reasoning chains. Finally, we find GPT-
4 (Achiam et al., 2023) only changes its answer
30% of the time when conditioned on perturbed
counterfactual reasoning chains. In Figure 1, we
see one example where GPT-4 does not faithfully
change its final answer when provided with inter-
vened counterfactual CoT. These results indicate
two issues: (i) LLMs can generate unfaithful and
implausible reasoning chains, and (ii) LLMs are
inconsistent when reasoning over their own gener-
ated reasoning traces.

To address these issues, we introduce a novel
method, FRODO, comprising two modules. The
first module tailors small-sized LMs to generate
correct reasoning chains (inference module), while
the second module takes the reasoning chains as
input and faithfully reasons over them to arrive at
the correct answer (reasoning module). To learn
to generate correct reasoning chains, we use the
DPO algorithm (Rafailov et al., 2023), which en-
ables the model to prefer correct reasoning chains

over counterfactual ones with implicit feedback.
Instead of relying on human labeling, we obtain
preference data by prompting LLMs to generate
correct and counterfactual reasoning chains. Sec-
ond, we train another small-sized LM to improve
the causal effect between the reasoning chain and
the final answer using a counterfactual and causal
preference ranking objective.

We evaluate FRODO on four reasoning tasks
(Quarel, StrategyQA, OpenBookQA, QASC) us-
ing multiple model backbones of different scales,
and demonstrate that FRODO achieves an absolute
accuracy improvement of 2% ∼ 3% over standard
supervised fine-tuning or CoT distillation methods.
We assess robustness by examining how models
alter their answers when intervened with counter-
factual reasoning chains. FRODO exhibits signifi-
cant (+4.5%) improvement in robustness. Finally,
FRODO generalizes better to out-of-distribution test
sets, showing a +2.6% performance improvement
over supervised fine-tuning. Our code and data are
publicly available2.

2 Reasoning Chain as a Mediator

Problem Formulation. Reasoning is often a pro-
cess that involves composing multiple inference
steps to reach a conclusion or make a decision. We
informally conceptualize each reasoning task as
requiring a model f : X → Y to map an input x ∈ X
to an output y ∈ Y by making correct or plausible
inference steps R.

Causal Interpretation. The causal graph is a
probabilistic graphical model used to describe how
variables interact, expressed by a directed acyclic
graph consisting of the sets of nodes (N) denoting
the variables and a set of directed edges (E) indicat-
ing the causal relationships between these variables
denoting the causality.

Causal Mediation Analysis. It is a method to
measure how an independent variable (or treat-
ment) affects a dependent variable (or outcome)
mediated by intermediate variables (Pearl, 2001;
Robins, 2003). Causal mediation analysis aims
to decompose the total effect of the independent
variable (X) on the dependent variable (Y ) into two
components: the direct effect and the indirect effect
(Pearl, 2001). In this work, we view the reason-
ing process as a causal graph, framing the input
(reasoning problem) X and the output Y as random

2https://debjitpaul.github.io/reasoningmatter
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Figure 2: Causal graph for natural language reasoning,
modeling P(Y |do(x)). X0: original reasoning problem,
X1: intervened reasoning problem. R0: Reasoning steps
for X0, R1: Reasoning steps for X1. Outputs Y00 or Y01
are model outputs given X0 and R0 or X0 and R1.

variables and the reasoning steps as mediator vari-
able R. We use mediation analysis to interpret the
role of reasoning steps as mediators between model
inputs and model outputs. Let X0 denote the initial
reasoning problem, R0 the reasoning chain given
X0. Let Y00 denote the potential outcome when the
treatment and mediator variables are X0 and R0,
respectively. Meanwhile, Y01 denotes the potential
outcome when treatment is set to X0, and R1 is the
reasoning chain for the reasoning problem X1.

Direct Effect (DE) measures how much an inter-
vention X changes an outcome variable Y directly,
without passing through a hypothesized mediator R.
The direct effect of X = X0 on Y can be defined as
E[Y00 −Y10], which can be seen as the correctness
comparison between the two potential outcomes
given two different treatments, i.e., X = X0 and
X = X1. It is computed by applying the interven-
tion X but holding R fixed to its original value (R0).

Indirect Effect (IE) measures how much an in-
tervention X changes Y indirectly through R. The
indirect effect can be defined as IE = E[Y00 −Y01].
It is computed by setting R to its value under the
intervention X while keeping everything else to its
original value.

More concretely, according to Pearl (2001), in
our scenario, a high direct effect means the model
emphasizes the reasoning problem more than the
reasoning steps. In contrast, a high indirect effect
means the model emphasizes the reasoning steps
more than the problem input.

Reasoning Intervention. Following Pearl
(2001), we conduct counterfactual reasoning to
measure the causal effect of a treatment variable
on a response variable. We first perform targeted
interventions on the input text X and measure their
effect on the reasoning outcome Y by keeping
R fixed (direct effect). Further, we also perform
interventions on the mediator R and measure

Variables Example

X0 Is Poseidon similar to the god Vulcan?
R0 Poseidon is a god from Greek mythology, known

as the god of the sea, earthquakes, and horses.
Vulcan is a god from Roman mythology, known
as the god of fire, metalworking, and the forge.
Although both are gods, they represent different
elements and aspects, and come from
different mythologies.

X1 Is Poseidon similar to the god Neptune?
R1 Poseidon is a god from Greek mythology, known

as the god of the sea, storms, and earthquakes.
Neptune is a god from Roman mythology, who is
also known as the god of the sea. Both Poseidon and
Neptune share similar roles and attributes in
their respective mythologies.

Table 1: An example from StrategyQA dataset, where
X1 = intervened reasoning problem; R0 and R1 = reason-
ing steps (generated by GPT-4).

their effect on Y (indirect effect). We perform
the following steps to automatically generate an
intervention on X and R.
Step 1: Intervention Data Generation. We use
a large language model (GPT-4) to automatically
generate an alternative value X1 for the treatment
variable.3 The input to LLM includes instruction
and few-shot examples, taking the format shown in
Table 20. LLMs can be sensitive to instructions
and few-shot examples; hence, we randomize the
prompt by manually creating a set of semantically
similar instructions. Then, we randomly sample
from the instruction set each time.
Step 2: Manual Data Curation. To retain
high-quality data for our analysis, we manually
filter out generated samples from Step 1 that are
invalid or low-quality. Table 1 shows an example
where given the original input reasoning question
X0, the model generated X1, where it replaces
“Vulcan” with “Neptune”.
Step 3: Generate Reasoning Chain. Finally, to
get the indirect effect, we generate the reasoning
chain (R0, R1) for each reasoning problem X0
or X1 by providing LLMs with some high-level
descriptions about each reasoning task and
reasoning prompt – “Let’s think step by step”(see
App. Table. 19).

Our study suggests that vanilla LMs (<20B) (in
a zero-shot setting) are systematically unfaithful
and consistently fail to reason over the mediator
(see Table 3). In general, our experiments show
a large variation in the causal effects of COT in
the final answer depending on the tasks. Models

3See Table. 23 for details on task-specific interventions.
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that are instruction tuned or trained on the chain of
thought during the pre-training phase have a bet-
ter indirect effect across different reasoning tasks,
suggesting that fine-tuning on CoT can make the
model more faithful (see Table 2). Interestingly,
similar to Turpin et al. (2023), we observe an in-
verse scaling for certain tasks. In our case, the
indirect effect is worsening with increasingly capa-
ble models, indicating that smaller models might
be more effective in faithful reasoning.

3 FRODO

In this section, we introduce FRODO, a framework
that tailors small-sized LMs (<10B parameters) to
be strong rationalizers and perform reasoning faith-
fully over the rationales. FRODO aims to improve
the synergy between the reasoning chain and the
final answer. We first describe how we obtain silver
reasoning chains from LLMs (§3.1). Then, we in-
troduce our inference module that trains a model to
generate rationales (§3.1) followed by the reasoner
module and its training objectives (§3.2).

3.1 Inference Module

In this work, we assume no gold rationales to train
our model. Hence, similar to recent works (Liu
et al., 2022, 2023; Wang et al., 2023; Ramnath
et al., 2024), we automatically obtain the silver ra-
tionale from LLM (GPT-3) using in-context learn-
ing. A common approach is fine-tuning a smaller
text-to-text model on the silver rationales generated
by LLMs with a standard language modeling loss.
Recent studies have shown that fine-tuning models
(<5B) on reasoning chains may struggle to align the
reasoning chains with the provided reasoning ques-
tion during inference (Yang et al., 2023; Fu et al.,
2023). Additionally, learning to generate a reason-
ing chain means learning to decompose complex
reasoning into smaller reasoning steps implicitly.
However, Shridhar et al. (2023) showed that fine-
tuning could lead to learning shortcuts and degrade
performance. Recent studies have demonstrated
that feedback-based methods can help the model
align better with the human goal. Hence, we use
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) for aligning LMs to learn to generate
correct reasoning chains.

Preference Data. We prompt the LLM to gen-
erate correct reasoning chains (Rw) and incorrect
reasoning chains (Rl) for each reasoning problem.
In our experiments, we consider two kinds of rea-

soning chains as incorrect: counterfactual chains
(alternative chains that can lead to different out-
comes) and irrelevant chains. We assume that mod-
els that can understand and learn to prefer correct
reasoning chains over counterfactual chains will
become more robust and enhance generalization.
Hence, we manually construct correct and incor-
rect intermediate reasoning steps and demonstrate
the model with these annotated examples before a
new instance is provided. In this way, we obtain a
preference data D ∈ {X ,Rw,Rl} that contains rea-
soning problems (X) and pairs of reasoning steps
that lead to correct (Yw) or incorrect outcomes (Yl).

Training. Given a reasoning problem {x ∈ X}
and instruction prompt p ∈ {correct or counterfac-
tual}, our goal is to train models that could gener-
ate reasoning steps (rw or rl). We propose to adopt
Direct Preference Optimization (DPO) (Rafailov
et al., 2023), an effective algorithm for aligning lan-
guage models with implicit rewards. DPO assumes
that we only have access to some pairwise prefer-
ence data x → {rw > rl} for each problem x ∈ X .
Hence, while training a model (πθ) to generate
correct reasoning steps, we consider counterfac-
tual and irrelevant reasoning steps as less preferred.
Training a DPO model includes two phases: (i)
supervised fine-tuning (SFT) and (ii) Preference
Learning (PL) phase.

SFT. We begin by fine-tuning a pre-trained LM
with a maximum log-likelihood objective to obtain
πs f t .

PL Phase. Contrary to traditional RL approaches,
which initially train a reward model and subse-
quently derive a policy from it, DPO enables ex-
tracting policy through implicit reward learning.
DPO adopts a binary classification loss:

LDPO =−E{x,rw>rl}logσ( fθ(rw,x)− fθ(rl,x))
(1)

where fθ is the implicit reward model. Intuitively,
the gradient of the loss function LDPO increases
the likelihood of the preferred completions rw and
decreases the likelihood of counterfactual reason-
ing chains rl . See Appendix A.1 for more details.
During inference, the reasoning module uses the
generated reasoning steps by πθ model for a given
reasoning problem.
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Poseidon is a god from Greek 
mythology, known as the god of the 
sea, earthquakes and horses. Vulcan 
is a god from Roman mythology, known 
as the god of fire, metalworking, 
and the forge. 

Poseidon is a god from Greek 
mythology, known as the god of the 
sea, earthquakes and horses. Vulcan 
is a god from Roman mythology, 
known as the god of sea.
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Figure 3: An overview of FRODO.

3.2 Reasoning Module

Given a reasoning question x ∈ X and reasoning
steps rw (correct) and rl (counterfactual)4, our goal
is to train a model (πγ) that can generate a correct
answer yw. To encourage our reasoner module to
reason faithfully over the reasoning steps, we train
the model with a linear combination of three losses:
an indirect effect loss and a supervised margin rank
loss, L= λLM ∗LLM +λcounter ∗Lcounter +λPREF ∗
LPREF , which we describe below.

Language Model Loss. We use the standard
training objective to maximize the likelihood of
the correct answer using cross-entropy loss, com-
puted as:

LLM =−logP(yw|x,rw) (2)

Counterfactual Loss. To encourage the model
to reason robustly and faithfully towards the reason-
ing steps, we propose training the model to learn
how different reasoning chains (correct or counter-
factual) can lead to different outcomes. Hence, in-
spired by the causal mediation theory (Pearl, 2001),
we use the following loss:

Lcounter =−logP(yl|x,rl) (3)

Similar to (Wang et al., 2023; Roese, 1997), we
posit that adding a counterfactual objective can
help the model to avoid learning reasoning shortcut
between a question and the gold answer since now
the model is tasked to answer differently for the
same question.

4Please note that in the reasoner module, we only consider
counterfactual reasoning steps as negative samples.

Margin-Ranking Loss. It has been shown
(Khosla et al., 2020) that contrastive loss and rank-
ing loss help to improve model robustness and gen-
eralization against input variation. Hence, we pro-
pose to use the margin ranking loss that aims to
maximize the margin between positive examples
(i.e., statements containing questions, correct rea-
soning steps and correct answers) and negative ex-
amples (i.e., statements containing questions, coun-
terfactual reasoning steps and correct answers).

LPREF = max(0, t ∗ IE+m) (4)

where t is the label (indicating which sample in
the pair is better)=1, m is the margin=1.0, and the
indirect effect IE = h(x,rw,yw)−h(x,rl,yw) where
h is the logits.

4 Experiments

Datasets. We conduct the causal mediation anal-
ysis on three datasets: STRATEGYQA (Geva et al.,
2021), GSM8K (Cobbe et al., 2021), and Causal
Understanding (Suzgun et al., 2023). We eval-
uate FRODO on four datasets: STRATEGYQA,
QUAREL(Tafjord et al., 2018), OPENBOOKQA
(Mihaylov et al., 2018), and QASC (Khot et al.,
2020). We report more details about each dataset
in App. A.3. For all the datasets, we do not use
human-written rationales. We used rationales gen-
erated by prior work (Ramnath et al., 2024) using
GPT-3 (TEXT-DAVINCI-003) as silver rationales
for supervision. For counterfactual rationales, we
use chain-of-thought prompts on these datasets (Ta-
ble. 19) and sample 2 rationales for each training
instance with a temperature of 0.5.

Evaluation Metrics. To evaluate the causal ef-
fects, we report the average indirect and direct
effects of the LLMs. We use the following for-
mula to calculate the scores: IE = Avg[Acc(Y00)−
Acc(Y01)], and DE = Avg[Acc(Y00)− Acc(Y10)]
where X0 and R0 original reasoning problem and
reasoning chains. We measure two kinds of causal
effects: natural and controlled for different types
of LLMs. Natural Indirect Effect (NIE): for models
that have emergent capabilities (>100B parame-
ters) of generating plausible reasoning chains, we
measure the causal effect of X on Y that uses R
generated by the same model. Controlled Indirect
Effect (CIE): for models with <20B parameters, we
evaluate the causal effect by providing reasoning
chains generated by GPT-4. Further, to measure the
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Models StrategyQA GSM8k Causal Understanding
CoT (%) NIE NDE CoT (%) NIE NDE CoT (%) NIE NDE

ChatGPT 69.2 15.3 9.1 70.1 56.3 1.01 58.8 21.1 27.4
GPT-4 93.5 40.0 22.2 81.1 21.01 30.01 72.5 29.1 48

Table 2: Causal Effects of generated CoT and reasoning problems on the outputs, with both Natural Indirect Effect
(NIE) and Natural Direct Effect (NDE). COT (%) represents the accuracy of the models.

robustness of models, we use controlled indirect
effect. To evaluate the faithfulness of the ratio-
nales generated by the small-sized models, we use
LAS (Hase et al., 2020) to measure how well the
rationales help a simulator to predict a student’s
predictions a’, namely Acc(qr –> a’) - Acc(q –>
a’). Similar to Wang et al. (2023), we implement
each simulator with a fine-tuned T5-large model
respectively.

Implementation Details. We use GPT-4 to gen-
erate intervened reasoning problems X1 and rea-
soning chains (R0 or R1) to perform the causal me-
diation analysis. We report the prompts used in
Table.19, 20 and hyperparameters in App. A.3.

Baselines. We perform the causal analysis on a
series of language models that are diverse in terms
of scale, training, and data: LLaMa-2 (Touvron
et al., 2023), Mistral (Jiang et al., 2023b), Chat-
GPT (Brown et al., 2020a), GPT-4 (OpenAI, 2023),
Flan-T5 (Chung et al., 2022), Flan-Alpaca (Chung
et al., 2022), Stable-Vicuna (Chiang et al., 2023).
We compare FRODO with four strong baselines:
(1) SFT + CoT: Finetuning a T5-large or T5-3B or
LLaMa-2-7B with LoRA or Mistral-7B with LoRA
on silver rationales, then train another model with
LM objective to perform the reasoning, (2) Rainier
(Liu et al., 2022), where they used PPO (Proxi-
mal Policy Optimization) inference modules, and
for the reasoning module, they used SFT (simple
finetuning). (3) Crystal (Liu et al., 2023) used
PPO to train both inference and reasoning modules,
(4) Mario (Ramnath et al., 2024) used QUARK, a
multi-reward reinforcement learning method, and
for the reasoning module, they used SFT and (5)
SCOTT(Wang et al., 2023) used simple-finetuning
with contrastive decoding. More details about all
the baselines are reported in App. A.4.

5 Results

In Table. 2, 3, we report the results of the causal
mediation analysis for twelve models. In section
§4, we provide the details about the implementa-
tion, evaluation metrics and datasets.

Natural Direct and Indirect effects. We first
evaluate the indirect and direct effects of the rea-
soning chain and reasoning problems on the final
outputs. For models (>100B) with the emergent
ability to generate plausible reasoning chains, we
report natural indirect effects and direct effects (see
§2). Table 2 shows the zero-shot performance of
the ChatGPT and GPT-4 models. We observe that
for StrategyQA and Causal Understanding tasks,
GPT-4 has a higher natural indirect effect than Chat-
GPT, suggesting that it is able to better reason over
the reasoning steps for these tasks. However, for
mathematical reasoning (GSM8K), ChatGPT has
a better indirect effect. Qualitatively, we find that
for mathematical reasoning, when we provide in-
tervened reasoning steps, GPT-4 considers them in-
correct and continues to generate correct reasoning
steps. This results in a lower indirect effect score.
Moreover, GPT-4 exhibits a more pronounced di-
rect effect than ChatGPT, suggesting that its out-
puts are more causally sensitive to reasoning prob-
lems. In general, our experiments show a large
variation in the causal effects of COT in the final
answer depending on the tasks.

Controlled Direct and Indirect effects. Table 3
shows the results of causal mediation analysis for
12 different LMs. In these experiments, we exam-
ined the causal behaviour using reasoning chains
generated by GPT-4 (controlled setting). Our study
suggests that vanilla LMs (<20B) (in a zero-shot
setting) are systematically unfaithful and consis-
tently fail to reason over the mediator. Increasing
the model size (7B to 70B) improves the indirect
effect (makes them more faithful), indicating the
importance of model size. We find that in-context
learning and instruction-tuning improve the indi-
rect effect over models trained only with language
modelling objectives (e.g., LLaMA and Mistral),
indicating that these methods help the model align
better with the reasoning chains. We observe that
models trained with RLHF objective (ChatGPT,
Llama-2-7B-Chat) have a more direct effect than an
indirect effect, suggesting that training on human
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Models StrategyQA GSM8k Causal
CIE CDE p-value CIE CDE p-value CIE CDE p-value

AR LLaMA-2-7B 24.5 25 <0.001 27.5 8.5 <0.001 2.3 1.1 <0.005
Mistral-7B 21.2 17.9 <0.001 25.1 3.8 <0.001 2.3 0.6 <0.009
LLaMA-3-70B 26.6 30.6 <0.001 57.2 5.2 <0.005 8.0 5.1 <0.002

In-context LLaMA-2-7B 24.9 10 <0.005 45.6 0.9 <0.005 5.6 5.6 <0.009

MoE Mixtral-8-7B 21 11 <0.001 47.4 2.9 <0.003 5.1 4.6 <0.001

RLHF LLaMA-2-7B-Chat 8.4 30.5 <0.010 1.4 36.7 <0.010 -2.3 8.6 <0.016
Stable Vicuna-13B 3.5 2.5 <0.001 45.1 2.4 <0.010 0.6 0.1 <0.010
ChatGPT 2.6 13.6 <0.016 57.8 16.6 <0.010 4.6 10.8 <0.001

Instruct Tuned Mistral-Instruct-7B 31.6 31.9 <0.001 35.5 4.7 <0.001 7.4 8 <0.005

RLHF + Instruct Tuned GPT-3.5-Instruct 26.1 27.3 <0.005 62.6 14.7 <0.005 8.5 10.7 <0.005

Instruct-Tuned + Flan-T5-11B 36.9 35.7 <0.001 31.23 12.2 <0.001 7.4 13.1 <0.001
CoT Tuned Flan-Alpaca-11B 31.2 47.9 <0.001 25 7.9 <0.001 3.4 9.2 <0.001

Table 3: Causal Effects of CoT. The reported results are zero-shot performance. CIE: Controlled Indirect Effect,
CDE: Controlled Direct Effect. The p-value represents the significance of the results

feedback might have disincentive faithful reasoning
(Sharma, 2023). Models that are instruction-tuned
or trained on the chain of thought (e.g., Flan-T5)
during the pre-training phase have a better indirect
effect across different reasoning tasks, suggesting
that fine-tuning on CoT can make the model more
faithful. Similar to Turpin et al. (2023), we ob-
serve inverse scaling for certain tasks. In our case,
the indirect effect worsens with increasingly capa-
ble models, indicating that sheer scale might not
guarantee faithful reasoning. Interestingly, we also
observe that none of the models has high indirect
or direct effects on the causal understanding task.
One intuitive reason is that the causal understand-
ing task is challenging, and the model’s (<10B)
performance is nearly random; hence, the effects
are not strong. Overall, we observe that LLMs are
inconsistent in faithfully performing reasoning over
the CoT.

Comparing FRODO with Baselines. We now
empirically compare FRODO with three strong
baseline models (see Table 4). We consider T5-
large (770M) as the inference and reasoning mod-
ules. We have the following three observations.
First, we present the performance of GPT-3.5 on
these tasks. We observe the performance on Strate-
gyQA is much lower than on other tasks, indicating
the rationales generated for this task can be unfaith-
ful. Hence, similar to (Ramnath et al., 2024), for
training FRODO, we use only the instances where
the answer predicted by GPT-3.5 is correct. Sec-
ond, for all four datasets, we observe that FRODO

outperforms the strong self-rationalization base-
lines. FRODO, on average, improves the perfor-
mance by +4.1 and +3 accuracy points compared to

Models StrategyQA QuaRel OBQA QASC

GPT-3.5⋄ 69.7 83.4 84.5 80.3

SFT 57.6 74.6 65.0 58.6
SFT + CoT 63.6 77.7 65.5 59.4
Rainier – – 69.7 54.9
Crystal – – 64.2 56.8
MARIO 65.1 79.9 66.1 60.1
FRODO 68.4∗ 83.4∗ 70.2+ 64.2∗
-DPO 66.2 82.2 68.1 62.4
-CL 65.2 82.1 66.4 60.1
-MRL 65.5 81.3 66.2 62.1

SFT 63.1 81.29 72.0 67.8
SFT + CoT 65.1 84.2 73.3 72.0
SCOTT 61.5 – – 65.0
Crystal – – 78.3 74.3
FRODO 82.1∗ 93.5∗ 80.1∗ 75.9∗

LlaMa-2-7B 67.2 56.8 47.5 49.6
SFT + CoT 79.4 68.4 62.8 54.6
FRODO 81.5+ 73.5+ 71.4+ 63.4+

Mistral-7B 58.2 56.8 82.1 65.2
SFT + CoT 78.2 70.8 83.5 70.1
FRODO 81.9+ 78.2+ 84.9+ 72.3+

Table 4: Performance of small-sized LMs (770M-7B)
on four different reasoning tasks. The base models
are T5-large (770M), T5-3B (3B), LLaMa-2-7B

and Mistral-7B . We report accuracy (%).⋄: few-shot
performance, ∗: p-value<0.01, +: p-value<0.05

the SFT + CoT and MARIO (the strongest baseline),
respectively, across all four tasks. Since SFT + CoT
and MARIO use the same knowledge from GPT-
3.5, our results suggest that both our inference and
reasoning modules bring substantial performance
gains to the model. Third, it is worth noting that
increasing (770M to 3B) the model size does not
hamper the performance of FRODO. Fourth, we
also report the performance of the LLaMa-2-7B
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and Mistal-7B models. We show that FRODO fur-
ther improves the performance of model size 7B.

Models StrategyQA QuaRel

SFT 19.4 19.4
SFT + CoT 32.2 29.2
FRODO 39.9 31.2
-CL 34.6 28.7
-MRL 36.2 30.6

Table 5: Robustness Performance of LLMs on Rea-
soning over a Chain. We report CIE scores.

Ablation. To obtain a better insight into the con-
tribution of each component of FRODO, we perform
an ablation study (see Table. 4). First, when we
do not use the DPO to train our inference module,
we see a consistent drop (-1.9%) in performance
across the four tasks, indicating the importance of
incorporating implicit feedback provided by the
DPO in the model’s training. Further, we observe a
considerable drop in performance when we do not
use counterfactual (-3.1%) and margin ranking loss
(-2.8%). This result highlights the model’s ability
to benefit from including counterfactual examples.

6 Analysis

6.1 Quantitative Analysis
Robustness. In Table 5, we report the controlled
indirect effect that indicates how robustly models
are able to change their answers when provided
with controlled (generated by GPT-4) counterfac-
tual reasoning chains. For STRATEGYQA, we ob-
serve that FRODO significantly improves the robust-
ness performance for T5-3B (+7.7 pp.). Further, for
the QuaRel task, we observe +2 pp. improvement
over the SFT + CoT method. Qualitatively, we
find that for the MCQA tasks, the gold rationales
often contain the answer; hence, the SFT + CoT
learns to copy those as answers. Further, we per-
form an ablation to understand which component
contributes most to the model’s robustness. We
find that counterfactual loss brings the most gain in
robustness.

Generalization. The idea is to test our model’s
capability to determine if it can improve out-of-
distribution (OOD) generalization. Table 7 shows
the OOD performance, where we compare our
method with SFT+CoT. We trained the models
on the OBQA and QASC datasets and evaluated
them on the StrategyQA task. We conclude
that FRODO significantly helps improve the

model’s generalizability to a dataset unseen during
fine-tuning.

6.2 Qualitative Analysis

Causal Analysis. To understand the reason for
the inconsistency in the causal effect, we analyze
its relationship with problem complexity. In Table
6, we report the indirect effect of CoT with respect
to the number of reasoning steps for GSM8K prob-
lems. We observe that with the increase in the
number of reasoning steps, the indirect effect drops
for both LLaMa-3 and ChatGPT. It indicates that
the length of the reasoning steps has an inverse ef-
fect on the faithfulness of these models. Table 16
shows a few examples of different models’ unfaith-
ful reasoning over the chain of thought.

No. RS LLaMa-3-70B ChatGPT

2 66.92 65.6
3 50.31 53.9
4 43.2 61.2
5 41.8 55
6 37.5 21
7 0 25

overall 57.2 56.3

Table 6: Indirect Effect. No. RS = Number of Reason-
ing Steps. IE: Avg[Acc(Y00)−Acc(Y01)]

FRODO Analysis. To further understand the
findings in §5, we manually analyze the relevance
of the 100 CoT generated by SFT and DPO. We
observed that SFT generates 74% and 54% rele-
vant CoT, whereas DPO generated CoT 77% and
59% relevant for QuaRel and OBQA tasks, respec-
tively. Further, we observe two types of errors
made by SFT and DPO: (i) invalid reasoning steps–
reasoning steps leading to incorrect answers and
(ii) unnecessary steps – reasoning steps not contain-
ing enough information to support a correct answer.
For DPO, we observed that 40% of the errors are
invalid reasoning steps, and 56% are unnecessary
steps. Table 21 shows some examples of CoT gen-
erated by SFT and DPO, SFT generated CoT are
incomplete or contradictory.

7 Related Work

Measuring Faithfulness CoT. Jacovi and Gold-
berg (2020) argued that obtaining faithful expla-
nations that accurately reflect a model’s reasoning
process is important to understand the reasons be-
hind its answer.(Atanasova et al., 2023) proposed a
new benchmark to test the faithfulness of natural
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Models OBQA → SQA QASC → SQA

T5-3B + CoT 67.6 53.2
FRODO 69.4 56.2

Table 7: Generalization Performance (accuracy) of
methods, trained on a source dataset and directly pre-
dicting on a target dataset (denoted as source → target).

language explanations. Turpin et al. (2023) pro-
posed identifying examples of unfaithful CoT in
adversarial settings, showing that CoT reasoning
is not always faithful. To determine faithfulness,
they provided bias features in the few-shot setting
or made edits to the input. (Lanham et al., 2023) ar-
gued that LLM ignores mistakes when introduced
into the CoT, which reveals that the LLM is un-
faithful. Finally, (Parcalabescu and Frank, 2024)
introduced CC-SHAP to measure input alignment
with predictions for both post-hoc and CoT ex-
planations. Unlike prior work, we employ causal
mediation analysis to measure the model’s faithful
reasoning over the CoT, and to interpret its relation-
ship with the answer.

Self-Rationalization and CoT Distillation. Ini-
tial work on self-rationalization approaches fo-
cused on collected gold human rationales and train-
ing a model to learn to generate such rationales
(Wiegreffe et al., 2021; Paul and Frank, 2021; Cam-
buru et al., 2018). With the advent of LLMs, re-
cently many works have distilled CoT from LLMs
and endowed small LMs with step-by-step reason-
ing capabilities (Fu et al., 2023; LI et al., 2022;
Shridhar et al., 2023; Li et al., 2023). Our work
involves distilling CoT from LMs to a smaller one,
similar to a certain line of work. We differ in using
implicit feedback to enhance the correctness of the
distilled CoT.

Feedback to Improve Reasoning. Recently, sev-
eral papers have proposed to improve or revise the
LMs’ generation using feedback (Fernandes et al.,
2023; Pan et al., 2023). Broadly, existing methods
can be categorized into two kinds: external and
intrinsic feedback. In the realm of external feed-
back, a standard procedure is to train critic models
and use them to facilitate and improve the origi-
nal generation model (Peng et al., 2023a; Akyurek
et al., 2023; Mehrabi et al., 2023; Paul et al., 2024).
Among them, Paul et al. (2024) is related to our
paper as it evaluates each reasoning step as feed-
back to produce more reasonable reasoning steps.
In contrast to extrinsic feedback, which relies on

external sources, there are works which show that
internal knowledge of LLMs can be used to give
feedback (Kim et al., 2023; Madaan et al., 2023;
Shinn et al., 2023). However, Madaan et al. (2023)
argued that self-feedback does not improve perfor-
mance on reasoning tasks. Hence, in this work,
we create preference data (counterfactual and fac-
tual reasoning steps) to train a specialized model
to learn to generate correct reasoning steps with
implicit feedback.

Casual Mediation Analysis in NLP. Causal me-
diation analysis is an important tool that is used to
effectively attribute the causal effect of mediators
on an outcome variable (Pearl, 2001). Vig et al.
(2020) proposed to use this method to implicate
specific neurons and attention heads in mediating
gender bias in various pre-trained LMs. Later, this
method was used for analyzing different models’
behaviour for different downstream tasks such as
Subjective-Verb agreement (Finlayson et al., 2021),
Fake News Detection (Chen et al., 2023), arith-
metic reasoning (Stolfo et al., 2023), political po-
larization (Tierney and Volfovsky, 2021). To the
best of our knowledge, our study is the first at-
tempt to use casual mediation analysis to analyze
the faithfulness of LLMs in their reasoning capa-
bilities. In this work, we followed Pearl (2001)
to perform the mediation analysis. The mediation
analysis allows us to measure the following: Direct
effect: Contribution of X (input) to Y (output). In-
direct effect: Contribution of R (reasoning chain)
to Y (output). Hence, a high direct effect means the
model’s output is primarily influenced by the in-
put, and a high indirect effect means the reasoning
chain has more effect on the output.

8 Conclusion

In this work, we perform a causal mediation anal-
ysis to study the indirect effect of CoT on the
final output of twelve LLMs. Our experiments
show large variations across tasks and models in
how strongly reasoning traces causally affect the
model’s prediction. LLMs generally do not reli-
ably use their intermediate reasoning steps when
generating an answer. We introduce FRODO that
tailors small-sized LMs to generate correct reason-
ing chains and faithfully reason over them to arrive
at the correct answer. Experiments show that our
method outperforms strong baselines on four rea-
soning tasks, including out-of-distribution settings.
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9 Limitations

A limitation of our Causal Analysis metric is that it
does not evaluate the model’s real internal reason-
ing process. Without a complete understanding of
the pertaining data and models’ internal working
process, it is difficult to know whether or not the
chain of thought is faithful to the reasoning pro-
cess. In this study, we provide insist and evidence
that could explain how the model uses CoT. For
future research, the causal mediation metric can be
useful for measuring the extent to which new meth-
ods improve faithfulness. Compared to training a
standard CoT distillation process, our method re-
quires (i) additional counterfactual data generated
by LLMs, which can be expensive, and (ii) training
time increases as training Direct Preference Op-
timization is a two-step process. To manage the
complexity of our already large-scale experiments
involving (a) four different reasoning tasks, and (b)
hyperparameter search grids, we ran experiments
with 3 random seeds. Additionally, FRODO is de-
pendent on rationales generated by LLMs. Extra
care should be taken when applying our model in
production environments, especially when making
critical decisions or exposing its generated contents
directly to human end users.
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A Appendix

A.1 FRODO - Inference Module (DPO)
The preference data of human or artificial anno-
tators is modeled by a learnable implicit reward
model fθ under Bradley-Terry theories (Bradley
and Terry, 1952):

πθ(rw > rl|x) = σ( fθ(rw,x)− fθ(rl,x)) (5)

where σ is the sigmoid function. To learn fθ, DPO
adopts a binary classification loss:

LDPO =−E{x,rw>rl}logσ( fθ(rw,x)− fθ(rl,x)) (6)

The latent function fθ is parameterized by the
log-likelihood ratio between πθ and πsft:

fθ(x,r) = βlog
πθ(r|x)
πsft(r|x)

(7)

where β a linear coefficient for scaling fθ. This
parameterization is appealing as it aligns the train-
ing of an implicit reward model fθ closely with
training an LM policy πθ.

A.2 Additional Experimental Results
RQ1: How faithful FRODO is compared to
SCoTT and CoT? Finally, we compare the faith-
fulness of reasoning chains generated by FRODO

with SCOTT, COT and SFT+COT (see Fig.4). We
observed that FRODO achieves a much higher LAS
score than the other three baselines, suggesting that
DPO training with implicit casual feedback helped
the model.

RQ2: How does FRODO work on GSM8k? Ta-
ble 8 reports the performance of FRODO on math
reasoning problems. We observe that FRODO out-
perform SFT by +3.75 % (average).

Model GSM8K

LLama-2 7B + SFT + COT 17.8
LLama-2 7B + SFT + FRODO 21.1

Mistral + SFT + COT 40.4
Mistral + SFT + FRODO 44.6

Table 8: Performance of FRODO on GSM8K (accuracy)

RQ3: How does FRODO generalize on Causal
Understanding Task? Table 9 reports the re-
sult of FRODO on the Causal Understanding task.
Please note that the Causal Understanding dataset

does not have training data. Hence, we trained
FRODO on the StrategyQA dataset and evaluated
it on Causal Understanding. Our results suggest
that FRODO can generalize better than SFT.

Model SQ → CU

SFT + COT 51.0
SFT + FRODO 53.2

Table 9: Generalization Performance. (accuracy) of
methods, trained on a source dataset and directly pre-
dicting on a target dataset (denoted as source → target),
where SQ = StrategyQA and CU = Causal Understand-
ing.

RQ4: How well did GPT-4 generate the
Chain-of-Thought? We manually evaluated the
quality of the chain of thought generated by GPT-4.
We found 94% correct CoTs generated by GPT-
4 for StrategyQA, whereas only 65% correct for
the Causal Understanding task. This also indicates
why the performance of GPT-4 drops for the Causal
Understanding task (see Table 2).

SQ GSM8K CU
94% 82% 65%

Table 10: Human Judgement of GPT-4 reasoning chain.
SQ: StrategyQA, CU: Causal Understanding.

RQ5: What are the differences between FRODO
and Selection-Inference (Creswell et al., 2023)
method? The key differences between FRODO
and the Selection-Inference method are:

1. The selection-inference framework assumes
that each question is accompanied by context
information, which contains all the informa-
tion necessary to solve the problem.

2. FRODO does not have that assumption; there-
fore, our method works on open-domain
question-answer tasks. Hence, we compare
our method with RAINER, CRYSTAL, and
MARIO, which do not have such assumptions.

In the selection-inference framework, SFT with
language modelling loss is used to train the infer-
ence module, while we used counterfactual loss,
LM loss, and margin-ranking loss.

RQ6: How is the performance of FRODO on the
Entailmentbank dataset? Table 11 shows that
FRODO clearly outperforms previous baselines on
the Entailmentbank dataset.

15027



Models Task 1 Task 2

Entailment Writer 34.4 23.2
METGEN 37.0 28.0
FRODO 38.8 34.5

Table 11: Performance of FRODO on Entailment Bank
dataset.
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Figure 4: Faithfulness (LAS) of the compared methods
on StrategyQA. The base Model is T5-3B.

RQ7: What is the causal effect of open-sourced
models (<100B) in natural setting? We experi-
mented with open-sourced larger models LLaMa-
3-70B (zero-shot setting) for natural indirect ef-
fect. However, we have observed that 70B mod-
els do not have the emergent abilities to generate
coherent/meaningful reasoning steps in zero-shot
settings. Similar to our observation, previous stud-
ies (Kojima et al., 2022) also discussed that only
models >100B start showing such emergent abili-
ties. Table 12 reports the Natural Indirect effect of
LLaMA-2 and LLaMA-3 (70B).

Models Causal Effects StrategyQA

LLaMa-3 70B NIE 21.1
LLaMa-3 70B CIE 23.1
LLaMa-2 70B NIE 12.1
LLaMa-2 70B CIE 24.1

Table 12: Performance of FRODO on GSM8K (accu-
racy)

A.3 Dataset and Implementation Details
All datasets have multi-choice questions “yes/no”
for STRATEGYQA, “a/b” for QUAREL, “a/b/c/d”
for OPENBOOKQA, “a/b/-/h” for QASC), and the
task is to generate a rationale followed by the pre-
dicted answer. We use the original data splits (see
Table.17).

A.4 Baselines
We evaluate a series of language models that are
diverse in terms of scale, training, and data:
• LLaMA (Touvron et al., 2023), an open-source

decoder-only model with various sizes (7B)

Data Size Test Data Size

GSM8K 300
Causal Understanding 175
StrategyQA 500

Table 13: Data Statistics: Causal Mediation Analysis

Hyperparameter Value

Optimizer Adam
Adam epsilon 1e−8
Adam initial learning-rate 3e−5
Learning-rate scheduler linear with warmup
Warmup steps 1000
Gradient clipping 0.5
Train batch-size 4/8
Training Time ∼ 4 hours on 1 GPU

Table 14: Training Details for small LMs

Hyperparameter Value

Optimizer RMSprop
Adam epsilon 1e−8
Train batch-size 4/8
beta 0.25
Training Time ∼ 8 hours on 1 GPU

LoRA parameters

task type CAUSALLM
r 16
lora alpha 32
lora dropout 0.05

Table 15: Training Details for Direct Preference Opti-
mization

model is pretrained using only a language mod-
eling loss.

• GPT-3.5 (Brown et al., 2020a) and GPT-4 (Ope-
nAI, 2023): two closed-source decoder-only
models that were trained with instruction-tuning.
For GPT-3.5, we use the text-davinci-003
model with 175B parameters.

• Stable-Vicuna: open-source decoder-only
model based on LLaMA. Stable-Vicuna is fine-
tuned with RLHF.

• Flan-T5-XXL (Chung et al., 2022, 11B parame-
ters) and Flan-Alpaca (Chia et al., 2023; Peng
et al., 2023b; 3B), two open-source encoder-
decoder models based on T5 (Raffel et al., 2020)
and trained on instruction-following datasets.

• Mistral (Jiang et al., 2023a) a 7–billion-
parameter language model and Mixtral (Jiang
et al., 2024) a Sparse Mixture of Experts (SMoE)
language model. Mixtral has the same architec-
ture as Mistral 7B, with the difference that each
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Example 1

Question: Can members of the Green Party of England and Wales vote in the USA?
Correct Answer: False
Gold Rationales: Green Party of England Wales isn’t registered in the USA. People who live in England can’t vote in the USA.
Counterfactual Rationales: The Green Party of England and Wales was registered in the USA. People who live in England can be able to vote in the USA.
GPT-4 Rationales: Step 1: Understand that the Green Party of England and Wales is not registered in the USA,
meaning it doesn’t have a direct influence or participation in the US elections. Step 2: Consider the fact that people
who live in England, regardless of their party affiliation, are not eligible to vote in the USA.
GPT-4 Answer (Y00): False ✓
GPT-4 Answer (Y01): False ✗

ChatGPT Rationales: 1. The ability for members of a political party to vote in another country is typically determined by the registration
and recognition of that party in the respective country. 2. If the Green Party of England and Wales is registered and recognized in the USA,
it is possible that members of the party residing in England may have the opportunity to vote in the USA.
Correct Answer: False
ChatGPT Answer (Y00): False ✓
ChatGPT Answer (Y01): False ✗

LLaMa-3-70B Answer (Y00): False ✓
LLaMa-3-70B Answer (Y01): True ✓
Example 2

Question: Could a wandering albatross fly from Bucharest to New York City without a rest?
Correct Answer: True
Gold Rationales: Wandering albatross can travel at least 15,000 km (just under 10,000 miles) over the sea before returning to land.
It’s 4766 miles or 7670 km from Bucharest to New York City.
Counterfactual Rationales: If the distance from Bucharest to New York City was more than 15,000 km,
a wandering albatross would not be able to fly this distance without a rest.
GPT-4 Rationales: Step 1: Compare the distance a wandering albatross can travel before returning to land (15,000 km) with the
distance from Bucharest to New York City (7670 km). Step 2: Since 7670 km is less than 15,000 km, it can be concluded
that a wandering albatross could fly from Bucharest to New York City without a rest.
GPT-4 Answer (Y00): True ✓
GPT-4 Answer (Y01): False ✓
ChatGPT Rationales: 1. Determine the maximum distance the wandering albatross can fly without a rest: Given that the wandering albatross can travel
at least 15,000 km (just under 10,000 miles) over the sea before returning to land, we need to compare this distance to the distance between Bucharest and
New York City. 2. Calculate the distance between Bucharest and New York City: Given that it is 4766 miles or 7670 km from Bucharest to New York City.
ChatGPT Answer (Y00): True ✓
ChatGPT Answer (Y01): False ✓
LLaMa-3-70B Answer (Y00): True ✓
LLaMa-3-70B Answer (Y01): True ✗

Table 16: Qualitative Examples of Causal Mediation Analysis.

layer is composed of 8 feedforward blocks (i.e.
experts).

A.5 Details about Preference Data
In our experiments, we consider two kinds of rea-
soning chains incorrect: counterfactual chains (al-
ternative chains that can lead to different outcomes)
and irrelevant chains (irrelevant facts about the cor-
rect answer). Additionally, we train DPO with a
setting where for each instance, one correct and one
incorrect chain are paired and given to the model.
The model learns to prefer the correct chain. In
Table 22, we report the size of the preference data
used to train the DPO models.
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Dataset/Tools Citation Link License

GSM8k Cobbe et al. (2021) https://github.com/openai/grade-school-math MIT License
HuggingFace Wolf et al. (2020) https://github.com/huggingface/transformers Apache License
OBQA (Mihaylov et al., 2018) https://huggingface.co/datasets/openbookqa Apache License
StrategyQA (Geva et al., 2021) [1] MIT License
Quarel (Tafjord et al., 2018) https://github.com/allenai/unifiedqa MIT License
QASC (Khot et al., 2020) https://github.com/allenai/unifiedqa MIT License

Table 17: More details about datasets and Tools [1] https://github.com/eladsegal/strategyqa/tree/main/
data/strategyqa

Dataset Question Option Correct Answer GPT-3 Generated CoT

StrategyQA Can I build a house on an asteroid? Yes or No No Building a house on an asteroid is
impossible as of now due
to the lack of technologies
and resources needed.
It would be extremely difficult
to build a house that could
withstand the extreme
temperatures, radiation,
and extreme gravitational pull.

OBQA The circulatory system brings (a) The brain (b) The feet The chest The circulatory system brings oxygen
oxygen to the body from where? (c) The stomach area to the body from the lungs

(d) The chest which is located in the chest area.

Quarel The boys were racing their (A) weighed more weighed less When something is lighter,
cars in the soapbox derby and found that the cars (B) weighed less it is easier to move faster.
that −−−− moved faster. Thus, the cars that weighed less moved faster.

QASC What type of water formation is formed by clouds? (A) pearls (B) streams (C) shells Beads Rain is formed when water droplets
(D) diamonds (E) rain (F) beads in the clouds come together to form larger
(G) cooled (H) liquid droplets that are too heavy to remain

suspended in the cloud, and fall to
the ground as precipitation.

Table 18: Examples from each reasoning task.

PROMPT: Counterfactual Reasoning Chain

System Prompt: You are a helpful assistant for commonsense reasoning.
We will provide you with a commonsense question, along with a correct
answer and your task is to generate a counterfactual intermediate.
steps. Here are two examples:

“Question : ” <Problem Statements> Let’s think step by step
Answer: <answer>

“Question: ” <Problem Statements> Let’s think step by step
Answer: <answer>

“Question: ” <Problem Statements> Let’s think step by step

Table 19: Prompts used for generating counterfactual intermediate reasoning chains.
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PROMPT: Counterfactual Questions

System Prompt: You are a helpful assistant in generating counterfactual questions.
We will provide you with a commonsense question, along with a correct
answer and your task is to generate a counterfactual question.
Here are two such examples:

“Question : ” <Original Reasoning Question> " Answer: " <answer>
"Counterfactual Question:": <counter question>

“Question : ” <Original Reasoning Question> " Answer: " <answer>
"Counterfactual Question:": <counter question>

“Question : ” <Original Reasoning Question> " Answer: " <answer>
"Counterfactual Question:":

Table 20: Prompts used for generating counterfactual reasoning questions.

Examples Generations

Question Is the Illuminati card game still popular?
Gold Reasoning Chain The original version of the game was released in 1982.

A collectible card game version was released in 1995 but only had one set.
The most recent edition of the base game was published in 2007.

SFT + CoT The Illuminati card game was released in the 1980s. (Incomplete)
DPO The Illuminati card game was released in the 1980s.

The Illuminati card game was discontinued in the 1990s.

Correct Answer False
SFT True ✗
FRODO False ✓
Question Tank the kitten learned from trial and error that carpet is rougher

then skin. When he scratches his claws over carpet it generates
—- then when he scratches his claws over skin (A) more heat (B) less heat

GPT-3 Reasoning Chain When a cat scratches its claws over a rough surface,
it generates more heat than when it
scratches its claws over a smooth surface.

SFT + CoT When you scratch a surface, it generates heat.
When you scratch a surface, it generates less heat. (Contradiction)

DPO When a cat scratches a surface, it generates heat.

Correct Answer A
SFT A ✓
FRODO A ✓

Table 21: Qualitative Examples of model generated rationales and prediction.

Data type StrategyQA QuaRel OBQA QASC

Correct Reasoning Chain (Rw) 5492 8203 20138 19935

Counterfactual Reasoning Chain (Rl) 5492 8203 20138 19935
Irrelvant Reasoning Chain (Rl) 5492 8203 20138 19935

Table 22: Preference Data Statistics.
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Tasks Interventions

StrategyQA Prompt GPT-4 to generate alternative questions such that
the answer changes from original to counterfactual.

GSM8K We automatically replace the operands with alternative operands.

Causal Understanding Prompt GPT-4 to generate alternative questions such that
the answer changes from original to counterfactual.

Table 23: Causal Interventions
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