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Abstract

Detecting out-of-distribution (OOD) samples
is crucial for ensuring safety and robustness
of models deployed in real-world scenarios.
While most OOD detection studies focus on
fine-tuned models trained on in-distribution
(ID) data, detecting OOD in pre-trained models
is also important due to computational limits
and the widespread use of open-source models.
However, pre-trained models often underper-
form in same domain shift scenarios, as both
ID and OOD samples originate from the same
domain, leading to high overlap in their embed-
dings. To address this issue, we propose CED,
a training-free OOD detection method that en-
hances the distinction between ID and OOD
samples. We theoretically validate that strate-
gically selected auxiliary and oracle samples
improve this separation. On the basis of our the-
oretical analysis, CED utilizes these specially
designed samples to significantly improve the
ability of pre-trained models to differentiate ID
from OOD samples in text classification and
hallucination detection tasks. We verify that
CED is a plug-and-play method compatible
with various backbone networks like RoBERTa,
Llama, and OpenAI Embedding.

1 Introduction

Language models trained on large-scale datasets
with extensive parameters, known as pre-trained
language models (PLMs), are renowned for their
generalization abilities. Consequently, a wide
range of research has focused on improving PLM
architectures, such as RoBERTa (Liu et al., 2019),
Llama (Meta, 2024), and GPT3 (Brown et al.,
2020). With the advancement of PLMs, their appli-
cations expanded across various fields, demonstrat-
ing superior performance on a variety of discrimi-
native and generative tasks, including classification
and text completion.

*Corresponding authors

Figure 1: Illustration of CED. Left: Embedding space
before CED. Right: Embedding space after applying
CED. CED enhances separation of OOD samples in
both hard and easy scenarios by leveraging auxiliary
and oracle embeddings.

Given the exceptional performance of recent
PLMs, there is growing interest in deploying them
for real-world applications. Ensuring reliability in
these contexts requires the ability to distinguish be-
tween in-distribution (ID) and out-of-distribution
(OOD) datasets, as test distributions may shift dy-
namically. This capability becomes especially im-
portant in critical sectors like healthcare and cus-
tomer services, where the stakes are high.

To effectively manage the dynamic nature of
real-world data, recent research has focused on
fine-tuning PLMs on ID data, and subsequently
employing OOD detectors based on the fine-tuned
models (Lee et al., 2018; Sun et al., 2022; Lin and
Gu, 2023). However, fine-tuning approach faces
some limitations. The growing size and complex-
ity of models make fine-tuning increasingly costly
and time-consuming. Moreover, the need for con-
stant fine-tuning becomes impractical, especially
when new data types or tasks frequently emerge.
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These constraints highlight the need for OOD detec-
tion methods that can effectively utilize pre-trained
models without relying on task-specific fine-tuning.

However, current PLMs struggle with OOD de-
tection, particularly in semantic shift scenarios
where ID and OOD datasets share the same do-
main but have different semantics (Hendrycks et al.,
2020; Uppaal et al., 2023; Chen et al., 2023). The
performance drop in semantic shift settings occurs
because both ID and OOD samples originate from
the same domain, resulting in a high overlap in the
embeddings.

Therefore, we propose Comparing Embedding
Difference (CED), a novel method for OOD de-
tection focusing primarily on classification. CED
exploits the distinct relational patterns between ID
and OOD samples by concatenating the target input
with strategically selected ID samples. This con-
catenation process enables PLMs to leverage their
embedded general knowledge (Hendrycks et al.,
2020; Podolskiy et al., 2021), creating a context
that amplifies the differences between ID and OOD
samples in the embedding space. We show that this
approach leads to more accurate OOD detection
through a calibrated score derived from embedding
differences. As illustrated in Figure 1, CED utilizes
the relative differences between perturbed samples
in the feature space. We demonstrate the effec-
tiveness and scalability of CED through extensive
experiments across diverse datasets and models.

Furthermore, we extend the application of CED
to generative tasks, specifically addressing the chal-
lenge of hallucination detection. This extension is
crucial because generating reliable outputs is nec-
essary for the trustworthy utilization of PLMs in
real-world applications. Hallucination detection
can be framed as a binary classification problem
to determine whether a generated output is factu-
ally consistent with the input or contains fabricated
information (Su et al., 2024; Ji et al., 2023). This
perspective allows us to apply our OOD detection
framework directly to the hallucination detection
task. To the best of our knowledge, CED is the first
method to explore OOD detection for discrimina-
tive and generative tasks simultaneously without
additional PLM training. We summarize our con-
tributions as follows:

• We derive theoretical findings demonstrating
that OOD detection is feasible for certain con-
ditions of auxiliary and oracle datasets.

• Based on theoretical insights, we propose a

training-free OOD detection method, CED,
for discriminative tasks.

• We extend CED to generative tasks, showing
its effectiveness in hallucination detection and
its versatility across various language model-
ing challenges.

2 Related Works

2.1 Types of Data Distribution Shift

Research in data distribution shifts categorizes
them mainly into two types: semantic shifts and
background shifts (Hsu et al., 2020; Arora et al.,
2021). Semantic shifts involve the introduction of
entirely new semantic categories that were not part
of the ID data. Background shifts, also known
as non-semantic shifts, occur when the ID and
OOD data share semantic classes but differ in back-
ground details or stylistic elements. Prior research
shows that pre-trained models generally outper-
form fine-tuned models in handling non-semantic
shifts, demonstrating their robustness in maintain-
ing performance consistency across varied back-
grounds (Hendrycks et al., 2020; Uppaal et al.,
2023; Chen et al., 2023). In this paper, we focus on
demonstrating CED’s effectiveness in addressing
semantic shifts, an area where pre-trained models
typically face challenges.

2.2 OOD Detection Methods

OOD detection methods are essential for ensuring
model reliability by identifying inputs that deviate
from the training data distribution. These meth-
ods typically employ a scoring function to assign
OOD scores, with higher scores indicating a greater
likelihood of being out-of-distribution (Hendrycks
and Gimpel, 2016; Lang et al., 2023). The
most common methods include output-based meth-
ods, density-based methods (Lin and Xu, 2019),
distance-based methods (Zhou et al., 2021) and
ensemble-based methods (Baran et al., 2023; Gal
and Ghahramani, 2016). Among these approaches,
distance-based methods utilize feature embeddings
extracted from a model and assume that OOD sam-
ples are relatively distant from the ID data. Tech-
niques such as Mahalanobis distance (Lee et al.,
2018), K-Nearest Neighbors (Sun et al., 2022), and
Flats (Lin and Gu, 2023) are effective but predom-
inantly applied to fine-tuned models. In contrast,
our proposed method extends the distance-based
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Figure 2: Our proposed CED method for OOD detection. In Step 1, oracle and auxiliary samples are strategically
selected from the ID data. In Step 2, the target input is combined with these samples and passed through the PLM
to compute the CED score. Red dashed lines indicate the oracle, auxiliary selection strategy validated through
theoretical analysis.

approach to work effectively with pre-trained mod-
els. By exploiting the relational differences of ID
and OOD samples, we enhance OOD detection
performance without the necessity for fine-tuning,
thus maintaining the pre-trained model’s integrity
and reducing computational overhead.

2.3 Hallucination Detection
Hallucination detection within large language mod-
els (LLMs) has attracted significant attention from
researchers as LLMs are widely used across various
applications. Liu et al. (2022) introduces a halluci-
nation detection dataset comprising texts derived
from perturbed factual content. Kadavath et al.
(2022) proposes a self-evaluation method where an
LLM is utilized to assess its predictions. Recently,
Mündler et al. (2023) aims to detect hallucinations
by identifying contradictions between two sampled
sentences. Manakul et al. (2023) introduces Self-
CheckGPT, which is a black-box approach for de-
tecting hallucinations in LLMs. Zhang et al. (2023)
proposes a hallucination detection approach focus-
ing on preceding words and token properties. Fur-
ther, Su et al. (2024) introduces MIND, which lever-
ages the internal states of LLMs in an unsupervised
manner for real-time hallucination detection. In
this paper, we propose a training-free method CED
that utilizes embeddings with auxiliary samples to
detect hallucinations effectively.

3 Method

Our proposed method CED consists of two main
steps: 1) Oracle and Auxiliary Sample Selection,
and 2) Sample Combination and Scoring. Figure 2
provides an overview of the entire methodology.

3.1 Step 1 : Oracle, Auxiliary Selection
The first step in our method involves the strate-
gic selection of oracle and auxiliary samples from
the ID training data. We denote the target input
as xt, which we aim to classify as either ID or
OOD. First, we identify the closest class c∗ to
the target input xt using Mahalanobis distance,
c∗ = argmin

c∈C
(xt − µc)

TΣ−1
c (xt − µc) where C is

the set of all classes, and µc and Σc are the mean
and covariance of the embeddings for class c, re-
spectively. Let Xc∗ be the set of all training samples
belonging to class c∗. Within Xc∗ , we select a set
of M oracle samples {xoi}Mi=1 that are closest to
target input xt in Euclidean distance,

{xoi}Mi=1 = argmin
{xo1 ,...,xoM

}⊂Xc∗
∥xoi − xt∥2.

Oracle selection identifies samples that are closest
to the target input in the embedding space. At this
stage, easy OOD samples (those with clearly dis-
tinct features from ID samples) may show notice-
able differences from their oracle samples, while
hard OOD samples (those more similar to ID sam-
ples in the embedding space) and ID test samples
are likely to appear similar to their respective ora-
cle samples. As hard OOD samples are challenging
to distinguish, we utilize CED’s auxiliary sample
strategy. We hypothesize that when these target
and oracle samples are combined with dissimilar
auxiliary samples respectively in Step 2, a more dis-
tinct pattern will emerge, particularly for hard OOD
cases. The contextual embeddings of ID test sam-
ples are expected to maintain consistency with their
oracle samples, while OOD samples are likely to
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show greater divergence after concatenation. This
difference in behavior is expected to enhance the
effectiveness of OOD detection.

We identify a set of N auxiliary samples,
{xaj}Nj=1, that are oriented in the opposite direc-
tion from the oracle embedding relative to the tar-
get embedding and are most distant from the target
input as follows:

{
xaj | xaj ∈ arg top-Nxaj∈X

∥∥xt − xaj
∥∥ ,

s.t. (xt − xoi)(xt − xaj ) < 0
}
.

Our selection process ensures that the auxiliary
samples provide contrasting information to the tar-
get input, which is crucial for distinguishing xt
from ID data. Figure 2 visualizes the relationships
between target inputs, oracle samples, and auxiliary
samples in the embedding space. CED captures a
comprehensive representation of the target input’s
relationship to ID data by considering both similar-
ity through close oracle samples and dissimilarity
through distant auxiliary samples. This carefully
designed selection enables accurate classification
of the target input as either ID or OOD, even in chal-
lenging scenarios where OOD samples are close
to ID data in the embedding space. A detailed
case study can be found in Section 4.3. Also, we
validate the effectiveness of our selection strategy
through theoretical analysis.

3.2 Step 2 : Sample Combination and Scoring

In this step, we concatenate the target input and
oracles with selected auxiliary samples to create
new input sequences: {x̃taj}Nj=1, {x̃oiaj}M,N

i=1,j=1.
These concatenated inputs are processed through
the PLM to obtain feature representations f(·),
leveraging the inherent knowledge of PLMs (Rad-
ford et al., 2019; Kenton and Toutanova, 2019;
Brown et al., 2020).

We introduce the CED score to quantify the dis-
tinction between ID and OOD data:

CED Score(xt) =
1

M ·N
M∑

j=1

N∑

n=1

(
h(f(xt))− αh(f(xoi))

+ β
(
h(f(x̃taj ))− h(f(x̃oiaj ))

))
.

Here, h(·) is a scoring function which can be any
distance-based method such as Mahalanobis dis-
tance or KNN distance, and α, β are scaling factors.
The CED score consists of two components. The

first term h(f(xt)) − h(f(xoi)) measures the di-
rect similarity between target input and the oracle
samples. For ID test samples, this difference is
expected to be small, as the target input is likely
to belong to the same class as the oracle samples.
The second term h(f(x̃taj )) − h(f(x̃oiaj )) cap-
tures relational differences introduced by auxiliary
samples. For ID test samples, the similarity be-
tween the concatenated target-auxiliary inputs and
oracle-auxiliary inputs remains high, leading to
small differences. In contrast, OOD samples ex-
hibit larger differences because OOD samples have
inherently different characteristics from oracle sam-
ples, leading to more pronounced discrepancies in
the combined embeddings. By averaging scores
across multiple oracle and auxiliary samples, CED
robustly captures relational patterns. Moreover,
the plug-and-play nature of CED offers flexibility
in choosing the most suitable distance metric for
various applications.

When using Mahalanobis distance (MD) as the
scoring function, we measure the distance of per-
turbed samples relative to the original class c∗. In-
stead of finding the minimum distance class for
each perturbation, we consistently evaluate the dis-
tance to class c∗, ensuring alignment with the ini-
tial class and providing a stable measurement of
relational differences. As shown in Figure 2, the
concentric circles represent the MD from the clos-
est class (Class 1 in orange), with greater distances
indicating higher likelihood of being OOD. Per-
turbed OOD targets are positioned further from the
center, showing their dissimilarity to ID samples.

3.3 Theoretical Analysis

In this section, we theoretically validate the effec-
tiveness of strategic oracle and auxiliary selection
in CED method. This selection enables CED to
effectively identify hard OOD instances that are
difficult to distinguish from the ID dataset. Further
details are provided in Appendix C.

Definition 1 (Hard OOD samples). A hard OOD
sample, xt, refers to an OOD sample where
h(f(xt)) is smaller than that of oracle sam-
ples, h(f(xo)). In other words, ∃xo such that
h(f(xo)) > h(f(xt)).

Theorem 1 states that oracle and auxiliary sam-
ples satisfying certain conditions, with the closest
oracle samples and auxiliary samples that are the
farthest in the opposite direction, enhance the per-
formance on hard OOD datasets.
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Theorem 1. Let h(·) and f(x) = wTx+ b repre-
sent the Mahalanobis distance-based OOD score
function and a linear function, respectively. Where
w, x ∈ Rd and b ∈ R, we define f(xt)− µID = ϵ,
f(xt) − f(xo) = dto, f(xt) − f(xa) = dta,
µID as the closest mean of the class embeddings
with f(xt). Given hard OOD target xt, and
ϵ > (2 +

√
2)dto, the CED Score(xt) is greater

than h(f(xt)), when an auxiliary sample satisfies
condition:

dta < 0 and dta <
(3 + 2

√
2 + λ2 − 6λ− 2

√
2λ)dto

2λ(λ− 1)
,

where 0 < λ < 1 and dto is a positive value close
to zero.

3.4 Toy Experiments

To support our theoretical analysis, we conduct a
toy experiment using simulated data sampled from
a 1-dimensional Gaussian distribution. Figure 3
illustrates this experiment, which shows both sce-
narios when oracle embedding is located positively
and negatively relative to the target. In this exper-
iment, we focus on a hard OOD sample close to
µID and select an auxiliary set that specifies the or-
acle and ensures a positive CED score. Consistent
with our theoretical analysis, we observe that auxil-
iary samples located in the opposite direction from
the oracle, with greater distances, lead to higher
CED scores. The farthest auxiliary samples in op-
posite directions consistently improve OOD scores,
regardless of the oracle sample location. Further
validation with toy experiments on 2-dimensional
data is provided in Appendix D.

4 Experiments

4.1 Experimental Setup

Datasets We evaluate our proposed method on two
types of tasks: four dialogue intent classification
datasets and two news topic categorization datasets,
both commonly used in OOD detection research.
Detailed descriptions of the datasets can be found
in Appendix A.
Models and Metrics We evaluate our method us-
ing three backbone models: RoBERTabase (Liu
et al., 2019), Llama 3-8B (Meta, 2024), and Ope-
nAI text-embedding-3-small (OpenAI, 2024). We
use AUROC and FPR95 metrics, following prior
works (Liu et al., 2020).
Baselines We compare our approach with several
OOD detection methods, focusing primarily on
three distance-based methods: MDpre (Lee et al.,
2018), KNNpre (Sun et al., 2022) , and Flatspre (Lin

Figure 3: Toy experiment on 1D dataset. Auxiliary
samples farther from the target in the opposite direction
of the oracle yield higher CED scores (red), consistently
improving OOD detection regardless of oracle position.

and Gu, 2023). We include Cosinepre (Zhou et al.,
2021), LOFpre (Lin and Xu, 2019), and MCpre (Gal
and Ghahramani, 2016) baselines for experiments
on RoBERTabase.We adapt all methods to use em-
beddings from pre-trained models. CED is inte-
grated as a plug-in approach to the three main
distance-based methods.
Hyperparameters We determined the scaling pa-
rameters α, β through hyperparameter search
within the range of [0, 1], selecting best values for
each method. Across all datasets, we use M = 3
oracle samples and N = 5 auxiliary samples. We
conduct sensitivity analysis on both the scaling pa-
rameters and the number of samples in Appendix E
and Section 4.5. For the KNN approach, we set
k = 10, following (Chen et al., 2023; Lin and Gu,
2023).

4.2 Comparison with OOD baselines

As shown in Table 1, integrating CED with base-
line methods consistently enhances OOD detection
performance across various models and datasets.
For the Snips dataset, CED led to significant reduc-
tions in FPR95 across different models. For exam-
ple, KNNpre+CED reduced FPR95 from 0.6203 to
0.3743 with RoBERTa and from 0.6524 to 0.3797
with Llama3-8B, demonstrating a substantial im-
provement. These consistent improvements across
multiple datasets and models underscore the ef-
fectiveness of CED in enhancing OOD detection
performance.

We observed that despite Llama being a LLM,
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Model Methods CLINC150 ROSTD Banking77 Snips NC AGNews Avg.

FPR95↓ FPR95↓ FPR95↓ FPR95↓ FPR95↓ FPR95↓ FPR95↓

RoBERTa Cosinepre 0.7620 0.9615 0.9444 0.7701 0.9284 0.9511 0.8863
LOFpre 0.7420 0.6262 0.8972 0.3743 0.8811 0.8103 0.7219
MCpre 0.9440 0.9278 0.9491 0.9251 0.9490 0.9639 0.9432

MDpre 0.7330 0.3133 0.9306 0.6364 0.9014 0.8794 0.7324
MDpre + CED 0.6570 0.1638 0.8843 0.5615 0.8861 0.8194 0.6620

KNNpre 0.7070 0.1851 0.8935 0.6203 0.8456 0.8189 0.6784
KNNpre + CED 0.6450 0.0994 0.8407 0.3743 0.8285 0.7575 0.5909

Flatspre 0.7460 0.1696 0.9213 0.5348 0.8878 0.7700 0.6716
Flatspre + CED 0.6880 0.1097 0.8852 0.3529 0.8753 0.7664 0.6129

Llama3-8B MDpre 0.8310 0.3398 0.9278 0.5936 0.9198 0.8592 0.7452
MDpre + CED 0.7450 0.2039 0.9139 0.5294 0.8980 0.7883 0.6797

KNNpre 0.8070 0.3039 0.9241 0.6524 0.8770 0.8319 0.7327
KNNpre + CED 0.6270 0.1816 0.8213 0.3797 0.8479 0.7256 0.5971

Flatspre 0.8010 0.3003 0.9454 0.5722 0.8987 0.7911 0.7181
Flatspre + CED 0.6470 0.1641 0.8769 0.3850 0.8764 0.7789 0.6213

OpenAI MDpre 0.1840 0.0061 0.5972 0.1070 0.8553 0.6817 0.4052
text-embedding-3 MDpre + CED 0.1670 0.0045 0.5852 0.0963 0.8483 0.6747 0.3960

small KNNpre 0.0860 0.0016 0.2907 0.0321 0.5102 0.5225 0.2405
KNNpre + CED 0.0690 0.0016 0.2694 0.0321 0.5064 0.5289 0.2298

Flatspre 0.1830 0.0074 0.4685 0.0749 0.7356 0.6217 0.3485
Flatspre + CED 0.1560 0.0061 0.4509 0.0642 0.7276 0.6344 0.3399

Table 1: FPR95 performance of CED across different datasets. The best results for each model is shown in bold.

its performance in some cases does not surpass
that of RoBERTa. In contrast, the OpenAI text
embedding model, which is a model optimized for
embeddings, showed best performance. Llama’s
lower performance may be due to our use of last
token embeddings for OOD detection, following
prior research (Liu et al., 2024), which might not
fully capture the complex contextual information
inherent in a decoder-only model.

4.3 Case Study of Sample Interactions

To better understand the influence of each sample
type, we conducted a qualitative analysis using the
ROSTD dataset with the RoBERTa model, as de-
tailed in Table 2. In the absence of a classification
head in pre-trained models, we identified the clos-
est class by calculating the smallest Mahalanobis
distance from the embeddings.

When an OOD query ("Give me the current
town") is paired with an auxiliary sample about an
alarm, the closest class shifts from "Weather/Find"
to "Alarm/Snooze Alarm". This shift significantly
diverges from the behavior observed when an or-
acle sample is combined with the same auxiliary,
where the classification remains "Weather/Find". In
contrast, when an ID sample is combined with an

auxiliary sample, the resulting classification closely
aligns with that of an oracle sample paired with the
same auxiliary. This consistent behavior between
ID + auxiliary and oracle + auxiliary pairs sharply
contrasts with the differing behavior seen in OOD
+ auxiliary and oracle + auxiliary pairs, which is
a crucial element in distinguishing OOD samples
from ID samples.

Figure 4 quantitatively demonstrates CED’s ef-
fectiveness, complementing the qualitative exam-
ples. Normalized OOD scores show that CED en-
hances the distinction between ID and OOD sam-
ples. For example, without CED, the OOD score
reaches 3.23 times the ID score, whereas with CED,
it amplifies to 5.74 times. This significant increase
underscores CED’s enhanced capability in OOD
detection.

4.4 Ablation Study

In Table 3, we conduct an ablation study on the
AGNews dataset using RoBERTa to assess the im-
pact of our sample selection strategy in CED. Ran-
dom oracle selection significantly lowers perfor-
mance, highlighting the importance of strategic or-
acle choice. Randomizing both oracle and auxiliary
selections leads to the poorest results, emphasizing
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Sample Type Query Example Closest Class

OOD Give me the current town. Weather/Find
OOD + Auxiliary Give me the current town. Snooze my alarm for fifteen minutes. Alarm/Snooze Alarm
Oracle + Auxiliary Give me the current weather in provo. Snooze my alarm for fifteen

minutes.

Weather/Find

ID What is the chance of severe weather? Weather/Find
ID + Auxiliary What is the chance of severe weather? Show all of today’s alarms. Weather/Find
Oracle + Auxiliary What is the chance of snow? Show all of today’s alarms. Weather/Find

Table 2: Examples of test samples and selected oracle, auxiliary samples from ROSTD dataset.

Method AUC↑ FPR↓
Rand. Oracle 0.6695 0.8442
Rand. Aux. 0.7334 0.7667
Rand. Oracle & Rand. Aux. 0.6672 0.8500
In-class Rand. Oracle 0.6693 0.8436
In-class Rand. Oracle & Rand. Aux. 0.6670 0.8489
Position Permutation 0.7351 0.7603
CED 0.7357 0.7600

Table 3: Ablation study for AG-News Dataset. Rand.
refers to random, Aux. refers to auxiliary.

Figure 4: Comparison of MD scores for ID and OOD
datasets on ROSTD. Unlike the baseline, CED enhances
the difference between OOD and ID scores; therefore,
CED shows superior performance.

the need for careful selection of both. In-class ran-
dom oracle selection, where oracles are randomly
chosen within the target’s closest class, also un-
derperforms. This suggests that class similarity
alone is insufficient, possibly due to poorly clus-
tered embeddings in pre-trained models. Position
permutation, whether the auxiliary is placed before
or after the target sample, has minimal impact, in-
dicating that sample order is less critical. These
findings emphasize the sample selection procedure
for CED’s effectiveness.

4.5 Sensitivity Analysis

Figure 5 shows the sensitivity analysis of
KNNpre+CED applied to RoBERTa, with respect
to the number of oracle (M) and auxiliary (N) sam-

Figure 5: Performance analysis of KNNpre+CED with
varying oracle auxiliary parameters M and N on Snips
dataset. The surface plots show AUROC (left) and
FPR95 (right) scores.

ples on the Snips dataset. The gray surface repre-
sents the baseline performance of KNNpre without
CED, which remains constant across all M and N
values. Both AUROC and FPR95 plots demon-
strate improvement as M and N increase, with peak
performance at larger values. The red surface, rep-
resenting KNNpre+CED, consistently outperforms
the baseline KNNpre (gray surface) across all pa-
rameter combinations. These results indicate that
CED effectively leverages additional contextual in-
formation through oracle and auxiliary samples to
enhance OOD detection.

4.6 Hallucination Detection

We extend CED to generative tasks, focusing on
detecting hallucinations in text generated by LLMs.
Hallucinations occur when a model generates in-
formation that is not grounded in the input data or
factual reality, which can be approached as a clas-
sification problem. By framing hallucination detec-
tion as an OOD detection task, we demonstrate that
CED can be effectively adapted to mitigate these
issues, extending its utility beyond discriminative
tasks to generative contexts as well.
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Sentence Level AUC↑ Passage Level AUC↑ Sentence Level Corr↑ Passage Level Corr↑

Baselines GPT-J Llama2 OPT-7B GPT-J Llama2 OPT-7B GPT-J Llama2 OPT-7B GPT-J Llama2 OPT-7B

PE-max 0.7497 0.6851 0.7263 0.8875 0.8400 0.8851 0.0839 0.2032 0.0573 0.2660 0.2561 0.2180
PE-min 0.7044 0.5878 0.7228 0.7595 0.7587 0.8075 -0.0316 0.0152 0.0601 -0.0645 0.0928 0.0823
PP-max 0.7074 0.5872 0.7302 0.7585 0.7543 0.8100 -0.0467 0.0514 0.0732 -0.0672 0.0837 0.0943
PP-min 0.7413 0.6025 0.7121 0.8526 0.7969 0.8384 0.2057 0.1842 0.1808 0.2454 0.2231 0.1191
SCG-MQAG 0.7873 0.6401 0.7593 0.8827 0.8196 0.8594 0.2306 0.1822 0.2151 0.3145 0.2278 0.2993
SCG-NG 0.7549 0.5365 0.7490 0.8579 0.7155 0.8340 0.1770 0.0590 0.1167 0.2222 0.0785 0.1021
SCG-BS 0.7424 0.6178 0.6594 0.8165 0.7631 0.7597 0.0745 0.1268 -0.0563 0.1288 0.1447 -0.0730
SCG-NLI 0.8680 0.7644 0.8103 0.9384 0.8897 0.9096 0.4087 0.3809 0.3312 0.4217 0.4389 0.4091
GPT4-HDM 0.7843 0.6583 0.7972 0.9183 0.8265 0.9196 0.1096 0.0086 0.1678 0.2539 0.1876 0.2372
CED 0.8816 0.7988 0.9097 0.9661 0.9359 0.9407 0.4789 0.4736 0.5135 0.5397 0.5124 0.4848

Table 4: Hallucination detection task for diverse datasets and evaluation metrics. For generated text from GPT-J,
Llama2, and OPT-7B, our CED methods consistently show superior performance.

4.6.1 Experimental Settings

We used the HELM benchmark (Su et al., 2024)
to detect hallucinations in text generated by LLMs,
specifically GPT-J (Wang and Komatsuzaki, 2021),
Llama2-7B (Touvron et al., 2023), and OPT-
7B (Zhang et al., 2022). HELM involves prompt-
based text generation using articles from the
WikiText-103 corpus (Merity et al., 2016), with
generated sentences manually labeled as halluci-
natory or non-hallucinatory. We evaluate perfor-
mance using Area Under the Curve (AUC) and
Pearson correlation coefficient, measured per sen-
tence and passage. CED is implemented similarly
to the classification task, with oracle and auxiliary
samples selected at the paragraph level using the
Wiki articles (Su et al., 2024). We compare the
performance of CED against various training-free
baselines. Detailed experimental settings are pro-
vided in Appendix B.

4.6.2 Comparison with other Baselines

As shown in Table 4, CED achieves the highest
sentence-level and passage-level AUC scores, as
well as the highest correlation coefficients. Com-
pared to the best-performing baseline, SCG-NLI,
CED shows significant improvements in all met-
rics. Notably, CED demonstrates substantially
better performance compared to PP and PE base-
lines, which rely on logit values for hallucination
detection. This suggests that leveraging contex-
tual embeddings is significantly more effective
than using logit-based methods. By strategically
combining oracle and auxiliary samples, CED en-
hances the distinction between hallucinatory and
non-hallucinatory text, leading to superior perfor-
mance compared to other training-free methods.

Results highlight the importance of exploiting the
intrinsic knowledge in pre-trained models and the
relational patterns in the embeddings for accurate
hallucination detection, even without additional
training. Appendix F.2 provides additional qualita-
tive analysis for the hallucination task.

5 Conclusion

With the recent advances and wide application of
PLMs, the reliability of PLM on diverse tasks is
crucial. However, current PLMs are vulnerable to
detecting OOD classes or hallucinated text. In this
study, we propose a novel OOD detection method,
CED, that effectively harnesses the inherent rela-
tional patterns in pre-trained models. First, we
present theoretical findings that certain combina-
tions of auxiliary and oracle samples enhance OOD
detection performance. Especially, we verify that
CED, with a certain sample selection strategy, cap-
tures the hard OOD dataset. Second, we imple-
ment these theoretical findings into a training-free
method called CED. Third, we extensively ver-
ify the superiority of CED on both discriminative
and generative tasks across diverse datasets. Our
method is plug-and-play and compatible with vari-
ous OOD detection methods and PLM backbones.

Limitations

In this study, we propose a new training-free
method for OOD detection in both discriminative
and generative tasks. To validate the method, we
present extensive experimental results on diverse
tasks, datasets, and backbones. However, access
to GPT-4o embeddings was not available, so we
could not provide compatibility results between
CED and GPT-4o. Additionally, further valida-
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tion with real-world datasets from various domains,
such as medical and engineering, is required. There
is also some potential risk in this research, as we
validated the effectiveness of our model only on En-
glish datasets. Further analysis of diverse language
datasets is necessary for future work.
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A Details of Dataset

We conducted experiments on Banking77,
CLINC150, ROSTD, SNIPS, AGNews, News
Categories and HELM dataset. Details of each
dataset are as follows:
Banking77 (Casanueva et al., 2020) is a fine-
grained intent classification dataset in the banking
domain, consisting of 77 intent classes, with 50
classes used as ID classes and the remaining 22
as OOD classes. Banking77 includes 9,003 user
queries for training, 1,000 for validation, and 3,080
for testing.
CLINC150 (Larson et al., 2019) is designed for
OOD intent detection, consisting of 150 intent
classes. CLINC150 contains 15,000 training in-
stances, 3,000 validation instances, and 4,500 test-
ing instances of ID data, respectively. Additionally,
CLINC150 includes 1,000 OOD test instances.
ROSTD (Gangal et al., 2020) is a large-scale in-
tent classification dataset consisting of 12 intent
classes. ROSTD contains 30,521, 4,181, and 8,621
samples for the training, validation, and testing,
respectively.
SNIPS (Coucke et al., 2018) contains annotated
utterances from diverse domains. SNIPS includes
7 intent classes, with 5 classes used as ID classes
and the remaining 2 classes as OOD classes. We
obtained 9,361 training samples, 500 validation
samples, 513 testing samples, and 187 OOD testing
samples.
AGNews (Del Corso et al., 2005) consists of 4
classes such as “World”, “Sports”, “Business”, and
“Sci/Tech”. We split the AGNews dataset into
115,778 samples for training, 3,994 samples for
validation, and 3,993 samples for testing. For the
OOD detection, we used the 3,600 samples as OOD
test samples.
News Categories (NC) (Misra and Grover, 2021)
is one of the largest news datasets. We leveraged
5 classes from the News Category as ID data, with
68,859 samples used for training, 8,617 samples
for validation, and 8,684 samples for testing. We
used the remaining classes as OOD data.
HELM Dataset (Su et al., 2024) The number
of sentences generated and the percentage of sen-
tences labeled as hallucinatory/non-hallucinatory
for each model are presented below: GPT-J: Gen-
erated 572 sentences from 208 paragraphs (172
hallucinations, 400 non-hallucinations). Llama2:
Generated 565 sentences from 207 paragraphs (243
hallucinations, 322 non-hallucinations). OPT-7B:

Generated 566 sentences from 201 paragraphs (181
hallucinations, 385 non-hallucinations).

B Experimental Details for Hallucination
Detection

The experimental settings for hallucination detec-
tion are adopted from (Su et al., 2024). Applying
CED to the hallucination detection task follows the
same procedure as for classification tasks, with the
Mahalanobis distance (MD) score used as the dis-
tance method. There are two key difference from
the classification tasks. First, instead of using the
last token embedding, we used the last layer mean
token embedding, following the setup from (Su
et al., 2024). Second, the oracle and auxiliary sam-
ples were selected not from the ID train data, but
from the Wiki articles (Su et al., 2024). This was
done to avoid the risk of introducing hallucinations
through concatenation, as the training data may
contain hallucinations.

For experiments, we employed three LLMs,
GPT-J (Wang and Komatsuzaki, 2021), Llama2-
7B (Touvron et al., 2023), and OPT-7B (Zhang
et al., 2022). We compared the performance of hal-
lucination detection using the following training-
free baselines, ensuring a fair comparison with
CED:
Predictive Probability (PP) (Manakul et al.,
2023) Detects hallucinations based on the prob-
ability of tokens generated by the language model.
Predictive Entropy (PE) (Kadavath et al., 2022)
Detects hallucinations by evaluating the uncertainty
in the output distribution of the language model.
SelfCheckGPT (SCG) (Manakul et al., 2023)
Detects hallucinations based on the consistency of
the model’s responses across similar prompts.
GPT4-HDM (Li et al., 2023) Uses GPT-4 to eval-
uate the outputs of other language models to deter-
mine if hallucination is present.

C Proofs

C.1 Proof of Proposition
Proposition 1 (OOD score function for concate-
nated text with attention mechanism). Given two
sequences S1 ∈ Rn×d and S2 ∈ Rm×d, the at-
tention mechanism applied to the concatenated se-
quence S = Concat(S1, S2) ∈ R(n+m)×d can be
interpreted as a linear interpolation of the attention
mechanisms applied to each sequence separately.
Consider x̃ta = λxt+(1−λ)xa where a target sen-
tence xt ∈ S1 and an auxiliary sentence xa ∈ S2
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and λ ∈ (0, 1). This x̃ta represents a mixed sample
formed by a linear interpolation of xt from S1 and
xa from S2. Additionally, let a pre-trained model
f(·) and base OOD score function h(·) be twice-
differentiable functions. The base OOD score func-
tion of the mixed sample, h(f(x̃ta)), can be written
as:

h(f(x̃ta)) = h(f(xt))

+
3∑

l=1

ωl(xt, xa) + φt(λ)(λ− 1)2,

where limλ→1 φt(λ) = 0, and ωl(xt, xa) are de-
fined as:

ω1(xt, xa) = (λ− 1)(xt − xa)
T f ′(xt)h′(f(xt)),

ω2(xt, xa) =
(λ− 1)2

2
(xt − xa)

T f ′′(xt)(xt − xa)

· h′(f(xt)),

ω3(xt, xa) =
(λ− 1)2

2
(xt − xa)

T f ′(xt)

· (xt − xa)
T f ′(xt)h′′(f(xt)).

Proof of Proposition. We will first consider the
self-attention mechanism for the concatenated se-
quence S:

Attn(SWq,SWk,SWv)

= softmax(SWq · (SWk)
T )SWv

= softmax(Concat(S1Wq, S2Wq)·

Concat(S1Wk, S2Wk)
T )

[
S1Wv

S2Wv

]

=

[
λ(S1)S1Wv + (1− λ(S1))S2Wv

(1− λ(S2))S1Wv + λ(S2)S2Wv

]
,

where λ(S1) and λ(S2) represent the summation
of normalized attention weights on the attention
of sequences S1 and S2, respectively. These are
defined as:

λ(S1) =

∑
exp(A11)∑

exp(A11) +
∑

exp(A12)
,

λ(S2) =

∑
exp(A22)∑

exp(A21) +
∑

exp(A22)
,

where Aij = SiWqWk
TST

j , for i, j ∈ {1, 2}

Next, we consider the base OOD score function
for the mixed sample x̃ta. Let ψt(λ) = h(f(x̃ta)),
which is a modified function of h(f(x̃ta)) with
λ as an input. Following the approach proposed
in (Lee et al., 2024), we use a second-order Taylor
approximation to approximate ψt(λ):

ψt(λ) = ψt(1) + ψ′
t(1)(λ− 1)

+
1

2
ψ′′
t (1)(λ− 1)2 + φt(λ)(λ− 1)2,

where limλ→1 φt(λ) = 0.
First, we find ψ′

t(λ):

ψ′
t(λ) =

∂x̃ta
∂λ

∂f(x̃ta)

∂x̃ta

∂h(f(x̃ta))

∂f(x̃ta)

= (xt − xa)
T f ′(x̃ta)h′(f(x̃ta)).

Next, we find ψ′′
t (λ):

ψ′′
t (λ) = (xt − xa)

T f ′′(x̃ta)(xt − xa)h
′(f(x̃ta))

+ (xt − xa)
T f ′(x̃ta)

· (xt − xa)
T f ′(x̃ta)h′′(f(x̃ta)).

When λ = 1:

ψ′
t(1) = (xt − xa)

T f ′(xt)h′(f(xt)),

ψ′′
t (1) = (xt − xa)

T f ′′(xt)(xt − xa)h
′(f(xt))

+ (xt − xa)
T f ′(xt)

· (xt − xa)
T f ′(xt)h′′(f(xt)).

Combining these results, we derive the desired
equation:

h(f(x̃ta)) = h(f(xt))

+
3∑

l=1

ωl(xt, xa) + φt(λ)(λ− 1)2.

C.2 Proof of Theorem 1
Theorem 1. Let h(·) and f(x) = wTx+ b repre-
sent the Mahalanobis distance-based OOD score
function and a linear function, respectively. Where
w, x ∈ Rd and b ∈ R. We define f(xt)− µID = ϵ,
f(xt) − f(xo) = dto, f(xt) − f(xa) = dta,
µID as the closest mean of the class embeddings
with f(xt). Given hard OOD target xt, and
ϵ > (2 +

√
2)dto, the CED Score(xt) is greater

than h(f(xt)), when an auxiliary sample satisfies
condition:

dta < 0 and

dta <
(3 + 2

√
2 + λ2 − 6λ− 2

√
2λ)dto

2λ(λ− 1)
,
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where constant 0 < λ < 1 and dto is a positive
value close to zero.
Proof of Theorem 1. Under the assumption that
f(x) is a linear model wTx, where w, x ∈
Rd, Mahalanobis score h(x) can be expressed as
h(f(x)) = (f(x) − µID)

TΣ−1
ID (f(x) − µID) =

1
σID

(f(x)− µID)
2, f ′(x) = w, f ′′(x) = 0, ω2 = 0,

h′(f(x)) = 2
σID

(wTx−µID), h
′′(f(x)) = 2

σID
. µID

and σID denote a centroid and covariance of the rep-
resentations belonging to the closest class with the
target sample representation. For simplicity, we
assume α = β = 1 and consider a single oracle
and an auxiliary sample. Under these assumptions,
we can rewrite our score function as follows:

h(f(xt))− h(f(xo)) + (h(f(xta))− h(f(xoa))).
(C.1)

By utilizing Proposition 1, we can rewrite Equa-
tion C.1 as follows:

h(f(xt))− h(f(xo)) + h(f(xt))− h(f(xo))

+ (ω1(xt, xa)− ω1(xo, xa))

+ (ω3(xt, xa)− ω3(xo, xa)).

(C.2)

According to our assumption, ω2 = 0 since
f ′′(x) = 0. In Equation C.2, the portion of the
equation, excluding h(f(xt)), represents how our
methodology calibrates the score based solely on
the distance-based metric:

− h(f(xo)) + h(f(xt))− h(f(xo))

+ (ω1(xt, xa)− ω1(xo, xa))

+ (ω3(xt, xa)− ω3(xo, xa))

(C.3)

Let f(xt) − µID = ϵ, f(xt) − f(xo) = dto, and
f(xt)− f(xa) = dta

h(f(xt))− 2h(f(xo))

= h(wTxt)− 2h(wTxo)

=
1

σID
[(wTxt − µID)

2 − 2(wTxo − µID)
2]

=
1

σID
[ϵ2 − 2(ϵ− dto)

2] (C.4)

ω1(xt, xa)− ω1(xo, xa)

= (λ− 1)(xt − xa)
T f ′(xt)h′(f(xt))

− (λ− 1)(xo − xa)
T f ′(xo)h′(f(xo))

= (λ− 1)(xt − xa)
Tw

2

σID
(wTxt − µID)

− (λ− 1)(xo − xa)
Tw

2

σID
(wTxo − µID)

= (λ− 1)(f(xt)− f(xa))
2

σID
(f(xt)− µID)

− (λ− 1)(f(xo)− f(xa))
2

σID
(f(xo)− µID)

=
2(λ− 1)

σID
[dta · ϵ− (dta − dto)(ϵ− dto)]

=
2(λ− 1)

σID
[dtadto − d2to + dtoϵ] (C.5)

ω3(xt, xa)− ω3(xo, xa)

=
(λ− 1)2

2
(xt − xa)

Tw(xt − xa)
Tw

2

σID

− (λ− 1)2

2
(xo − xa)

Tw(xo − xa)
Tw

2

σID

=
(λ− 1)2

σID
[d2ta − (dta − dto)

2]

=
(λ− 1)2

σID
[2dtadto − d2to]. (C.6)

Then, we rewrite Equation C.3 as a sum of Equa-
tion C.4, C.5 and C.6:

1

σID
[ϵ2 − 2(ϵ− dto)

2] +
2(λ− 1)

σID
[dtadto − d2to

+ dtoϵ] +
(λ− 1)2

σID
[2dtadto − d2to]. (C.7)

The above expression must be positive when the
target sample is a hard OOD sample to achieve a
higher OOD score than the conventional distance-
based OOD score. Equation C.4 is must be negative
because h(f(xt)) < h(f((xo)):

1

σID
[ϵ2 − 2(ϵ− dto)

2] < 0

The condition of relation between ϵ and dto is

ϵ < (2−
√
2)dto or ϵ > (2 +

√
2)dto

Equation C.7 can be rewritten as:

− ϵ2 + 4ϵdto − 2d2to
(
1 + (λ− 1) + (λ− 1)2

)

+ 2ϵdto(λ− 1)

+ 2dtadto
(
(λ− 1) + (λ− 1)2

)
> 0 (C.8)
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When ϵ > (2 +
√
2)dto and dto is a positive value

close to zero, there exists an auxiliary sample that
satisfies Equation C.8 if:

dta < 0 and

dta <
(3 + 2

√
2 + λ2 − 6λ− 2

√
2λ)dto

2λ(λ− 1)
,

D Validation of methodology using
synthetic datasets

To complement our 1D toy experiment and further
validate our theoretical analysis, we conducted ex-
periments using 2D synthetic data generated from
three Gaussian distributions. A linear model was
trained on two of these distributions, forming the
decision boundary, as shown in Figure 6. The third
Gaussian distribution, positioned between the two
learned classes, served as the OOD data. OOD data
clusters locate closely to the ID data, posing a more
challenging scenario.

The target OOD sample is shown in pink, the
oracle sample in green, and auxiliary samples that
satisfy the positive CED score condition are in or-
ange. Consistent with our theoretical analysis, aux-
iliary samples that improve OOD detection tend
to be positioned opposite the oracle relative to the
target. Auxiliary samples located farther from the
target, while still satisfying the theoretical condi-
tions, result in higher CED scores, confirming the
findings from our 1D experiment.

E Sensitivity Analysis

E.1 Hyperparameter Analysis
We validate the sensitivity of CED score to scal-
ing parameters α and β on CLINC150 and News
Category datasets for RoBERTa and LLaMA-3 8B
models, as shown in Figure 7. The analysis covers
FLaTSpre+CED, KNNpre+CED, and MDpre+CED
methods. Across all α and β values, CED con-
sistently outperforms baseline methods for both
AUROC and FPR95 metrics. This stability across
parameter ranges demonstrates CED’s robustness
and reliability in various settings.

F Additional Qualitative Analysis

F.1 Case Study for OOD Detection
Additional case studies are shown in Table 5, 6.
Across the Banking77 and CLINC150 datasets, we
observe that combining OOD queries with auxiliary

samples often leads to significant shifts in class
predictions, unlike the more stable classifications
seen when ID or oracle samples are combined with
the same auxiliary. This pattern highlights a key
distinction in how OOD and ID samples interact
with auxiliary information, helping to effectively
differentiate between the two.

F.2 Case Study for Hallucination Detection
Each of the three boxes in Table 7 labeled Halluci-
nation, Oracle, and Auxiliary represents the sam-
ples used to compute the CED score. In this case,
CED resulted in a 15.3% increase in the OOD score
compared to using the MD score as hallucination
detection method. The oracle sample shares the
British nationality with the hallucination sample.
The auxiliary sample, introduces a broader, less
relevant context. Together, these carefully chosen
samples highlight contrasts that are not captured by
the MD score alone, contributing to the improved
OOD detection performance.
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λ = 0.2 λ = 0.5 λ = 0.8

Figure 6: Theoretical analysis of CED under different λ values. The target OOD sample is shown in pink, and the
oracle sample is shown in green. The results remain consistent regardless of the λ value.

(a) FLatSpre+CED (CLINC150) (b) KNNpre+CED (CLINC150) (c) MDpre+CED (CLINC150)

(d) FLatSpre+CED (News Category) (e) KNNpre+CED (News Category) (f) MDpre+CED (News Category)

Figure 7: Sensitivity analysis on CLINC150 and News Category datasets for RoBERTa and LLaMA-3

Sample Type Query Example Closest Class

OOD I need to make a transfer, what will the fee be? Failed Transfer
OOD + Auxiliary I need to make a transfer, what will the fee be? I’m on vacation in Europe

but I desperately need to change my PIN. Can I do this from abroad?

Cancel Transfer

Oracle + Auxiliary My transfer failed, why? I’m on vacation in Europe but I desperately need to

change my PIN. Can I do this from abroad?

Failed Transfer

ID I ordered a card but it has not arrived. Help please! Card arrival
ID + Auxiliary I ordered a card but it has not arrived. Help please! I am on vacation in Spain

and need to change my pin.

Change pin

Oracle + Auxiliary I have been waiting over a week. Is the card still coming? I am on vacation
in Spain and need to change my pin.

Change pin

Table 5: Examples of OOD/ID, Oracle, Auxiliary, and Combined Samples from the BANKING77 dataset.
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Sample Type Query Example Closest Class

OOD What are the highest-rated android phones. Restaurant Suggestion
OOD + Auxiliary What are the highest-rated android phones. USD to the Euro exchanges at

what right now

Transactions

Oracle + Auxiliary What are the best restaurants. USD to the Euro exchanges at what right now Restaurant Suggestion
ID What’s the spanish word for pasta Spelling
ID + Auxiliary What’s the spanish word for pasta. I must transfer ten dollars from my bank

of america account to my capital one account.

Transfer

Oracle + Auxiliary What’s the right spelling of rambunctious. I must transfer ten dollars from
my bank of america account to my capital one account.

Transfer

Table 6: Examples of OOD/ID, Oracle, Auxiliary, and Combined Samples from the CLINC150 dataset.

Sample Type Content

Hallucination This is a Wikipedia passage about Phillips ’ Sound Recording Services. Phillips
’ Sound Recording Services was a studio in the house of Percy Francis Phillips
( 1896 – 1984 ) and his family at 38 Kensington , Kensington , Liverpool ,
England ." ’It was the first studio in the world to be equipped with a recording
console, and the first to use a microphone.

Oracle This is a Wikipedia passage about O. G. S. Crawford. Osbert Guy Stanhope
Crawford ( 28 October 1886 – 28 November 1957 ) , better known as O.’ Craw-
ford , was a British archaeologist who specialised in the study of prehistoric
Britain and the archaeology of Sudan.

Auxiliary This is a Wikipedia passage about Backmasking. Backmasking is a recording
technique in which a sound or message is recorded backward onto a track that
is meant to be played forward . Backmasking is a deliberate process , whereas
a message found through phonetic reversal may be unintentional.

Table 7: Examples of Hallucination, Oracle, Auxiliary sample.
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