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Abstract

Recently, there has been significant interest
in replacing the reward model in Reinforce-
ment Learning with Human Feedback (RLHF)
methods for Large Language Models (LLMs),
such as Direct Preference Optimization (DPO)
and its variants. These approaches commonly
use a binary cross-entropy mechanism on pair-
wise samples, i.e., minimizing and maximiz-
ing the loss based on preferred or dis-preferred
responses, respectively. However, while this
training strategy omits the reward model, it
also overlooks the varying preference degrees
within different responses. We hypothesize
that this is a key factor hindering LLMs from
sufficiently understanding human preferences.
To address this problem, we propose a novel
Self-supervised Preference Optimization (SPO)
framework, which constructs a self-supervised
preference degree loss combined with the align-
ment loss, thereby helping LLMs improve their
ability to understand the degree of preference.
Extensive experiments are conducted on two
widely used datasets of different tasks. The
results demonstrate that SPO can be seam-
lessly integrated with existing preference opti-
mization methods and significantly boost their
performance to achieve state-of-the-art perfor-
mance. We also conduct detailed analyses to
offer comprehensive insights into SPO, which
verifies its effectiveness. The code is available
at https://github.com/lijian16/SPO.

1 Introduction

The alignment of Large Language Models (LLMs)
with human preferences is paramount, as it ensures
that the outputs of LLMs are congruent with human
values and ethical standards (Bohm et al., 2019;
Perez et al., 2019; Ziegler et al., 2019). Through
meticulous tuning and ongoing learning of human
preferences, LLMs can more accurately meet user
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needs while avoiding the generation of harmful or
biased content (Stiennon et al., 2020b; Lee et al.,
2024). Effective preference alignment not only en-
hances the applicability and safety of LLMs but
also constitutes a critical step towards the responsi-
ble utilization of artificial intelligence.

To achieve human preference alignment of
LLMs, a variety of methods have been developed.
One prominent approach is Reinforcement Learn-
ing from Human Feedback (RLHF) (Stiennon et al.,
2020b; Bai et al., 2022), such as Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017),
REINFORCE (Williams, 1992) and their variants
(Ramamurthy et al., 2023), which involve train-
ing reward models to optimize for objectives that
are iteratively refined based on human feedback.
However, these methods introduce increased com-
plexity into the training process, involving training
multiple models and sampling from the LLM in
the loop of training (Ethayarajh et al., 2024; Yuan
et al., 2024). To streamline this process, recent
works have proposed alternative solutions to rein-
forcement learning (Liu et al., 2023a; Zhao et al.,
2023; Ethayarajh et al., 2024; Azar et al., 2023).
DPO (Rafailov et al., 2023) and its variants (Wang
et al., 2023; Song et al., 2024; Ethayarajh et al.,
2024; Azar et al., 2024; Amini et al., 2024; Meng
et al., 2024; Yu et al., 2024) directly leverage pair-
wise responses to imbue the model with preference
knowledge without a reward function. These meth-
ods achieve preference alignment by minimizing or
maximizing the loss between each token in the lan-
guage model’s output and the tokens that are either
preferred or not preferred. However, this train-
ing strategy overlooks a crucial aspect of a reward
model: its ability to differentiate between varying
degrees of human preferences in responses. We
hypothesize that this is a key factor that prevents
LLMs from fully understanding human preferences
in those RLHF methods without a reward model.

To address this issue, we propose a novel Self-
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Figure 1: The architecture of our proposed Self-supervised Preference Optimization (SPO) method involves employ-
ing an extractor to identify key content within the outputs of LLMs. Subsequently, self-supervised modules dedicated
to preference and dis-preference randomly remove this content and undertake classification tasks. Ultimately, the
loss derived from the classification is integrated with the alignment loss to jointly optimize the LLM.

supervised Preference Optimization (SPO) scheme
to help LLMs learn the degree of human preference
and align LLMs with human preferences, simul-
taneously. The proposed method is illustrated in
Figure 1. Specifically, we design a novel auxiliary
self-supervised task that selectively removes key
content in LLM outputs to generate responses with
varying degrees of preference. During the train-
ing process, we employ a keyword extractor (Rose
et al., 2010a) on the outputs of LLMs to extract key
content. By removing different amounts of the con-
tent, we construct responses with different degrees
of preference. These responses are then fed into
a self-supervised module for classification and the
loss is integrated into the primary preference align-
ment loss (based on existing alignment methods)
to jointly optimize LLMs. We observe that the key
content within the LLMSs’ outputs is closely associ-
ated with preference information, as described in
Section 4. By gradually removing the content, we
can effectively construct varying degrees of prefer-
ences. On the other hand, this method allows for
the generation of multiple responses from a single
output of LLMs, obviating the need for additional
data collection and annotation efforts. We conduct
comprehensive experiments on two widely used
datasets of different tasks, i.e., Antropic HH (Bai
et al., 2022) and TL;DR summarization (Volske
et al., 2017). The results demonstrate that our pro-
posed SPO can significantly enhance the perfor-
mance of various existing alignment methods and
achieve state-of-the-art results. Additionally, we
conduct detailed analyses of multiple aspects and
modules of our proposed SPO to provide compre-
hensive insights and verify its effectiveness.

The contributions of this work can be summa-

rized as follows:

* To our knowledge, we are the first to high-
light a novel issue in direct human preference
alignment methods: the binary training mech-
anism in these methods prevents LLMs from
distinguishing varying degrees of preference,
thereby limiting their performance.

* We innovatively propose a self-supervised
preference optimization framework that can
enhance human preference alignment perfor-
mance without increasing any annotation or
inference costs. This framework offers a novel
approach to enhancing the performance of di-
rect human preference alignment methods.

* Extensive experiments demonstrate that en-
hancing the ability of LLMs to distinguish
degrees of preference can help improve perfor-
mance across various tasks. SPO can be seam-
lessly integrated into existing alignment meth-
ods, significantly boosting them and achiev-
ing state-of-the-art results on two widely used
datasets for different tasks.

2 Method

In this section, we initially examine the pipeline of
methods alternative to RLHF, with a primary focus
on pairwise approaches that do not incorporate a
reward model. Subsequently, we present the Self-
supervised Preference Optimization (SPO), aimed
at assisting LLMs in learning preference degrees at
a fine-grained level.

2.1 Preliminaries

Methods alternative to RLHF generally avoid the
process of learning rewards and consist of two
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stages: supervised fine-tuning (SFT) and prefer-
ence optimization. These stages have seen exten-
sive application in later research (Zhao et al., 2023;
Ethayarajh et al., 2024).

SFT phase: To tap into the capabilities of LLMs
for particular tasks (e.g., summarization and dia-
logue), it is common practice to fine-tune a gener-
ically pre-trained LLLM using supervised learning
on a carefully curated dataset.

Preference optimization phase: The RLHF
methods without a reward model typically start by
gathering a pair of preferred y,, and dispreferred
y; responses for each prompt x. In the optimiza-
tion process, these methods aim to make the LLM
mg (initialized from the SFT model) produce a re-
sponse that aligns more closely with v, and less
so with y;. To achieve this, the prompt z is con-
catenated with both y,, and y; separately as inputs,
which are then fed into my to generate predictions.
These predictions are subsequently assessed by cal-
culating the loss between them and y,, as well as
y;. This loss is typically measured using the cross-
entropy between each predicted token and its corre-
sponding target token in the responses, as follows:

1 ) )
mo(yelz) = — 22015 log Po(yV | y{=) (1)

€

whre ¢ € {w,l} and K. denotes the number of
tokens in y., and Pg(yg) |z, y=") signifies the pre-
dicted probability of the i* target token in y.. The
RLHF approach without a reward model primarily
focuses on decreasing and increasing 7y (y,, |x) and
mo(y|x), respectively. Additionally, these methods
employ a reference model 7, (e.g., a frozen SFT
model) to mitigate deviation throughout the op-
timization process. Here, inputs are concurrently
provided to 7, s to calculate the corresponding loss
Tref(Ye|z). Based on these losses, such methods
achieve their goal by the following loss function:

‘CDPO(ﬂ-Gv Wref) = _E(Iﬂ,ywvyl)ND
TY(yw|z) TO(y1|x)
1 log — 7=~ = Blog — =
oBlor ke~ P8 sl
(2)

where o (-) denotes a logistic function, such as the
sigmoid function. The parameter /3 regulates the
extent of deviation from m,..r. While the specific
operations employed by these methods vary, their
core focus uniformly centers on 7y (y-|x) (Etha-
yarajh et al., 2024; Azar et al., 2023). A more
comprehensive discussion on alternative methods
to RLHF is presented in Appendix A.

2.2 Self-supervised Preference Optimization

To grasp the degree of preference, we propose a
straightforward Self-supervised Preference Opti-
mization (SPO) method, which consists of prefer-
ence extraction and self-supervised classification.

2.2.1 Preference Extraction and Removing

To facilitate the learning of preference degrees by
LLMs, it is essential to provide them with a series
of responses with different preference levels. To
achieve this objective, existing methods commonly
rely on generating multiple responses through one
or more LLMs, subsequently employing manual ef-
forts to annotate or rank these responses according
to their preference levels (Stiennon et al., 2020a;
Zhao et al., 2023). This process undeniably leads
to an increase in both human labour and training
expenses. To this end, we propose a novel and
simple method for constructing preference data by
extracting and removing key content from predic-
tions of LLMs. From a semantic perspective, a sen-
tence commonly contains key and additional con-
tent, where the former primarily dictates whether
the sentence meets human preferences. Meanwhile,
our experiments (described in Subsection 4.2) re-
veal a close correlation between key content and
preference information, indicating that adjusting
the key content effectively modulates the degree of
preference. Consequently, we try to extract the key
content and gradually remove them to construct
different responses. Specifically, during training,
we decode all tokens predicted by LLMs into the
corresponding text and then employ the Rapid Au-
tomatic Keyword Extraction (RAKE) (Rose et al.,
2010a) to pinpoint the key content within the text.
RAKE is an efficient, unsupervised method for the
extraction of keywords from individual documents.
It operates on a simple premise: keywords are typ-
ically content-bearing phrases that exclude com-
mon stop words and punctuation. The algorithm
segments the document into candidate keywords &
and computes a score Sy, for each as follows:

deg(w)

Sk = Zwek(m

) 3)

where deg(w) is the degree of the word, represent-
ing its co-occurrence with other words within the
candidate keyword, and freq(w) is the frequency
of the word in the document. The candidate key-
words with the highest scores are selected as the
final keywords, providing a compact representation
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of its content suitable for various applications such
as information retrieval systems and text analytics.

Subsequently, we construct responses with dif-
ferent preferences by randomly removing a spec-
ified number of key contents from the predicted
responses. Meanwhile, labels are assigned based
on the number of removals: removing one item re-
sults in a label of 0, two items yield a label of 1, and
so on. In this work, we introduce a self-supervised
classification module with N categories. Each cat-
egory is associated with a specific level of content
removal. During training, categories are randomly
selected to dictate the extent of key content removal
from the predictions. These modified predictions
are then fed into the classification module for pro-
cessing. To ensure a balanced representation of
each category, we intentionally set an equal selec-
tion probability for every category.

2.2.2 Self-Supervised Classification Modules

To enhance LLMs’ understanding of preference de-
grees, we introduce an innovative self-supervised
preference classification module that improves pref-
erence awareness without incurring any additional
labeling costs. Specifically, we first construct sam-
ples (using both preferred and dispreferred ground
truth responses) with different preference degrees
using our method in 2.2.1. The constructed samples
are then fed into the self-supervised preference clas-
sification module to compute the preference clas-
sification loss, which is backpropagated together
with the original DPO loss. The detailed architec-
ture and operational processes of these modules are
outlined below.

After extracting and removing key content from
the predictions, we identify the corresponding to-
kens and hidden states of the remaining content.
To help self-supervised classifier understand pref-
erence better, we propose to augment these hidden
states H = {hy, ha, ..., hr} from the last layer of
LLMs with positional encoding before being fed
into a Multilayer Perceptrons (MLP) (LeCun et al.,
2015), which can be defined as follows:

Hyos = H + P “4)

where Hp,s is the positionally encoded hidden
states. Following (Devlin et al., 2019), the posi-
tional encoding P can be computed as follows:

P —gin (P2
(pos,2i) — 100002i/d (5)
pos
P(pos,2i+1) = CO8 <W>

where pos denotes the position of a token (hidden
state) in the sequence, 7 for the dimension within
the positional encoding, and d as the size of the
encoding vector. Subsequently, the hidden states
Hp,s are fed into a projection layer following the
design of (Chen et al., 2020a; He et al., 2020; Grill
et al., 2020) which outputs prediction probabilities
p for N classes. The classification loss can be
computed as follows:

N

loss = — ) _yilogpi (©)
=1

where y represents the predefined self-supervised
label based on one-hot encoding. Considering the
implementation of two self-supervised modules,
two classification losses are derived and then inte-
grated with the main loss (e.g., Lppo) as follows:

Loss = Lppo +7* (losspref +105Sgisprer) (7)

where 7 is a hyperparamter for scaling the classifi-
cation losses 085y, and 1058 g4;spre s from prefer-
ence and dispreference modules, respectively.

3 Experiment

3.1 Settings

Datasets. In our experiments, two datasets de-
signed for summarization and dialogue tasks are
introduced, and LLMs are optimized using vari-
ous alignment methods on the preference dataset
D = {x(i),yg),yl(i)}fil. For the summarization
task, the input x denotes a forum post from Red-
dit', and the LLMs are tasked with generating a
succinct summary y that captures the essence of
the post. Following prior works (Rafailov et al.,
2023), the Reddit TL;DR dataset (Volske et al.,
2017) along with human preferences gathered by
Stiennon et al. (2020a) is employed. In the dialogue
task, x represents a human query, and LLMs need
to produce an engaging and informative response .
The Antropic HH dataset (Bai et al., 2022) is uti-
lized, containing 170k dialogues between humans
and automated assistants.

Compared Methods. To evaluate the efficacy
of SPO in enhancing preference alignment, we
extensively apply SPO to diverse existing meth-
ods (i.e., DPO (Rafailov et al., 2023), IPO (Azar
et al., 2023), KTO (Ethayarajh et al., 2024)), as
well as across different models, including Mistral-
7B, LLaMA-7/13B and LLaMA3-8B. Furthermore,

"https://reddit.com
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Antropic HH

Base model

DPO  +SPO Incr. IPO +SPO Incr. KTO +SPO Incr.
LLaMA-7B (Touvron et al., 2023)  59.3% 62.1% +2.8% 53.7% 56.4% +2.7% 60.7% 651% +4.4%
LLaMA-13B (Touvron et al., 2023) 64.6% 67.8% +3.2% 53.5% 572% +3.7% 642% 66.6% +2.4%
Mistral-7B (Jiang et al., 2023) 657% 679% +22% 548% 57.7% +29% 645% 68.1% +3.6%
LLaMA-3-8B (Al@Meta, 2024) 684% T71.1% +2.7% 574% 612% +3.8% 69.6% 72.8% +3.2%
Base model TL;DR summarization

DPO +SPO Incr. IPO +SPO Incr. KTO +SPO Incr.
LLaMA-7B (Touvron et al., 2023) 81.0% 83.6% +2.6% 504% 558% +54% 60.8% 654% +4.6%
LLaMA-13B (Touvron et al., 2023) 82.8% 88.6% +5.8% 552% 61.0% +58% 61.0% 658% +4.8%
Mistral-7B (Jiang et al., 2023) 86.6% 902% +3.6% 56.5% 59.7% +3.2% 57.8% 61.0% +3.2%
LLaMA-3-8B (Al@Meta, 2024) 84.8% 88.0% +3.2% 58.6% 612% +2.6% 60.6% 643% +3.7%

Table 1: Comparative evaluation (win rate) of advanced alignment methods and those with our SPO on Antropic

HH (top) and TL;DR summarization (bottom) datasets.

Aligned LLMs beat the baselines from TL;DR summary
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Figure 2: Comparison of win rates with different state-of-the-art methods on TL;DR and Anthropic-HH datasets of
three LLMs, i.e., LLaMA-7B, LLaMA-13B and Mistral-7B.

we also compare SPO with more methods which
are recently published and representative of differ-
ent frameworks for alignment. For example, meth-
ods based on SFT include Preferred SFT (PSFT)
and Conditional SFT (CSFT) (Korbak et al., 2023).
Within the RLHF framework, PPO (Schulman
et al., 2017) is introduced. Additionally, SLiC-HF
(Zhao et al., 2023) and SimPO (Meng et al., 2024)
are presented as alternative approaches to RLHF,
functioning without a reward model. More details
of these methods are described in Section 5.

Implemention. In our experiments, all align-
ment methods are initialized from the SFT model.
For the phase of SFT, a pre-trained LLM is fine-
tuned over 2 epochs with a learning rate of Se-5 and
batch size of 64. For preference optimization, the
SFT model is optimized for 1 epoch with a learn-
ing rate of le-5 and batch size of 32. For SPO, the
classification number N is set to 5 and the weight
v is set to 0.1. The analysis of these hyperparame-
ters is described in Section 4. All experiments are
conducted on 8 NVIDIA A100 GPUs. If it is not

specifically mentioned, the settings of experiments
that appear in this paper refer to this part.

Metric. Following Rafailov et al. (2023), GPT-4
(OpenAl, 2023) is employed to evaluate the gener-
ations of the aligned LLMs, i.e., comparing them
with a baseline to determine which is more aligned
with human preferences. The win rate > of these
comparisons serve as the evaluation metric. For
summarization, we use the reference summaries
in the test set as the baseline, while the preferred
responses within the test split serve as the baseline
for dialogue. The detailed prompts of GPT-4 are
shown in Appendix B.

3.2 Main Result

The results of the proposed SPO applied to exist-
ing alignment methods are shown in Table 1. The
results clearly demonstrate that SPO successfully
improves the performance of all methods across
both datasets. On TL;DR summarization dataset,

The proportion of LLMs answers that GPT-4 prefers over
the baseline preferences.
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(a) Analysis of removing key content on TL;DR
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Figure 3: Analysis of the relationship between key content and preferences on TL;DR and Antropic HH datasets.

we observe an average improvement of 4.04% over
the baseline methods. Notably, the LLaMA-7B
model optimized with DPO+SPO surpasses the
performance of the LLaMA-13B model optimized
with DPO alone. Specifically, while the LLaMA-
13B model optimized with DPO achieves a high
win rate of 82.8% on the TL;DR dataset, the pro-
posed method further enhances this performance,
achieving an impressive 5.8% improvement. For
the Anthropic HH dataset, our SPO also yields sig-
nificant improvements. For instance, the LLaMA-
7B model optimized with DPO+SPO shows a 2.8%
improvement over the DPO baseline, achieving a
win rate of 62.1%. Similarly, the LLaMA-13B
model optimized with DPO+SPO achieves a win
rate of 67.8%, which is a 3.2% improvement over
the DPO baseline. In addition to DPO, other align-
ment methods such as IPO and KTO also benefit
from our SPO. Furthermore, as shown in Figure 2,
comparisons of SPO with other methods demon-
strate its superiority in which SPO outperforms
other methods and achieves state-of-the-art perfor-
mance. Overall, SPO consistently enhances the
performance of various alignment methods across
different datasets and model sizes, demonstrating
its effectiveness and robustness.

To further validate the effectiveness of our pro-
posed method, we conducted additional experi-
ments on two benchmark datasets commonly used
in recent research on RLHF: Alpaca Eval 2.0
(Dubois et al.) and MT-Bench (Zheng et al.). Fol-
lowing the methodology of recent RLHF studies
(Meng et al., 2024; Hong et al.; Zhou et al.), we
trained an RLHF model on the Anthropic Helpful
and Harmless (HH) dataset using Mistral-7B as the
base model and evaluated it on Alpaca Eval 2.0 and
MT-Bench. The results are summarized in Table?2.

The proposed SPO method significantly im-

Alpaca Eval 2.0 MT-Bench

Method ‘ LC Win Rate  Win Rate  Avg. Score
DPO 5.20% 291% 2.98
DPO + SPO 5.65% 3.03% 451

Table 2: Performance analysis on other datasets. To ad-
dress length bias in evaluations, the Length-Controlled
Win Rate (LC win Rate) metric is introduced.

proved performance on both the Alpaca Eval 2.0
and MT-Bench benchmarks. Specifically, it in-
creased the LC win rate by 0.45% and the win
rate by 0.12% on Alpaca Eval 2.0, and boosted
the average score by 0.53 on MT-Bench. These
results validate the effectiveness of our method in
enhancing performance on general tasks.

4 Analysis

4.1 Constructing Self-supervised Responses

Our objective is to inject preference degrees into
LLMs in a simple and efficient manner during the
alignment process. To this end, the removal of spe-
cific content from predictions is proposed to effec-
tively convey preference information. We hypothe-
size that different clauses or sub-words within the
predictions contribute to preference degrees. By se-
lectively removing certain elements, the preference
levels can be altered accordingly. To validate this
hypothesis, two strategies are explored: random
removal and removal of key content. The results,
presented in Table 3, demonstrate that both strate-
gies yield performance improvements, suggesting
that the model has successfully learned to represent
preference levels. Notably, the key content extrac-
tion method outperforms random deletion in iden-
tifying content that significantly influences pref-
erence levels, thereby facilitating the construction
of self-supervised responses with greater prefer-
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ence discrepancies. Of course, we also observe that
such removal operations may compromise the se-
mantic coherence of the responses. However, these
responses are utilized solely as self-supervised clas-
sification signals rather than for direct preference
alignment, with the objective of enabling LLMs to
learn preference degrees. Meanwhile, experimental
results on the HH and TL;DR datasets indicate that
this approach does not introduce negative impacts.

Methods Removal strategies ~ Win rate
DPO - 81.0%
DPO + SPO Random removal 81.6%
DPO + SPO  Key content removal 83.6%

Table 3: Analysis of different removal strategies for
constructing self-supervised responses.

4.2 Analysis of Adjusting Key Content

In this work, we extract key content from LLMs’
predictions and then incrementally remove them
to construct responses with varying preference de-
grees. To demonstrate its rationality, we first train
two reward models initialized by LLaMA-7B on
Antropic HH and TL;DR datasets, respectively, and
further randomly sample 1,000 instances from each
of these datasets. Following this, we extract their
key content and sequentially remove 1-3 key ele-
ments from them to create four subsets with dif-
ferent preference intensities. The reward model is
then employed to compute the average scores for
these sets. The average score and length of each
set are shown in Figure 3. The experimental re-
sults indicate that as the number of key elements
removed increases, the length of preference pairs
gradually decreases. More importantly, the scores
of preferred responses progressively decline, sug-
gesting the preference information is being system-
atically eliminated. Conversely, the scores of dis-
preferred responses exhibit an upward trend, as the
dis-preferred information is being removed. These
findings demonstrate the extracted key content ac-
curately contains preference information and pro-
gressively removing these elements can construct
responses with different preference intensities.

4.3 Analysis of Extracting Methods

To identify an appropriate method for key content
extraction, we investigate various extraction tech-
niques (i.e., YAKE (Campos et al., 2020), RAKE
(Rose et al., 2010b) and PositionRANK (Florescu
and Caragea, 2017)) with DPO+SPO. The experi-

£ LLaMA-7B DPO+SPO

—A— LLaMA-13B DPO+SPO
g1 A | LLaMA-7B DPO
&K—= | LLaMA-13B DPO
s \A\
h

Win rate (%)

2 3 4 5 6 7
Class numbers of SPO

Figure 4: The impact of self-supervised classification
numbers on the performance. LLaMA-7B and 13B with
DPO (+SPO) are trained on TL;DR dataset.

mental results are summarized in Table 5 and ex-
amples of the extracted content are provided in
Appendix C. From the experimental results, we
can see that SPO with RAKE and YAKE achieve
2.6% and 0.6% improvement in DPO, respectively,
while SPO with PositionRank shows a 0.2% de-
crease. From the examples, PositionRank extracts
dispersed and incoherent key content, which likely
makes it difficult for the classification module to
learn preference degrees effectively, even resulting
in a negative impact. YAKE, compared to Posi-
tionRank, extracts more continuous and complete
key content, but it has issues with nested content.
Although there is a 0.6% improvement, it is rela-
tively trivial. These experiments demonstrate the
rationale for using RAKE.

4.4 Self-supervised Classification Number

The classification number N serves as a crucial
hyperparameter within the self-supervised module.
This study evaluates the impact of different [NV on
the performance of LLaMA-7B and 13B on the
TL;DR dataset. As illustrated in Figure 4, employ-
ing various values of NV consistently outperforms
the baseline (i.e., LLaMA-7/13B with DPO), un-
derscoring our method’s efficacy. Specifically, the
LLaMA-13B exhibits optimal performance with
N of 5, whereas further increasing the value of N
negatively affects performance. This trend suggests
that a bigger N complicates the classification task,
thereby hindering effective learning. Similarly, the
LLaMA-7B achieves its peak performance with N
of 6. These findings suggest choosing the number
N around 5 is a favourable option for alignment.

4.5 The Weight of Self-supervised Loss

This study investigates the impact of weights ~
as defined in Equation 7 on the performance of
LLaMA-7/13B using the TL;DR dataset. The find-
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. +SPO +SPO +SPO

Model Method Baseline (Preference) (Dis-preference) (Both)
LLaMA-7B | DPO (Rafailov et al., 2023) 81.0% 82.89% 118 82.2% 112 83.6% 126
LLaMA-7B | KTO (Ethayarajh et al., 2024) | 60.8% 63.0% 122 64.2% 13-4 65.4% 146
LLaMA-13B | DPO (Rafailov et al., 2023) 82.8% 87.29% 144 87.49% 146 88.6% 158

Table 4: Comprehensive analysis of the simultaneous implementation of dual self-supervised classification modules

for preference and dis-preference.

Methods Methods for extracting  Win rate
DPO - 81.0%
DPO + SPO RAKE 83.6%
DPO + SPO YAKE 81.6%
DPO + SPO PositionRank 80.8%

Table 5: Analysis of various methods for extracting key
content from the predictions from LLM:s.

ings, depicted in Figure 5, reveal that excessively
high weights detrimentally affect the performance
of both models. Conversely, lower weights en-
hance the models’ ability to assimilate informa-
tion, thereby improving performance. Specifically,
the LLaMA-7B demonstrates optimal performance
with a weight of 0.1, whereas the LLaMA-13B
achieves its best performance with a weight of 0.2.
These results underscore the importance of care-
fully calibrating the weight of self-supervised loss
to leverage its benefits without compromising the
models’ inherent performance capabilities.

91

~E£- LLaMA-7B DPO+SPO
—A— LLaMA-13B DPO+SPO

LLaMA-7B DPO
A/A\A/ ..... LLaMA-13B DPO

89

%
3

Win rate (%)
% o
z X
=

=)

79

0 0.05 0.10 0.15 0.20 0.25 0.30
The weight of SPO

Figure 5: The impact of the weight v on the perfor-
mance. LLaMA-7B and 13B with DPO (+SPO) are
trained on the TL;DR dataset.

4.6 Analysis of Two Self-supervised Modules

In this work, we introduce two separate modules
for preferred and dis-preferred predictions, respec-
tively. To validate the combined efficacy of the
modules, we additionally assess the impact of uti-
lizing a single module for either preferred or dis-
preferred prediction. As shown in Table 4, the

Accuracy
o e
(=) -

—— Self-supervised module for preference

034 —— Self-supervised module for dis-preference

0 500 1000 1500 2000 2500 3000
Steps

Figure 6: Classification accuracy of self-supervised
modules for preference and dis-preference, in which
Mistral-7B with KTO+SPO is trained on TL;DR dataset.

results indicate that employing either the prefer-
ence or dis-preference module independently en-
hances performance, however, simultaneous uti-
lization of both modules yields a more substan-
tial performance improvement. We consider that
the concurrent application facilitates the sequen-
tial integration of preferred and dis-preferred in-
tensity into LLMs without an excessive number of
classes. Moreover, the merging of the two clas-
sification losses establishes a connection between
preferred and dis-preferred information, enabling
LLMs to learn coherent degree information from
dis-preference to preference.

4.7 Accuracy of Self-supervised Classification

To assess whether the self-supervised modules
function as intended, we evaluate their classifica-
tion accuracy with KTO+SPO for Mistral-7B on
the TL;DR dataset, as shown in Figure 6. Within
the first 1,000 steps, a significant upward trend
in accuracy is observed, demonstrating that self-
supervised modules can learn information related
to preference intensity, thereby achieving precise
classification. Subsequently, the accuracy of both
modules stabilizes at over 90%. This consistently
high performance highlights the modules’ ability
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to effectively capture and classify preference inten-
sity, validating the usefulness of the self-supervised
approach in preference alignment.

5 Related Work
5.1 Aligning LLMs with Human Preferences

Preference alignment commonly begins with train-
ing a reward model on a preference dataset and
further fine-tunes LLMs to maximize the identified
reward by reinforcement learning, such as Proxi-
mal Policy Optimization (PPO) (Schulman et al.,
2017), REINFORCE (Williams, 1992) and their
variants (Ramamurthy et al., 2023). Although these
methods effectively incorporate preference infor-
mation into LLMs, they significantly complicate
the training process in view of training multiple
models and sampling from the LLLM within the
training loop (Ethayarajh et al., 2024; Yuan et al.,
2024). Following this, various methods have been
proposed to streamline this process. For exam-
ple, DPO (Rafailov et al., 2023) bypasses the re-
ward function to optimize LLMs by maximizing
the difference between preferred and dispreferred
responses. KTO (Ethayarajh et al., 2024) stream-
lines the creation of preference pairs by optimizing
the loss computation, eliminating the need for strict
pairing between prompts and their preferred and
dispreferred sequences. RSO (Liu et al., 2023a)
suggests obtaining preference data from the esti-
mated target optimal policy through rejection sam-
pling in an offline manner. SimPO (Meng et al.,
2024) utilizes the average log probability of a se-
quence as an implicit reward and eliminates the
need for a reference model, making it more com-
pute and memory efficient.

While these methods show impressive perfor-
mance, they overlook the degree of preference un-
der a binary cross-entropy mechanism, which limits
LLMs’ ability to fully understand human prefer-
ences. In this work, we introduce a novel SPO
framework to enhance LLMs’ ability to learn hu-
man preference degrees in direct preference opti-
mization methods, thereby improving their under-
standing capabilities of LLMs.

5.2 Self-Supervised Learning

Self-Supervised Learning (SSL) has emerged as a
powerful paradigm for leveraging unlabeled data to
learn useful representations without explicit super-
vision (Liu et al., 2023b; Liang et al., 2023; Yuan
et al., 2023; Zhang et al., 2022). The foundational

work of self-supervised learning can be traced back
to the idea of using auxiliary tasks for which data it-
self provides supervision. Dosovitskiy et al. (2014)
introduces a novel approach where neural networks
were trained to predict parts of the data given other
parts, effectively learning representations without
labelled data. This concept is further explored by
Noroozi and Favaro (2016), who demonstrate that
solving jigsaw puzzles as a pretext task could sig-
nificantly improve feature learning. Following this
line of thought, important self-supervised methods
have emerged like mushrooms after rain and have
had a profound impact on the field of deep learning
research (van den Oord et al., 2018; Chen et al.,
2020b, 2021; Grill et al., 2020; Khosla et al., 2020;
He et al., 2022).

We integrate SSL into RLHF by leveraging self-
supervised auxiliary tasks for the first time to en-
hance the comprehension abilities of LLMs.

6 Conclusion

In this work, we first identify a gap in alterna-
tive methods to RLHF, which overlooks the learn-
ing of preference degrees. To this end, we intro-
duce a novel self-supervised preference optimiza-
tion framework that integrates fine-grained human
preference information into large language mod-
els (LLMs), thereby enhancing the understanding
of human preferences. This approach does not re-
quire additional manual annotation and inference
overhead. The proposed SPO can extract key con-
tent from the prediction of LLMs and selectively
remove the content to construct responses with
varying preference intensity. Subsequently, these
responses are classified by the self-supervised mod-
ules and their losses are integrated with the align-
ment loss to jointly optimize LLMs. Extensive
experiments and analyses fully demonstrate the ef-
fectiveness of our SPO.

Limitations

It would exist two limitations in this work. Firstly,
the proposed SPO involves two hyperparameters y
and IV, for which the optimal settings vary across
different methods and datasets, thereby undermin-
ing the convenience of SPO. In future work, we
will explore adaptive hyperparameter tunning to
tackle this issue. Furthermore, this work constructs
responses with varying preference degrees by re-
moving key content from predictions, which may
compromise their semantic coherence. Although
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experimental results have demonstrated the effec-
tiveness of our method, the potential impact on
semantic integrity remains an area for further in-
vestigation. We will further explore construction
method to minimize information distortion.

Ethics Statement

While conducting our research on Self-supervised
Preference Optimization (SPO), we are keenly
aware of our ethical duties, including the preven-
tion of misinformation and the protection of data
privacy. The datasets in our experiments are all de-
rived from publicly available information and we
guarantee that we strictly adhere to the data usage
policies outlined in the public datasets. In terms of
self-supervised data construction, we ensure that
no personal data is introduced, no manual labelling
is involved, and we strictly adhere to privacy and
data protection standards. In the experiments, we
followed the evaluation methods in (Rafailov et al.,
2023; Ethayarajh et al., 2024), using OpenAl APIs
and strictly adhering to OpenAlI’s ethical and pri-
vacy protection guidelines.
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A Alternative Methods to RLHF

A.1 Direct Preference Optimization

The Direct Preference Optimization (DPO) method
computes the losses associated with preferred (or
dispreferred) responses by summing up the cross-
entropy of each token in the preference answers
alongside the matching token produced by LLMs,
as described below:

EDPO(779>7T7"ef) = _]E(J?aywyyl)’“p
TY(yw|z) To(y;|z)
log o(8log ———~~ — Blog —————
(Blog == 1) Trer(le)

®)

A.2 Sequence-Likelihood Calibration

The Sequence-Likelihood Calibration (SLiC) em-
ploys a margin to regulate the difference in loss
between preferred and dispreferred responses, as
detailed below:

Ecal (7T9) = }E’—T,yw,yl"’D

9
[max (0, 8 — log g (yw|) + log e (y;|x)] ©)

where Sdenotes the margin ensuring that the log
probability of the preferred response surpass that
of the dispreferred response by at least 3. Further-
more, SLiC includes a cross-entropy component
for responses generated by the reference model,
with the goal of minimizing substantial divergence
from the reference model, as outlined below:

ESL’ZC (7T07 Fref) = ﬁcal (71—9) + AEwa,ywﬂTef (:c)

[—log ma(ylz)]
(10)

A.3 Kahneman-Tversky Optimization

The Kahneman-Tversky Optimization (KTO)
method posits that pairs of preferences might be
unnecessary and advocates for the direct maximiza-
tion of utility derived from LLMs outputs, rather
than focusing on maximizing the log-likelihood of
preferences, as described below:

Lkro = E(w,y)wD[w(y)(l - h(.’E,y; ﬂ))] (11)

where h(z,y; ) indicates a human value function,
which can be expressed as follows:

o Jo(g(z,y;B8)) ify ~ ywlz
(12)

where o is a logistic function, and g(x,y; 5) can
be defined as follows:

gtuy;ﬁ)=/3bg4ﬁdgkﬁf—-Ey~D

Tref (Y]T) (13)
[BK L(mg||mrey)]

where K L(-) represents the Kullback-Leibler di-
vergence function used to limit the deviation of the
LLM from the reference model, and w(y) within
the loss function £ 7o is specified as follows:

— )\D
w@O——{AU

where Ap and \;; are loss weights.

ify ~ yylz

) (14)
ify ~ylx

B GPT-4 prompts for Evaluating

In our work, GPT-4 serves as a surrogate for as-
sessing the responses from LLMs in comparison
to the baselines from the Antropic-HH dialogue
and TL;DR summarization datasets. This section
outlines the prompts utilized to derive win rates for
our experimental analysis.

B.1 Prompt for Summarization

Following (Rafailov et al., 2023), we use the fol-
lowing prompt to evaluate the answers of LLMs:

Which of the following summaries does a better
Jjob of summarizing the most import points in the
given forum post, without including unimportant or
irrelevant details? A good summary is both precise
and concise.

Post: <post>

Summary A: <Summary A>

Summary B: <Summary B>

FIRST provides a one-sentence comparison of
the two summaries, explaining which you prefer
and why. SECOND, on a new line, state only "A" or
"B" to indicate your choice. Your response should
use the format: Comparison: <one-sentence com-

parison and explanation> Preferred: <"A" or
" "
B">
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B.2 Prompt for Dialogue

Here is a conversation between Human and Assis-
tant.

Conversation: <Conversation>

Assistant can now choose from different re-
sponses.

Response 1: <Response 1>

Response 2: <Response 2>

Between these two responses, which response is

more helpful, harmless, and concise? Please only
answer RESPONSE 1 or RESPONSE 2.

B.3 Impact of Data Volume and Update Steps

To address the potential impact of preference data
differences and update steps on performance, we
conducted additional experiments. We explored the
effects of varying data volumes and update steps
on model performance using LLaMA-7B on the
TLDR dataset.

TL;DR summarization dataset

Method ‘ FULL HALF

DPO 81.0% 78.8%

DPO + SPO | 83.6% 81.4%
Table 6: Performance comparison of DPO and

DPO+SPO methods with varying data sizes. "Full"
refers to the complete dataset, while "Half" indicates
using half of the dataset.

Method ‘ TL;DR summarization dataset

1 EPOCH 2 EPOCH

DPO 81.0% 80.0%

DPO + SPO 83.6% 81.6%
Table 7: Performance comparison of DPO and

DPO+SPO methods with different update steps. "l
EPOCH" and "2 EPOCH" denote the number of training
iterations.

From the Table 6, we can see that under the
setting of half the data volume, both DPO and
DPO+SPO methods show a decline, but DPO+SPO
still maintains better performance than DPO. From
the Table 7, we can see that in different update
steps settings, too large update steps lead to over-
fitting in DPO, but DPO+SPO still performs better
than DPO. Overall, under different data volumes
and update steps settings, the trend of DPO+SPO is
consistent with DPO, indicating that data volume
and update steps have little impact on our method.

B.4 Impact of Different Module of
Self-Supervised Classcification Module

In our self-supervised training, we utilized a classi-
fication model with a two-layer MLP and positional
encoding. This design is based on two hypotheses:

* Compared to directly inputting embeddings
into the classification head, using a two-layer
MLP helps mitigate the negative impact of
self-supervised loss on the embedding distri-
bution, thereby improving the effectiveness of
the self-supervised embeddings.

* We hypothesized that the method of keyword
deletion might lead to semantic discontinuity,
causing the model to struggle with learning
preferences effectively. Therefore, we added
the original positional encoding to the latent
embeddings, hoping that the model could bet-
ter learn preferences.

Method | Classifier PE WR
DPO | - - 810

a FC layer X 815

DPO + SPO a FC layer Vo827

a two-layer MLP + a FC layer X 831
a two-layer MLP + a FC layer v 836

Table 8: Comparison of Win Rates for Different Clas-
sifier Configurations and Positional Encoding in Self-
Supervised Training on Llama. FC indicates Fully-
Connected, PE means Position Encoding, WR stands
for Win Rate (%).

Based on these two hypotheses, we conducted
experiments on LLaMA-7B on TLDR dataset.
From the Table 8, we can see that using only the
FC layer resulted in a 0.5% improvement in SPO,
which, although validating the method’s effective-
ness, is quite trivial. Using the FC layer with
positional encoding resulted in a 1.7% improve-
ment in SPO, indicating that positional encoding in
the latent embeddings could help the model better
understand preferences, thereby enhancing perfor-
mance. When we added an additional projection
layer, i.e., a two-layer MLP before the FC layer
(without positional encoding), we observed a 2.1%
improvement, which is a 1.6% increase over using
the FC layer alone, demonstrating the effectiveness
of the two-layer MLP. Finally, when we combined
the two-layer MLP with positional encoding, we
observed a maximum improvement of 2.6%. This
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experiment demonstrates the effectiveness of our
designed classification module.

C Cases of different extracting method

We employ various extraction techniques ((i.e.,
YAKE (Campos et al., 2020), RAKE (Rose et al.,
2010b) and PositionRANK (Florescu and Caragea,
2017))) to identify key content on HH dataset, with
illustrative examples provided below.

* Raw response: "I’m sorry, this doesn’t seem
like the kind of thing I'm built to handle. Can
you explain to me more what you mean? Is it
really that loud?"

* RAKE: Key content: ["Can you explain to
me more what you mean", "doesn’t seem like
the kind of thing I'm built", "Is it really that
loud"]

* YAKE: Key content: ["kind of thing I built to
handle", "built to handle", "kind of thing"]

* PositionRank: Key content: ["kind", "thing",
"handle"]

Based on the above samples, we can see that
RAKE tends to extract more continuous key con-
tent while YAKE and PositionRANK generate
sparse key contents.
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