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Abstract

Entity alignment (EA) aims to find equiva-
lent entities between two Knowledge Graphs.
Existing embedding-based EA methods usu-
ally encode entities as embeddings, triples as
embeddings’ constraint and learn to align the
embeddings. However, the details of the un-
derlying logical inference steps among the
alignment process are usually omitted, result-
ing in inadequate inference process. In this
paper, we introduce NALA, an entity align-
ment method that captures three types of logi-
cal inference paths with Non-Axiomatic Logic
(NAL). Type I&II align the entity pairs and type
III aligns relations. NALA iteratively aligns
entities and relations by integrating the con-
clusions of the inference paths. Our method
is logically interpretable and extensible by
introducing NAL, and thus suitable for vari-
ous EA settings. Experimental results show
that NALA outperforms state-of-the-art meth-
ods in terms of Hits@1, achieving 0.98+ on
all three datasets of DBP15K with both su-
pervised and unsupervised settings. We of-
fer a pioneering in-depth analysis of the fun-
damental principles of entity alignment, ap-
proaching the subject from a unified and log-
ical perspective. Our code is available at
https://github.com/13998151318/NALA.

1 Introduction

Knowledge graphs (KGs), which store massive
facts about the real world, expresses massive in-
formation in a form closer to human cognition.
KGs can be used by various application domains,
such as question answering, recommender systems
and language representation learning (knowledge
graph enhanced language model) (Ji et al., 2021;
Logan IV et al., 2019). The information contained
in each individual KG project, such as DBpedia
(Auer et al., 2007) and YAGO (Suchanek et al.,
2007) is limited. So the task of entity alignment
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Figure 1: An overview illustration of NALA.

(EA) is proposed to increase KG completeness.
The EA task consists of integrating two or more
KGs into a same KG by aligning nodes that refer
to the same entity.

There are many embedding-based EA meth-
ods (Fanourakis et al., 2023) that leverage deep
learning techniques to represent entities with low-
dimensional embeddings, and align entities with a
similarity function on the embedding space. KGs’
triples and seed alignments are usually seen as em-
beddings’ constraint during the training process of
such embedding model. The structural and side
information of KGs are usually utilized via em-
bedding propagation, aggregation or interaction.
Generally speaking, there are some crucial short-
comings of embedding-based EA methods: First,
they possibly lack complex reasoning capability.
Some of them are enhanced by paths (Cai et al.,
2022), however, due to the nature of vector repre-
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sentation, it is not easy to perform or approximate
symbolic reasoning on such paths. Second, they
lack interpretability in the models, so they have
to rely solely on numerical evaluation metrics to
evaluate their performance. Thus the cons and pros
of their model design may not be properly evalu-
ated. Third, the absence of a unified framework
explaining the mechanism of embedding learning
and processing renders their semantic or structural
learning capability quite mysterious.

Apart from embedding-based methods, path-
based methods directly estimates entity similarities
from the contextual data (path) that are available
in the two input KGs. A "path" usually refers to
an interconnected sequence of edges that links two
entities of different KGs. The edges can be ei-
ther relations or entity similarities. We refer to
the estimation of entity similarities by process-
ing and aggregating the paths as "similarity infer-
ence". There is a potential advantage that path-
based methods can capture fine-grained matches of
neighbors while the traditional embedding-based
methods can’t. There are also emerging methods
that combine the idea of embedding learning and
path reasoning. More recently, path-based (such
as PARIS+ (Leone et al., 2022)) and combined
methods (such as BERT-INT (Tang et al., 2020)
and FGWEA (Tang et al., 2023)) are starting to
surpass the performance of traditional embedding-
based methods. However, they failed to handle the
similarity inference appropriately to some extent,
possibly due to the lack of proper formalization of
the inference paths and steps.

To address the aforementioned issues of existing
methods, we carefully examine the similarity infer-
ence of EA from the logical perspective. Thus we
propose a path-based EA method NALA, where
NAL stands for Non-Axiomatic Logic (Wang,
2013) and "A" for align. NAL is a term logic with
a specific semantic theory and its design suits KG
tasks (see Section 2.3).

As illustrated in Figure 1, NALA adopts an iter-
ative entity alignment strategy with two modules,
namely similarity inference module and match-
ing module. For each iteration, it first performs the
similarity inference module. The module has three
functions: 1) Search for three types of paths across
the KGs. 2) Inference on the path instances with
fixed inference rules defined by NAL. 3) Aggregate
the conclusions of the paths. Type I&II paths yield
conclusions on similarities of entity pairs. Type
III paths yield conclusions on substitutability (or,

inheritance) of relation or attribute pairs. We use
BERT embedding to assist path inference by obtain-
ing similarity among entity names and attribute val-
ues, which constitutes some premises of the paths.
Then NALA uses the matching module to obtain
1-to-1 EA results of the current iteration. We pro-
pose an algorithm, namely rBMat algorithm with
swapping step (see Section 3.2) for the matching
module.

Experiments on cross-lingual EA dataset
DBP15K demonstrate that NALA outperforms
SOTA EA methods in 5 different setting groups (in-
cluding both supervised and unsupervised scenar-
ios), showcasing the effectiveness of our proposed
logical similarity inference module and matching
module. Ablation study shows that our design
choices jointly boost the overall performance of
NALA.

Our contributions can be summarized as:

• We propose an interpretable EA framework
NALA, which tackle the EA problem with
similarity inference phase and matching phase.
Various types of logical paths are formalized
within the similarity inference phase.

• NALA aligns entities and relations simulta-
neously with a unified yet extensible logical
framework.

• Our framework bridges the gap between
embedding-based and path-based EA.

• Our proposed method achieves SOTA on a
widely used EA dataset DBP15K’s various
settings.

• We present the first in-depth analysis of EA’s
basic principles from a unified logical perspec-
tive, and help explain the mechanism of other
EA methods.

2 Preliminaries

2.1 Knowledge Graph and Entity Alignment
KGs. Knowledge graphs (KGs) are knowledge
bases that store knowledge in the form of triples
(or "facts"). We refer to (head, relation, tail) and
(head, attribute, literal) as relation and attribute
triples, respectively. Examples of both triple types
are (New_Zealand, capital, Wellington) and (New_-
Zealand, establishedDate, "1947-11-25"), respec-
tively. To summarize, a KG is characterized with a
number of relation triples from E × R × E and a
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number of attribute triples from E ×A×L , where
E ,R,A, and L indicate the set of entities, relations,
attributes and literals, respectively.

EA. The entity alignment (EA) problem is typ-
ically defined between two KGs, KG1 and KG2,
where the task consists of finding equivalences (so-
called alignment) between the set of entities E1
and E2 of the two KGs. Sometimes there exists a
set of given equivalences that can be used as su-
pervision. This set S is known as seed alignment
set. We assume that there exists a ground truth set
G = {(x1, x2) ∈ E1 × E2| x1 ≡ x2} that includes
all known equivalences between pairs of entities.
We use the ground truth set to evaluate the perfor-
mance of our method. We use the subscript of an
entity identifier (x or y) or a relation identifier (r)
to represent which KG it comes from.

2.2 Represent KGs with NAL
A brief introduction to NAL is presented in Ap-
pendix A.

In this paper, every entity, literal or relation is
regarded as an atomic term in NAL. Triple (x, r,
y) is reinterpreted as inheritance statement (*, x,
y) → r. Its intuitive meaning is "The relation be-
tween x and y is a specialization of relational term
r". The triples (or "facts") of the KGs can be seen
as absolutely true (for frequency) and with suffi-
cient evidence (for confidence) to some extent, so
the truth-value attached to the statement is ⟨1, 1⟩.
Entity equivalency x1 ≡ x2 can be seen as an
extreme case of entity similarity x1 ↔ x2 , so we
align entities by similarity inference. As for rela-
tions, the inheritance statement r1 → r2 intuitively
represents a correspondence of two relations of
different KGs such that one relational fact of r1
in KG1 implies the existence of a corresponding
relational fact of r2 in KG2.

We automatically duplicates every original KG
triple (x, r, y) with a reversed triple (y, r−1, x)
upon KG loading, where r−1 represents the reverse
relation or attribute of r.

Inference path. We define an instance of in-
ference path as a premise set of NAL sentences
(triples, similarities, etc.) and a series of corre-
sponding inference steps which will eventually lead
to a conclusion sentence. The premise sentences
are either in the KGs or inferred from the KGs. A
type of inference path is a shared form of paths
and it can be instantiated with concrete entities and
relations. It is usually utilized for a certain purpose,
such as aligning entities or aligning relations.

2.3 Why NAL

Actually there might be many different logical sys-
tems that are qualified to represent the similarity
inference process of EA. However, we believe that
the non-axiomatic nature of NAL fits in the domain
of knowledge graph better than those axiomatic log-
ical systems, because real world KGs need to deal
with the problem of open-domain and alterable, in-
complete or conflicting facts. Fundamentally, the
tasks of knowledge graph (such as EA), fits well
with the assumption of insufficient knowledge and
resources (Wang, 2013), which is the basic as-
sumption of NAL.

Technically speaking, NAL can represent enti-
ties, relations and relational triples, which are es-
sential for EA. It can also perform formal reasoning
and evidence aggregation, which is useful to align
entities. The frequency/confidence measurement of
truth-value is suitable to represent fuzziness and un-
knownness in the similarity inference process. The
high expressiveness of NAL makes our approach
extensible, which may benefit subsequent studies.

2.4 Related Work of EA

Generally speaking, there are three families of EA
methods: embedding-based, path-based and com-
bined methods, as elaborated in this section.

In recent years, embedding-based methods have
become mainstream for addressing the EA task
(Tang et al., 2023; Fanourakis et al., 2023). Their
main idea is to embed the nodes (entities) and
edges (relations or attributes) of a KG into a low-
dimensional vector space that preserves their simi-
larities in the original KG. Embedding-based meth-
ods may suffer from the negative influence from
the dissimilar neighbors, according to (Tang et al.,
2020).

In addition to embedding-based methods, there
exist path-based methods that directly estimates en-
tity similarities from the contextual data (path) that
are available in the two input KGs. The distinction
between embedding-based and path-based methods
is sometimes obscure.

There are also emerging methods that combine
the idea of embedding learning and path reasoning.
More recently, path-based and combined methods
are starting to surpass the performance of tradi-
tional embedding-based methods.

Our proposed method NALA inherits and devel-
ops the ideas of two path-based methods PARIS
(Suchanek et al., 2011) and PARIS+. The two meth-
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ods as well as some other EA methods that will be
compared with our results are introduced in Ap-
pendix B.

3 The Proposed Method

The overall structure of NALA (as illustrated in Fig-
ure 1 and Algorithm 3) adopts an iterative aligning
strategy, and for each iteration it first performs sim-
ilarity inference, then it uses the matching module
(rBMat algorithm with swapping step in Section
3.2) to obtain EA results. The inference within each
iteration benefits from the alignment results (both
entities and relations) of the previous iteration.

3.1 Similarity Inference Module
We formalize the similarity inference module as
using NAL’s revision inference rule to aggregate
three types of inference paths. The first two types
calculates similarity for entities and the third type
for relations. We register evidential information
while performing path inference, that is memoriz-
ing which premises constitute the specific path in-
stance and such information will be used to gener-
ate evidence log file.

3.1.1 Type I Path: Align Entities by Triples
Inspired by the probabilistic alignment method of
PARIS, we formalize the key point of the similarity
inference process as type I path. Type I paths are
bridge-like inference paths between to-be-aligned
entity pairs. Valid type I paths are retrieved from
the KGs in a depth-first manner. The NAL formal-
ization is represented in a form similar to natural
deduction (Pelletier and Hazen, 2021), as shown in
Figure 2. Each step of inference is characterized
by two premises (on the top of the inference line)
and a conclusion (on the bottom of the inference
line). The inference rule is indicated on the right
edge of the inference line.

First, we elaborate the premises (1, 2, 4, 5, 7
and 10). Premise (1) and (4) can simultaneously be
relational triples, or attribute triples, where x1 and
x2 are either entities or literals respectively. As for
premise (5), in the case of entity pair, the similar-
ity statement comes from either seed alignments
or alignments of the previous iteration. We omit
any entity similarity statement which has a f or c
lesser than theta, a hyper-parameter. And in the
case of literal pair, see Section 3.1.2. The relation
inheritance of premise (2) is inferred in Section
3.1.3. PARIS evaluates the degree of functional-
ity of relation r2 with precomputed functionalities

of each relation. We interpret it as an inheritance
statement r2 → [fun] with the degree reflected in
the truth-value, that is, premise (10). The statement
intuitively means "r2 has the functional property
(to some extent)". Premise (7) is an implication
statement that is regarded as a definition or a piece
of essence of the concept "functionality". The func-
tionalities of relations seems to reflect a widespread
orderliness of reality or human cognition and we
leverage such orderliness.

With the premises and their known truth-values,
we performs syllogistic inference according to the
fixed rule table Table 2. Statement (11) is the con-
clusion of the inference steps and the steps act as a
summarizing or validation process of the premises.

The idea of type I path can be explained with an
example as shown in Figure 3. We would like
to figure out whether "zh:迈克尔·杰克逊" and
"en:Michael Jackson" refers to the same entity. We
find out that a related pair of entity: "zh:Heal the
World" and "en:Heal the World" are known aligned
entity pair (or, inferred to be aligned). "zh:Heal
the World"’s writer is "zh:迈克尔·杰克逊" and
"en:Heal the World"’s artist is "en:Michael Jack-
son". We also know that being the writer of some-
thing probably implies being the artist of it (the
relation inheritance). We have looked through
the KG and found out that a certain work usu-
ally has only one artist. We conclude that these
premises together form a certain amount of pos-
itive evidence that supports "zh:迈克尔·杰克逊"
and "en:Michael Jackson" being the same entity.
Type I path can be seen as the fundamental entity
alignment evidence (signal).

The conclusions with the same statement but ob-
tained from different type I paths are merged by
probabilistic revision rule because of the proba-
bilistic nature of functionality. For example, the
functionality of relation "zh:writer" is 0.78 which
means that the majority of works approximately
have one to two writers. While reasoning with
type I paths, we could not know how many writ-
ers does "zh:Heal the World" have, the conclusion
has a probabilistic nature because we don’t know
whether "zh:迈克尔·杰克逊" and "en:Michael
Jackson" is the same writer of "Heal the World".
The probabilistic revision rule is similar with the
continued multiplication of PARIS’s formula for
Pr (x1 ≡ x2) (given in Appendix B), except for
the introduction of confidence. We have some addi-
tional remarks of the path in Appendix C.
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(∗, x1, y1) → r1 (1), r1 → r2 (2)

(∗, x1, y1) → r2 (3)
Deduction

(∗, x2, y2) → r2 (4), x1 ↔ x2 (5)

(∗, x1, y2) → r2 (6)
Analogy∗

((∗,#a, $b) → #r ∧ (∗,#a, $c) → #r ∧ #r → [fun]) ⇒ $b ↔ $c (7), (∗, x1, y1) → r2 (3)

((∗, x1, $c) → r2 ∧ r2 → [fun]) ⇒ y1 ↔ $c (8)
Conditional deduction

((∗, x1, $c) → r2 ∧ r2 → [fun]) ⇒ y1 ↔ $c (8), (∗, x1, y2) → r2 (6)

r2 → [fun] ⇒ y1 ↔ y2 (9)
Conditional deduction

r2 → [fun] ⇒ y1 ↔ y2 (9), r2 → [fun] (10)

y1 ↔ y2 (11)
Conditional deduction

Figure 2: NAL formalization of type I path
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zh:迈克尔·杰克逊
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en:Heal the World

en:Michael Jackson
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Figure 3: An instance of type I path, fetching from
DBP15K zh-en and omitting irrelevant triples. Grey
dashed arrow represents inheritance between the rela-
tions and "functionality".

3.1.2 Type II Path: Align Entities by Name

Type II path is the direct path linking the to-be-
aligned entities with their name/description simi-
larity. It only has a conclusion statement:
y1 ↔ y2 ⟨sim(name(y1), name(y2)), Cname⟩

where sim is the cosine similarity of entity
name/description embedding and Cname is a hyper-
parameter. NALA adopts BERT as the embed-
ding model. The BERT unit is finetuned on the
name/description of seed alignment entity pairs
before embedding generation, similar with BERT-
INT. The conclusion of a type II path is seen as a
piece of evidence and fused with other evidences
by revision rule.

We implement an adaptive method to auto-
matically set Cname to avoid excessive param-
eter tuning. First, with a specific setting and
dataset, we run NALA for 5 iterations (with a
default Cname = 0.5 which represents a unit
amount of evidence) and calculate the alignment

output’s average confidence. We set Cname =
halve_evidence(average_confidence), where
halve_evidence is a function that outputs a con-
fidence value that corresponds to half of evidence
amount of the input confidence. The idea is to
balance the influence of structural information
and name information, preventing the name infor-
mation’s evidence from being too strong or too
weak. Then we restart NALA from the first it-
eration and Cname remains unchanged. If trans-
lated name is available, the evidence amount is
equally divided between translated and original
name’s Cname. If the BERT unit is un-finetuned,
we penalize Cname’s evidence amount by a factor
Cpenalty.

We also obtain attribute value embedding with
the BERT unit and their cosine similarities are used
to convert to the truth-value of premise (5) where
x1 and x2 are distinct attribute values:
x1 ↔ x2 ⟨f = sim(x1, x2), c = sim(x1, x2)⟩

The idea is that the pair of similar embedding of the
deep learning model which has higher similarity
is usually more verifiable. For identical attribute
values, the truth-value is simply ⟨1, 1⟩. There are
thousands of distinct attribute values in a KG, so for
an attribute value we only consider the Kvalue most
similar (but not identical) values in the other KG to
prevent an explosive number of value similarities.
Kvalue is a hyper-parameter and in implementation
we set Kvalue to 1. See more discussion of utilizing
literal value and type II path in appendix D.1 and
D.2.
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3.1.3 Type III Path: Aligning Relations

NALA align relations by path inference, which is a
different approach from PARIS’s probabilistic rela-
tion aligning method. We formalize the inference
process as type III path as shown in Figure 4. The
premises are (12, 13 15 and 17) and the conclusion
is (18).

(∗, x1, y1) → r1 (12), x1 ↔ x2 (13)

(∗, x2, y1) → r1 (14)
Analogy

(∗, x2, y1) → r1 (14), y1 ↔ y2 (15)

(∗, x2, y2) → r1 (16)
Analogy

(∗, x2, y2) → r2 (17), (∗, x2, y2) → r1 (16)

r1 → r2 (18)
Induction

Figure 4: NAL formalization of type III path

There are two versions of type III path and the
only difference is the truth-value of premise (17).
The positive version’s truth-value is ⟨1, 1⟩ and the
negative version’s is ⟨0, Cabsent⟩, where Cabsent is
a hyper-parameter for absent or missing fact. We
argue that when there is a fact present in the KG,
it is usually confident. However, when there is an
absent fact in the KG, its denial is not as confident
because the KG may be incomplete. In implemen-
tation we set Cabsent = 0.5 (which represents a
unit amount of evidence).

The induction inference rule in type III path is
a weak inference rule, so the upper bound of its
conclusion’s confidence is lower than the strong
inference rules (such as deduction and analogy).
The positive version only generates positive evi-
dence for the conclusion and the negative version
only generates negative evidence, because of the
characteristic of the induction rule.

Two instances of type III path are illustrated in
Figure 5. We would like to figure out the inheri-
tance between relations "zh:writer" and "en:artist",
so multiple path instances are collected, includ-
ing both positive version and negative version of
the type of path. The conclusions of the two ver-
sions are supposed to be merged by the revision
rule. The relation inheritance sentence of type I
path use computation result of type III path in the
previous iteration or a default truth-value ⟨1, iota⟩
(in the first two iterations), where iota is a hyper-
parameter.

KG2KG1

zh:情慾_(瑪丹娜專輯)

zh:麥當娜

zh:writer

en:Erotica_(Madonna_album)

en:Madonna_(entertainer)

en:artist

aligned  

?
aligned  

KG2KG1

zh:蜘蛛人3

zh:史丹·李

zh:writer

en:Spider-Man_3

en:Stan_Lee

en:artist

aligned  

?
aligned  

(x1)

(r1)

(y1)

(x2)

(r2)

(y2)

(x1)

(r1)

(y1)

(x2)

(r2)

(y2)

Figure 5: An illustration of type III path. The upper half
represents positive version of the path and the lower half
represents negative version. The dark cross represents
the absence of the triple.

3.2 Matching Module

In the matching module, first we consider the 1-to-1
range assumption if available (see Appendix D.3).

Then the similarity sentences are rearranged.
Type I path’s similarities (type I path) are natu-
rally sparse, because it only considers the entity
pairs which is effectively linked by the logical path.
Entity name/description’s similarities (type II path)
are dense, however, it is noisy and most of the sim-
ilarities are useless. NALA’s similarity inference
module exhaustively search for and aggregates the
two types of similarity sentences for a specific to-
be-aligned entity versus any entity in the other KG.
Then, because of the sparsity of informative simi-
larity signal, the similarity sentences is rearranged
into ordered linked list, one list for a specific to-
be-aligned entity. The sentences are ordered (de-
scending) by its expectation value. We only store
the top Ksim similarity sentences in the linked list,
where Ksim is a hyper-parameter.

We tackle the EA matching problem as a stable
matching problem. So we propose a recursive bidi-
rectional matching algorithm (rBMat) which has
similar idea with BMat (Dao et al., 2023). See
Algorithm 1 and Algorithm 2 for details. The main
idea is to recursively find the stable matching of
an entity e1 by the "match and delete" function, as
well as delete the similarity sentences that don’t
conform the 1-to-1 assumption. Considering sort-
ing cost, our rBMat has O(kn2) time complexity
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and O(kn) space complexity, where k represents
Ksim and k ≪ n. For comparison, both BMat
and Jonker-Volgenant algorithm have O(n3) time
complexity.

We found that there are still some mismatches af-
ter performing rBMat algorithm and most of them
share a same pattern. For example, e1a ↔ e2a and
e1b ↔ e2b are two ground truth pairs, however, the
result of rBMat is e1a ↔ e2b and e1b ↔ e2a. We
implement a simple swapping technique to handle
this. For every pair of similarity sentences, we
swap their alignment if the swapped similarity sen-
tences have a higher total expectation value than
their original form.

3.3 Unsupervised Learning

The seed alignment set is not always available for
different EA tasks or real-world EA applications.
So an unsupervised scenario is sometimes adopted
to evaluate the industrial applicability of EA meth-
ods. We adapt our method to the unsupervised
scenario, that is, without using seed alignments.
The BERT embedding model need to finetune on
seed alignments, so we adopt a bootstrapping strat-
egy. First, a NALA instance performs alignment
on the dataset with 0% seed and no literal embed-
ding information. Then, filter the initial alignment
results with an expectation threshold θfilter and
use the filtered results as the finetune training set
of BERT. Next, another 0% seed NALA instance
performs alignment with the help of BERT’s literal
embedding information to obtain the final result.

4 Interpretability of NALA

Following (Rudin, 2019; Marcinkevičs and Vogt,
2020), interpretable ML (machine learning) fo-
cuses on designing models that are inherently inter-
pretable, while explainable ML tries to provide post
hoc explanations for existing black box models.
NALA is highly interpretable and self-explanatory.
It is arguably more interpretable than PARIS for
the following two reasons. First, with the introduc-
tion of evidence amount (confidence) and logical
inference rules, NALA processes data with more
information and generates a more informative ex-
planation. Second, NALA manages value similar-
ity, name similarity and structural similarity in a
unified logical framework, while PARIS doesn’t
leverage such side information.

NALA is self-explanatory in the sense that it
generates a log file of evidences for the alignments

so we can inspect the file after an iteration. This
feature enhances the troubleshooting capacity of
us to some extent during the development process
of NALA. For example, inspecting the faulty align-
ments in the evidence file inspired many decision
choices in this paper. The generated evidences are
displayed in our GitHub repository.

Using the neural BERT model does not weaken
the interpretability of type I path because utiliz-
ing literal value similarity does not affect the in-
terpretable inference steps. Moreover, as we only
keep the attribute value similarities with a score
above the threshold, most of these similarities are
easily understood and self-explanatory, except the
wrong ones. Our method tolerates faulty attribute
value similarity because type I path needs a con-
junction of all premises, while faulty similarities
usually can’t form a complete premise set.

We discuss NALA’s relation with other methods
and help explain the mechanism of those methods
in Appendix D.4.

5 Experiments and Results

5.1 Datasets

We evaluate our model on two EA datasets: the
widely used cross-lingual dataset DBP15K (see
(Sun et al., 2017) for details) and a monolin-
gual multi-source dataset OpenEA benchmarks (in-
cluding D-W-15K-V2, etc.) (Sun et al., 2020).
DBP15K consists of three subsets of cross-lingual
KG pairs extracted from DBpedia. Each sub-
dataset of OpenEA benchmark consists of two En-
glish KGs. The statistics of the datasets are listed
in Table 3.

5.2 Main Results on DBP15K

5.2.1 Settings
The settings of our main results on DBP15K (Ta-
ble 1) consists of five sub-settings: Attr.,Name,-
Trans.,Desc. and Seed, explained as follows.
Attr. is for utilizing the attribute triples. Name is
for utilizing the entity name information. Trans. is
for utilizing translators for entity name. We use the
Google translator, which is consistent with many
other studies.. Desc. is for utilizing the informa-
tion of entity description. Seed is for the percent-
age of seed alignments, 30% for the conventional
supervised scenario and 0% for the unsupervised
scenario.

We categorize baselines into five setting groups
and run NALA using the settings for each group.
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Group Model
Settings ZH_EN JA_EN FR_EN

Attr. Name Trans. Desc. Seed Hits@1 Hits@1 Hits@1

1

JAPE ! 30% 0.412 0.363 0.324
GCNAlign ! 30% 0.413 0.399 0.373

PARIS+ ! 30% 0.904 0.874 0.928
NALA ! 30% 0.985 0.972 0.990

2
PARIS ! 0% 0.777 0.785 0.793

FGWEA* ! 0% 0.929 0.922 0.967
NALA ! 0% 0.982 0.968 0.987

3

RDGCN ! ! 30% 0.708 0.767 0.886
CUEA ! ! 30% 0.921 0.946 0.956

UPL-EA ! ! 30% 0.949 0.970 0.995
SE-UEA ! ! 0% 0.935 0.951 0.957
LightEA ! ! 0% 0.952 0.981 0.995

FGWEA* ! ! 0% 0.959 0.982 0.994
NALA ! ! 0% 0.952 0.985 0.996

4
BERT-INT ! ! ! 30% 0.968 0.964 0.995

NALA ! ! ! 30% 0.998 0.997 0.999

5
TEA ! ! 30% 0.941 0.941 0.979

FGWEA* ! ! 0% 0.976 0.978 0.997
NALA ! ! 0% 0.993 0.988 0.998

Table 1: Evaluation results of all compared EA methods on DBP15K in five different setting groups. Methods
marked with * use the additional information of relation names. We put a supervised method TEA into group 5 for
simplicity.

The five groups cover a vast majority of different
method’s settings. Group 1 is the supervised sce-
nario with attribute triples. Group 2 is the unsu-
pervised scenario with attribute triples. Group 3 is
the supervised or unsupervised scenario with entity
name information and translator. Group 4 is the
supervised scenario with entity name and descrip-
tion information, which is the same scenario as
BERT-INT. Group 5 is the unsupervised scenario
with attribute triples and entity name information.

Most hyper-parameters of our model remain the
same across different datasets and setting groups,
except for group 3 which will be discussed later.
The hyper-parameters are selected manually. We
set iota = 0.5, theta = 0.1, Cpenalty = 4 and
end_iteration = 19 (20 iterations in total). Ksim

is set to 80. θfilter is set to 0.9. The BERT unit
is finetuned for 15 epochs. The dimension of the
BERT CLS embedding is 768 and the dimension
of BERT unit’s embedding output is 300.

5.2.2 Main Results

We compare NALA with the following methods,
most of which are new and well-performing: JAPE
(Sun et al., 2017), GCNAlign (Wang et al., 2018),
PARIS+ (Leone et al., 2022), PARIS (Suchanek
et al., 2011), FGWEA (Tang et al., 2023), RDGCN
(Wu et al., 2019) ,CUEA (Zhao et al., 2022), UPL-

EA (Ding et al., 2023), SE-UEA (Jiang et al.,
2023b), LightEA (Mao et al., 2022), BERT-INT
(Tang et al., 2020), TEA (Zhao et al., 2023). Their
results are fetched from their original papers.

The experimental settings and results of NALA
and all compared baselines on DBP15K are in
Table 1. As observed, NALA achieves the best
performance in term of Hits@1 in all five groups
except group 3. NALA outperforms BERT-INT
significantly with identical setting and the same
embedding method, verifying the effectiveness of
our similarity inference combined with the match-
ing algorithm. NALA outperforms FGWEA in
group 2 and 5, indicating that it successfully uti-
lizes the information of attribute triples. In group
1, two classic EA model JAPE and GCNAlign are
outperformed by the newer approaches (PARIS+
and NALA) by a significant margin, indicating the
effective innovation of the new EA approaches in
the recent years. The performance of NALA in
unsupervised group 2 approaches its performance
in supervised group 1 with a minor gap, indicating
that our proposed bootstrapping strategy effectively
adapts to the unsupervised setting (with the help of
attribute information).

As for setting group 3, the attribute information
is unavailable and we have to rely on the name and
translation information to bootstrap the alignment
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process. We adjust the hyper-parameter Ksim to
400 and other hyper-parameters are unchanged. We
use two BERT units instead of one to separately
embed the original entity names and the translated
entity names. The BERT units are finetuned sep-
arately. We adapt the bootstrapping strategy in
Section 3.3 into three steps. In each step, we per-
form alignment with a NALA instance and filter the
alignment results as the training set of the BERT
units of the subsequent step. The results of each
step of the three datasets are shown in Figure 7.
As expected, the alignment performance increases
with the steps, because the BERT unit obtains better
finetuning data every step and thus produces bet-
ter embeddings for alignment. The results of each
iteration of the second bootstrap step are shown
in Figure 8. NALA outperforms other methods
in setting group 3 on JA_EN and FR_EN, includ-
ing three supervised ones. However, on ZH_EN
unsupervised FGWEA yields better performance.
This is possibly due to FGWEA’s utilization of ad-
ditional information of relation names. The error
accumulation effect of NALA’s strategy in group 3
is left for further study.

We also conducted preliminary experiments on
full version of DBP15K, see Appendix E.2.

5.3 Results on OpenEA benchmarks
The original OpenEA benchmark datasets have no
meaningful entity names or description, so our re-
sults are based on setting group 1. As shown in
Table 5, NALA achieves better Hits@1 compared
with LightEA on OpenEA benchmark datasets ex-
cept for D-W-15K-V2 and D-W-100K-V2. How-
ever, if attribute information is not available, its
performance is worse yet comparable. It demon-
strate that the effectiveness of structural informa-
tion processing of NALA is likely to be worse than
LightEA. We will explore more type of paths to
tackle this problem.

5.4 Ablation study
To validate the effectiveness of each component
in NALA, we compare it with several ablations.
We demonstrate the results in Table 6, where w/o
represents without and Evalue represents attribute
value embedding information. all_revision rep-
resents replacing probabilistic revision rule with
revision rule and all_prob_revision is the oppo-
site. 1 − to − 1_range is the 1-to-1 matching
range information that is utilized in Section 3.2 and
swapping is a proposed technique in Section 3.2.

NALA performs the best compared with its vari-
ants. The revision rule can deal with negative evi-
dences of similarity sentences, while probabilistic
revision rule cannot. The ablation results together
with the main results show that NALA seems to
have good monotonicity in Hits@1 performance
in the sense that when adding extra information or
procedure (component) into the model, the Hits@1
increases monotonically. Arguably, this is because
introducing two-dimensional truth-values in every
inference step separates confidence from truth de-
gree (frequency) in every statement, thus the in-
formation of relative reliability level is stored for
further usage.

6 Conclusion and Future Work

In this paper, we propose an entity alignment
method named NALA, tackling the EA problem
by modeling similarity inference and performing a
matching algorithm. Similarity inference obtains
similarity through paths that connect the entities.
NALA leverages three type of paths, exploiting
both structural and side information of KGs. Using
the similarities, NALA matches the entities by the
proposed rBMat algorithm. NALA is also success-
fully adapted to the unsupervised scenario and a
scenario without attribute triples. Compared with
up-to-date EA methods, NALA attains competitive
result on OpenEA benchmark datasets and various
settings of DBP15K, indicating that it successfully
handles the most effective part of similarity infer-
ence.

We also take a step in re-evaluating the de-
sign choices of different EA models, by providing
some interesting insights (explanations) of differ-
ent methods and competitive results compared with
them. Hopefully, our approach may broaden the
view and deepen the understanding of the EA re-
search community. How to combine embedding
models with path inference and facilitate its full po-
tential is a research question to be further studied.

NAL can express and process many different
reasoning patterns and logical structures, so NALA
can be extended to tackle other challenges in the
EA process in future research, such as integrating
ontological information.

Limitations

Roughly speaking, NALA has slightly more hyper-
parameters than some other EA methods, which
may be a drawback.
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NALA costs more time compared with the
fastest EA methods (1680 seconds compared with
34.5 seconds by LightEA-I on D-Y-100K-V2), pos-
sibly due to the inability to utilize GPU in its logical
design, thus being more difficult to be parallelized.

The performance of NALA on a hard setting of
the datasets, that is, without both attribute triples
and entity name information is moderate. Our ap-
proach is not yet optimized for utilizing pure struc-
ture information of KGs.
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A Introduction of NAL

NAL (Non-Axiomatic Logic) (Wang, 2013) is a
logic designed for the creation of general-purpose
AI systems, by formulating the fundamental reg-
ularities of human thinking in a general level. It

can be used as the logical foundation of a (non-
axiomatic) inference system and it has been ex-
plored to be utilized in various AI tasks (Beik-
mohammadi and Magnússon, 2023; Latapie et al.,
2022). Traditional inference systems are usually
based on model-theoretic semantics, while under
the assumption of insufficient knowledge and re-
sources, NAL is a term logic basing on experience-
grounded semantics (Wang, 2005). The meaning
of a term in NAL, to the inference system, is de-
termined by its role in the experience (which will
be explained later), that is, how it has been related
to other terms in the past. The truth-value of a
statement in NAL is determined by how it has been
supported or refuted by other statements in the past.

In this paper we only utilize a fraction of NAL’s
syntax and inference capability (for EA). We will
now introduce the relevant parts of its syntax. A
term in NAL can either be atomic or compound.
An atomic term is a word (string) or a variable term.
Independent variable, such as "$x", represents any
unspecified term under a given restriction, and in-
tuitively correspond to the universally quantified
variable in first-order predicate logic. Dependent
variable, such as "#y", represents a certain unspec-
ified term under a given restriction, and intuitively
correspond to the existentially quantified variable.
A compound term consists of term connector and
components (which are themselves terms).

A basic statement has the form of "subject cop-
ula predicate", where subject and predicate are
terms. There are multiple types of copula and each
type has a corresponding statement type, includ-
ing: 1.Inheritance ("A → B", where A and B are
terms) which intuitively means "B is a general case
of A"; 2.Similarity ("A ↔ B") which intuitively
means "A is similar with B"; 3.Implication, which
is a higher-order copula ("P ⇒ Q", where P and
Q are statements), intuitively means "P implies
Q" (different from the "material implication", it
requires P to be related to Q in content because
NAL is a term logic that uses syllogistic inference
rules and only derives conclusions that are related
in content). A sentence is a statement together with
its truth-value. An intensional set with only one
component, for example, "[red]" intuitively means
"red things". Term connector "∗" (product) com-
bines multiple component terms into an ordered
compound term such as (∗, A,B), which intuitively
means "an anonymous relation between A and B".
Compound terms are usually written in the prefix
format, that is the term connector is written in the
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first place. Statement connector "∧" can be seen as
the conjunction operator of propositional logic.

NAL is "non-axiomatic" in the sense that the
truth-value of a conclusion in the inference sys-
tem does not indicate how much the conclusion
agrees with the "state of affair" in the world, or
with a constant set of assumptions (the axioms), but
how much it is supported by the evidence provided
by the past experience of the system. Experience
means the inference system’s history of interaction
with the environment or equivalently the input sen-
tences. The acquisition of experience may involve
sensorimotor mechanism and sensation-perception
process, which is beyond our scope. The infor-
mation source of a sentence is characterized as
its evidence. The inference rules of NAL coher-
ently pass on the evidential information from the
premises to the conclusion, so the premises can
be seen as the evidence of the conclusion. The
input sentences can be seen as a synthesis of vir-
tual positive and negative evidences. Assume the
available amount of positive evidence and negative
evidence of a statement are written as w+ and w−,
respectively, then the total amount of evidence is
w = w+ + w−. The frequency of the statement is
f = w+/w, and the confidence of the statement
is c = w/(w + k), where k is a positive constant
representing "evidential horizon". We take k = 1 in
our implementation. Frequency intuitively means
"the degree of truth" and confidence intuitively rep-
resents "the total amount of evidences". The more
evidences that the statement have considered, the
higher confidence value. The truth-value attached
to the statement is the ordered pair ⟨f, c⟩ and it
is often written right after the statement. The ex-
pectation of the truth-value is a combined mea-
surement of f and c, in this paper we define it as
expectation = f × c, which is different from its
original definition.

NAL uses syllogistic (rather than truth-
functional) inference rules, that is, the two premises
have to share at least one common term. Among
them the revision rule merges evidences for the
same statement collected from different sources
together, so it can settle inconsistency among the
system’s sentences. It is very useful in our ap-
proach. The relevant rules with corresponding truth
functions are all listed in Table 2. Note that the in-
ference rules are not domain-specific. There are
three extended boolean operators (Wang, 2013) in
the calculation of truth functions:





and(x1, ..., xn) =
n∏

i=1

xi

or(x1, ..., xn) = 1−
n∏

i=1

(1− xi)

not(x) = 1− x

, where

xi ∈ [0, 1].

B Related Work

B.1 Embedding-based EA

Embedding-based EA methods usually consist of
three parts: the embedding module, the alignment
module and the matching module. For the embed-
ding module, translational methods and graph neu-
ral network (GNN) methods are the most popular.
Translational methods, such as MTransE (Chen
et al., 2016), usually optimize a margin-based loss
function to learn the structural information (relation
triples) of a KG. On the other hand, GNN methods
recursively aggregate the representations of neigh-
boring nodes with graph convolutional networks
(GCNs) or graph attention networks (GATs). The
representative ones are RDGCN (Wu et al., 2019)
and RREA (Mao et al., 2020b), respectively. The
alignment module maps the entity embeddings in
different KGs into a unified space. There are gen-
erally three techniques (Fanourakis et al., 2023)
for this module: 1. Sharing the embedding space
by using the margin-based loss to enforce the seed
alignment entities’ embeddings from different KGs
to be close. 2. Swapping the triples of seed align-
ment entities. 3. Mapping the entity vectors from
one embedding space to the other using a transfor-
mation matrix. The matching module generates
the final alignment result. Common practices use
the cosine similarity, the Manhattan distance, or
the Euclidean distance between entity embeddings
to measure their similarities and then perform a
specific matching algorithm based on the similarity
scores.

B.2 Path-based EA

PARIS (Suchanek et al., 2011) is a classic unsu-
pervised non-neural EA method with competitive
performance on benchmark datasets (Leone et al.,
2022). It is purely path-based. Following previous
works (Hogan et al., 2010), PARIS introduces the
probabilistic usage of "functionality" into the field
of EA to enhance the validity of similarity infer-
ence paths. Functionality generally corresponds
to the uniqueness of related things, for example a
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Inference rule Premises Conclusion

Deduction
A → B ⟨f1, c1⟩ A → C ⟨f = and(f1, f2), c = and(f1, f2, c1, c2)⟩B → C ⟨f2, c2⟩

Analogy
A → B ⟨f1, c1⟩ C → B ⟨f = and(f1, f2), c = and(f2, c1, c2)⟩A ↔ C ⟨f2, c2⟩

Conditional (P ∧Q) ⇒ R ⟨f1, c1⟩ P ⇒ R ⟨f = and(f1, f2), c = and(f1, f2, c1, c2)⟩Deduction Q ⟨f2, c2⟩
Induction

A → B ⟨f1, c1⟩ C → B ⟨w+ = and(f2, c2, f1, c1), w
− = and(f2, c2, not(f1), c1)⟩A → C ⟨f2, c2⟩

Revision
P ⟨f1, c1⟩ P

〈
w+ = w+

1 + w+
2 , w = w1 + w2

〉
P ⟨f2, c2⟩

Probabilistic P ⟨f1, c1⟩ P ⟨f = or(f1, f2), w = w1 + w2⟩Revision P ⟨f2, c2⟩

Table 2: The table of relevant rules and their truth functions.

man can only have one father but multiple friends,
so fun(father) is close to 1 and fun(friend)
is relatively lower, where fun() represents func-
tionality of a relation or attribute. See (Suchanek
et al., 2011) for more details about functionality.
With functionality, PARIS constructs a probabilis-
tic model that estimates the probabilities of entity
equivalences:
Pr (x1 ≡ x2) = 1 − ∏

r1(x1,y1),r2(x2,y2)
(1 −

Pr (r1 ⊂ r2)× fun(r−1
2 )× Pr (y1 ≡ y2))

As depicted in the above formula, PARIS estimates
the equivalence probabilities by integrating paths
that connects corresponding entities. It also find
subrelations between the two ontologies of KG.
Subrelations, such as r1 ⊂ r2, intuitively means a
correspondence of two relations of different KGs
such that one relational fact of r1 in KG1 implies
the existence of a corresponding relational fact of
r2 in KG2. Here is the formula for Pr (r1 ⊂ r2):

Σr1(x1,y1)

(
1−∏

r2(x2,y2)
(1−Pr(x1≡x2)×Pr(y1≡y2))

)

Σr1(x1,y1)

(
1−∏

x2,y2
(1−Pr(x1≡x2)×Pr(y1≡y2))

)

With the help of subrelations’ measurement, PARIS
generalizes the equation of Pr (x1 ≡ x2) to the
case where the two ontologies do not share com-
mon relations. Therefore, PARIS recursively aligns
the entities and the equivalence probability of
x1 ≡ x2 depends recursively on other equiva-
lence probabilities. In each iteration, the proba-
bilities are re-calculated based on the equivalences
and subrelations of the previous iteration. Initial
equivalences are computed between attribute liter-
als based on a certain string distance measurement.

PARIS+ (Leone et al., 2022) is a variant of
PARIS that makes a simple refinement and works
in the absence of attribute triples. It processes the

seed alignment information to generate synthetic
attribute triples. That is, for every pair of seed align-
ments (x1, x2), it creates the attribute triples (x1,
EA:label, string(x1)) and (x2, EA:label, string(x1)),
where EA:label is a synthetic relation. Thus, the
reverse of the relation EA:label is designed to be
highly functional in order to let the model match
the seed alignments easily. NALA adopts the same
refinement as PARIS+.

B.3 Combined EA

BERT-INT (Tang et al., 2020), an embedding-
path EA method, uses the well-known transformer
model BERT to embed the entities and literals.
It calculates the cosine similarity of the entity
name/description embedding. Then it proposes
an interaction model that compares each pair
of neighbors or attributes (which forms a path
from the source entity to the target entity) to ob-
tain the neighbor/attribute similarity score. The
name/description similarity vector, neighbor simi-
larity vector and attribute similarity vector are con-
catenated and applied to a MLP layer to get the
final similarity score.

FGWEA (Tang et al., 2023) is a three-step pro-
gressive optimization algorithm for EA and it can
be classified as an embedding-path EA method.
First, the entity names and concatenated attribute
triples are used for semantic embedding match-
ing to obtain initial anchors. Then in order to ap-
proximate GWD (Gromov-Wasserstein Distance
(Peyré et al., 2016)), FGWEA computes cross-KG
structural and relational similarities, which are then
used for iterative multi-view optimal transport alig-
nment. Finally, the Bregman Proximal Gradient
algorithm (Xu et al., 2019) is employed to refine
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the GWD’s coupling matrix.

B.4 Other EA Methods

There are also a few works that focus on the
interpretability or explanability of EA, such as
LightEA (Mao et al., 2022) and ExEA (Tian et al.).
LightEA is an interpretable non-neural EA method.
It is inspired by a classical graph algorithm, label
propagation (Zhu and Zoubin, 2002). First, it
generates a random orthogonal label for each seed
alignment entity pair. Then, the labels of entities
and relations are propagated according to the three
views of adjacency tensor. Finally, LightEA uti-
lizes sparse sinkhorn iteration to address the assign-
ment problem of alignment results.

The ExEA framework, proposed by (Tian et al.),
aims to explain the results of embedding-based
EA. It generates semantic matching subgraphs as
explanation by matching semantically consistent
triples around the two aligned entities. ExEA de-
vises an alignment dependency graph structure to
gain deeper insights into the explanation.

The recent literature of EA is abundant, focus-
ing on many different aspects or procedures of en-
tity alignment apart from the aforementioned ones,
such as utilizing attribute triples (Liu et al., 2020;
Sun et al., 2017), utilizing literals (Gesese et al.,
2021; Chen et al., 2018) , sample mining (Liu et al.,
2022; Mao et al., 2021a), reinforcement learning
(Guo et al., 2022), matching algorithm (Lin et al.,
2023; Dao et al., 2023; Mao et al., 2021b; Xu et al.,
2020; Zeng et al., 2020), iterative strategy (Liu
et al., 2023; Mao et al., 2020a) and unsupervised
learning (Jiang et al., 2023a,b; Liu et al., 2022;
Luo and Yu, 2022; Zhao et al., 2022). There are
also some surveys for EA (Fanourakis et al., 2023;
Zeng et al., 2021; Sun et al., 2020; Mao et al.,
2022). Besides graph structural, attribute and lit-
eral information, there are other information forms
researched by the EA community, such as temporal,
spatial and graphical information, however, these
topics are beyond the scope of this paper.

C Additional Remarks on Inference Paths

As for type I path, we omit two auxiliary inference
steps right before arriving at conclusion (6) which
performs structural transformation in order to dis-
mount x2 from the product of (4) without modify-
ing its truth-value. The conditional deduction of
(11) degenerates into a case without conjunction
in its premises (similar with Modus Ponens) and

its truth function remains the same. Note that in
the path only one direction of the relational inher-
itance is considered (r1 → r2) and there exists a
symmetrical variation of the path that utilizes the
other direction (r2 → r1). The conclusions of the
two paths are aggregated by probabilistic revision
rule.

D Discussion

D.1 Problem of Understanding Literal Value

Literal values in real-world KGs act as entity
names, entity descriptions, relation/attribute names
or attribute values, carrying enormous information.
Literal values include texts (strings), numerical val-
ues and dates. Deep neural network language mod-
els provide an interim solution to the problem of
understanding literal values. For example, BERT-
INT (Tang et al., 2020) utilize BERT to embed
names/descriptions and values into vector space,
thus use similarities between the feature vectors for
alignment. Literals’ deficiency of its outer seman-
tic structure (triples) contrasts with its abundant
internal semantics. However, symbolic reasoning
languages (systems) like NAL currently can’t effec-
tively handle the subtle semantics in texts for the
following reasons: semantic parsing or understand-
ing requires processing capacity and efficiency of
complex logical forms and it also requires auto-
matic learning capacity; the lacking of KGs with
complex logical forms; the lacking of KGs with
detailed and comprehensive common sense knowl-
edge. In a certain perspective, the literal values in
real-world KGs are not really "literal" but rather
under-characterized entities, concepts, triples, com-
mon sense knowledge and/or statements with com-
plex logical forms. The real-world KG project may
not have enough information or adequate paradigm
to deal with them. For example, the literal value of
attribute triple (John Lennon, deathPlace, "Manhat-
tan, New York City, United States"@en) referred
to entities "Manhattan", "New York" and "United
States", and its form indicates a specific relation
between these places.

D.2 Understanding of type II path

Type II path seems straightforward, however we
can have a deeper understanding of it. Language
models used for the embedding process of EA are
distinct information sources other than the KG it-
self. The deep language model which has the abil-
ity of aligning or translating entity names can be
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seen as a generalized alignment model that aligns
morphemes, words, entities and concepts. The pre-
training corpus of it consists of sentences, although
the sentences do not possesses explicit structures,
they can be understood or parsed by the model
by transforming them into complex logical forms.
However, such transformation (if exist) and the log-
ical forms are implicitly expressed in the model
parameters and intermediate layer vector represen-
tations. To summarize, our similarity inference’s
type II path can be seen as the aggregation of multi-
ple virtual complex logical paths. The aggregation
result is represented into the vector space by the
language model.

D.3 1-to-1 Assumption
There are 1-to-1 assumptions in some EA datasets
(such as DBP15K) and it is a useful informa-
tion for alignment. Formally, we define the 1-to-1
assumption as follows: first, there is a range of
alignable entities A1 ⊂ E1 and A2 ⊂ E2 (for
DBP15K, A1 ⫋ E1). Second, the equivalence
between A1 and A2 is a bijection. Note that the
assumption does not have aligning regularity for
entities outside the range except that they can’t
be aligned with entities inside the range. Many
ranking-based EA methods leverages the 1-to-1
range assumption, however, NALA do not. There-
fore, in implementation in order to leverage the
range assumption we take the set A1 and A2 as
input and filters out any alignment sentence that
aligns A1 to E2 \A2 or E1 \A1 to A2.

D.4 Relation with Other Methods
In this section, we will discuss the relation be-
tween our proposed method and methods with other
forms. We will propose some preliminary explana-
tions of certain translational embedding methods
and embedding-path EA methods from a theoreti-
cal perspective.

The way NAL models KG information and the
inference process has a similar part with "uncer-
tainty estimation" (Hu et al., 2023) in the natural
language processing domain. The truth-value of
alignments shares some similarity with the distribu-
tive view of facts or beliefs which views facts as
probability distribution of random variables. Also,
the concept of confidence is shared with some in-
formation extraction systems such as Markov logic
network (Jiang et al., 2012), which assigns confi-
dence to extracted facts or logical formulas in some
intermediate steps.

D.5 Relation with Translational Embedding
Methods

The well-known KG embedding model
TransE (Bordes et al., 2013) is initially pro-
posed for link prediction tasks. It may be partially
explained from a logical perspective of NAL (or
equivalently other logic with similar expressive
power). Consider a specific type of Horn clauses
((∗, A,B) → R1 ∧ (∗, B,C) → R2) ⇒
(∗, A,C) → R3 ⟨f1, c1⟩, the following three
triples

(Martin_Luther_King_Jr, birthP lace, Georgia_(U.S._state))

(Georgia_(U.S._state), country, United_States)

(Martin_Luther_King_Jr, citizenship, United_States)

together forms a piece of positive evidence of
an instantiated Horn clause, in which R1, R2

and R3 is replaced by birthP lace, country and
citizenship respectively. We conjecture that the
gradient descent optimization process of TransE
implicitly performs approximate logical inference
and evidence aggregation. In the above example
for each of the three triples, ||h+r−t|| (where bold
format represent a vector) is minimized once per
epoch (ignoring margin-based criterion), leading to
birthPlace+country ≈ citizenship. Thus, the in-
stantiated Horn clause together with its truth-value
may be represented by the correlation of vector rep-
resentations, and the truth-value may be reflected
in distance ||birthPlace+country−citizenship||.
Note that these three relations may appear in more
than one Horn clauses, so the gradients from the
evidences of a Horn clause may confuse with (or
conflict with) those from another Horn clause, for
example manufacturer + country ≈ made-
InCountry. The training process may force vector
birthPlace to be dissimilar with manufacturer,
otherwise, there may be hallucination in link pre-
diction or EA results. A similar explanation of
hallucination may apply to LLMs. A similar anal-
ysis applies to the vector representations of two
relations which frequently appear on the same head
entity (or tail entity). It’s arguable that the test set
link prediction process of TransE mainly relies on
Horn clauses, because from a logical perspective
there is scarcely any other information. In this pa-
per Horn clauses will not be extracted and managed,
leaving for further research.

MTransE (Chen et al., 2016) is a translational
embedding-based EA method. It encodes the two
KGs’ relational triples separately with the TransE
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loss criterion SK = Σ(h,r,t)||h + r − t||. It pro-
posed a "distance-based axis calibration" alignment
model in order to coincide the vectors of counter-
part entities or relations. The corresponding loss
is Sa2 = Σ||e1 − e2|| + ||r1 − r2|| (Sa2 only has
the first item if there is no available seed relation
alignment). The seed and derived alignments are
assumed to have e1 ≈ e2 and we see it as the em-
bedding representation of the similarity statement
e1 ↔ e2, with its truth-value somehow represented
by the distance ||e1 − e2||. Theoretically, the dis-
tance can’t simultaneously represent frequency and
confidence by itself, but more possibly a combined
effect. We argue that MTransE performs approxi-
mate inference that is similar with the type III path,
because if the learned embedding constraints of the
four premises are considered simultaneously, we
can get r1 ≈ r2 which we interpret as r1 ↔ r2.
Similarly, MTransE performs approximate infer-
ence of the type I path (with functionality omitted
and r1 → r2 replaced by r1 ↔ r2) to obtain de-
rived alignment results.

D.6 Relation with Embedding-path EA
Methods

Here we propose some preliminary explanations of
the similarity inference aspect of some embedding-
path EA methods from a theoretical perspective.

The first method to be discussed is BERT-
INT. It generates entity embedding using the
name/description information with BERT unit and
the embedding is C(e) = MLP (CLS(e)). It
uses pairwise margin loss to approximately enforce
C(e) ≈ C(e′). Different from MTransE which
performs path inference implicitly with the gradi-
ent optimization of loss criterions, BERT-INT ex-
plicitly performs path inference with its proposed
interaction model. Every element of the neighbor-
view interaction matrix represents a inference pro-
cess of a type I path. Its path omits functionality
and relation alignment (for BERT-INT fails to uti-
lize its proposed relation mask matrix). Because
of the ignorance of relation type, its premise (1)
and (4) has the form of (∗, x1, y1) → #r and
(∗, x2, y2) → #r which represents "There exists an
unspecified relation between x1/y1, and (another)
unspecified relation between x2/y2". Moreover,
its premise (5) fails to utilize derived alignments,
because BERT-INT is not iterative. With such
premises, BERT-INT’s type I path inference’s ef-
fectiveness is supposed to be lower than that of
NALA’s. Similarly, every element of the attribute-

view interaction matrix represents a type I path
which has attribute triples as premises (1) and (4).
BERT-INT’s evidence aggregation method is differ-
ent from NALA which uses probabilistic revision
and revision rules.

The second method to be discussed is FGWEA.
Its multi-view Optimal Transport (OT) alignment
step combines four cost matrices for the OT prob-
lem, that is, Csum = Cstru+Crel+Cname+Cattr.
Obtaining the cost matrices corresponds to the
similarity inference process and different matrices
correspond to different groups of inference paths.
Among them, Crel corresponds to a degenerated
type I path inference where relation alignment is
obtained by relation names and without the consid-
eration of functionality. Cstru corresponds to a fur-
ther degenerated type I path inference (similar with
BERT-INT’s neighbor-view interaction). Cname

corresponds to type II path inference. Cattr fails
to model the (fine-grained) attributive type I path
because it uses the concatenation of all attribute
triples of an entity.

In this paper, BERT-INT and FGWEA are classi-
fied as embedding-path EA methods because their
embedding module couples with the path inference
to some extent. In contrast, NALA, which we clas-
sify as path-based, performs path inference wher-
ever it can and uses embeddings minimally.

E Experiments

Dataset |E| |R| |TR| |TA|

DBP15KZH_EN
19,388 1,701 70,414 379,684
19,572 1,323 95,142 567,755

DBP15KJA_EN
19,814 1,299 77,214 354,619
19,780 1,153 93,484 497,230

DBP15KFR_EN
19,661 903 105,998 528,665
19,993 1,208 115,722 576,543

DBP15KfullZH_EN
66,469 2,830 153,929 379,684
98,125 2,317 237,674 567,755

DBP15KfullJA_EN
65,744 2,043 164,373 354,619
95,680 2,096 233,319 497,230

Table 3: Dataset statistics. |E|, |R|, |TR| and |TA| rep-
resent the number of entities, relation types, relation
triples and attribute triples in each KG, respectively.
The statistics of OpenEA benchmark datasets are in
(Sun et al., 2020)

E.1 Evaluation Metric & Environment
We use Hits@1 (which is the same metric as recall
for EA) as the sole evaluation metric of our main
results of DBP15K for the following reasons. Mean
Reciprocal Rank (MRR) is unavailable for NALA
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because it does not provide a alignment ranking
for the test entities. There exist a non-negligible
number of equivalent entity pairs that are not in
the ground-truth set of DBP15K, so the precision
and F1-score can’t be measured properly. We use
the precision (P), recall (R), and F1 score in the
ablation study of OpenEA benchmark datasets.

Our NALA model is implemented in java and the
BERT unit is implemented in python with PyTorch.
All experiments are performed on a Linux server
with an Intel(R) Xeon(R) Silver 4210R CPU @
2.40GHz, 251G RAM and a NVIDIA GeForce
RTX 3090 GPU.

E.2 Experimental Results on Full Version of
DBP15K

The aforementioned and widely used DBP15K
dataset version is reduced from a full version. That
is, any triple that does not contain an entity in
the 15k-15k 1-to-1 range is discarded, resulting
in 19k entities in both side of KG. Thus, the full
version has more entities and relation triples. Most
embedding-based EA methods rely on the 1-to-
1 range information to generate the rankings for
alignment. For the full version of DBP15K, such
information may have a bigger effect on EA per-
formance. As shown in Table 4, to our knowledge
only few methods have conducted experiments on
the full version, yet none of them is implemented
without 1-to-1 range. The results of other methods
are from (Cai et al., 2022) (RPR-RHGT). NALA
has reasonable Hits@1 performance even without
the help of 1-to-1 range information and greatly
surpasses other listed methods.

Method fullZH_EN fullJA_EN

NALA(without 1-to-1 range) 0.908 0.889
JAPE(with 1-to-1 range) 0.264 0.238

RDGCN(with 1-to-1 range) 0.621 0.812
RPR-RHGT(with 1-to-1 range) 0.693 0.886

NALA(with 1-to-1 range) 0.966 0.946

Table 4: Experimental results (Hits@1) on full version
of DBP15K. The experiments for NALA are based on
setting group 1, without attribute value embeddings.

E.3 Influence of Confidence Hyper-parameter
The experiment results of Figure 6 shows how en-
tity name/description embedding similarity con-
fidence Cname (without the adaptive setting of
Cname) affects Hits@1. These experiments are
performed on setting group 4 without using at-
tribute value embedding information. We adjust

Figure 6: Influence of Cname.

Cname with other conditions unchanged. The
Hits@1 curve is approximately concave and for
ZH_EN , JA_EN and FR_EN respectively, it
reaches maximum performance at 0.6, 0.55 and 0.8.
It shows that the informative embedding similar-
ity enhances the performance to different extents.
French is often regarded as more closely related to
English than Chinese or Japanese, so the BERT unit
learns representation easier and thus produces more
confident embedding similarity. Pretraining corpus
of the BERT unit may include relevant triples (in
the form of natural language sentences) which may
have same informational origin with DBpedia. So
the embedding similarity’s evidences may have an
overlap part with type I path’s evidences. The re-
vision rule is only appropriately used when the
two premises don’t share same evidence (or equiv-
alently their evidential bases do not overlap). So
the appropriate confidence value need to be lower
than the confidence of the BERT output (if it pro-
vides such information) in order to exclude the
overlap. The best-performance confidence of each
dataset is conjectured to reflect the combined influ-
ence of embedding quality of the BERT unit and
the evidence overlapping effect. The Cname con-
fidence value can be alternatively set equal to the
cosine similarity of the embeddings, resulting in
a slightly decreased performance. This is another
good choice if you want to avoid hyper-parameter
tuning.

F Algorithms
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Dataset LightEA-I NALA NALA(w/o attr)
D-W-15K-V1 0.732 0.780 0.625
D-W-100K-V1 0.642 0.732 0.528
D-Y-15K-V1 0.826 0.949 0.751
D-Y-100K-V1 0.781 0.927 0.700
D-W-15K-V2 0.951 0.938 0.902
D-W-100K-V2 0.926 0.919 0.857
D-Y-15K-V2 0.976 0.983 0.975
D-Y-100K-V2 0.977 0.984 0.913

Table 5: Experimental results (Hits@1) on OpenEA
benchmarks. The experiments for NALA are done with-
out attribute value embeddings.

Figure 7: Results of bootstrap steps of setting group 3.

Figure 8: Results of the iterations of the second boot-
strap step in setting group 3.

Algorithm 1: recursive bidirectional
matching

input :An array of linked list of similarity
sentences KG1_to_KG2, with each
linked list storing top-k similarity
sentences of an entity with descending
order.

output :Optimized 1-to-1 similarity sentences
(alignment results)

1 populates KG2_to_KG1 with all of the
sentences in KG1_to_KG2;

/* KG2_to_KG1 is another array of
linked list, arranging the
similarity sentences in the other
direction */

2 for e1 in E1 do
3 match_and_delete(e1, null);

Algorithm 2: match and delete
input :Entity e1, entity eprev .
/* e1 is the entity to be matched and

we assume that e1 belongs to KG1,
similarly otherwise. Entity eprev
represents the previous entity, that
is the concerned entity of the
recursion parent. */

output :entity ematch which forms a stable
matching with e1

1 for sentence in KG1_to_KG2(e1) do
2 e2← predicate_term of sentence;

/* predicate_term means the other
entity of the similarity
sentence */

3 if e2 == eprev then
4 ematch← eprev;
5 break;

6 else
7 e3← match_and_delete(e2, e1);
8 if e3 == e1 then
9 ematch← e2;

10 break;

11 for sentence in KG1_to_KG2(e1) except the
first node do

/* now that the first sentence for
e1 is bidirectionally matched,
we delete other sentences */

12 removes sentence from the linked list;
13 removes sentence’s counterpart in

KG2_to_KG1 which expresses the same
similarity in the other direction;

14 return ematch;
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Algorithm 3: NALA(supervised)
input :Two knowledge graphs KG1 and KG2.
output :Alignment result and other information.

1 run finetuning for BERT unit;
2 compute entity/value embeddings with the BERT

unit;
3 generate synthetic attribute triples for seed

alignments (for supervision);
4 load the knowledge graphs;
5 for iteration← 0 to end_iteration do
6 for y1 in E1 do

/* aligning for different
entities of E1 is divided
into multiple parallel
threads */

7 for x1, x2, y2 that forms a sound type I
path with y1 (depth-first) do

8 perform inference of type I path;
9 perform inference of type III path;

10 for y2 in E2 do
11 retrieve embedding similarity for

y1 ↔ y2;
12 perform inference of type II path;

13 filter the similarity sentences with
1-to-1 range assumption;

14 insert the sentences into a top-k
ordered linked list;

15 perform recursive bidirectional matching;
16 swapping;
17 save alignment results and evidence log file;
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Model
ZH_EN JA_EN D-W-15K-V2 D-Y-15K-V2 D-Y-100K-V2
Hits@1 Hits@1 P R F1 P R F1 P R F1

NALA 0.993 0.988 0.917 0.908 0.912 0.983 0.981 0.982 0.985 0.980 0.983
- w/o Evalue 0.980 0.980 - - - - - - - - -

- all_revision 0.964 0.912 0.857 0.814 0.835 0.899 0.871 0.885 0.402 0.312 0.351
- all_prob_revision 0.985 0.987 - - - - - - - - -

- w/o 1− to− 1_range 0.989 0.978 - - - - - - - - -
- w/o swapping 0.991 0.982 0.912 0.901 0.907 0.975 0.972 0.973 0.981 0.976 0.978

FGWEA 0.976 0.978 0.952 0.903 0.927 - - - - - -

Table 6: Ablation study of NALA. To be consistent with FGWEA, the experiments for NALA on DBP15K are
based on setting group 5. The experiments for NALA on OpenEA benchmarks are based on setting group 2, without
attribute value embeddings.
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