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Abstract

Large Language Models (LLMs), when used in
educational settings without pedagogical fine-
tuning, often provide immediate answers rather
than guiding students through the problem-
solving process. This approach falls short of
pedagogically best practices and limits their ef-
fectiveness as educational tools. We term the
objective of training LLMs to emulate effective
teaching strategies as ‘pedagogical alignment.’
In this paper, we investigate Learning from Hu-
man Preferences (LHP) algorithms to achieve
this alignment objective. A key challenge in
this process is the scarcity of high-quality pref-
erence datasets to guide the alignment. To ad-
dress this, we propose a novel approach for
constructing a large-scale dataset using syn-
thetic data generation techniques, eliminating
the need for time-consuming and costly manual
annotation. Leveraging this dataset, our experi-
ments with Llama and Mistral models demon-
strate that LHP methods outperform standard
supervised fine-tuning (SFT), improving peda-
gogical alignment accuracy by 13.1% and 8.7%
respectively. Existing evaluation methods also
lack quantitative metrics to adequately mea-
sure the pedagogical alignment of LLMs. To
address this gap, we propose novel perplexity-
based metrics that quantify LLMs’ tendency to
provide scaffolded guidance versus direct an-
swers, offering a robust measure of pedagogical
alignment. Our analysis provides compelling
evidence for the superiority of LHP methods
over SFT in optimizing LLMs’ behavior, under-
scoring the potential of LHP methods in better
aligning LLMs with educational objectives and
fostering effective learning experiences. Code
and models are available here.

1 Introduction

Large Language Models (LLMs) are increasingly
being aligned with the ‘3H’ principle - honesty,

∗Equal contribution.

harmlessness, and helpfulness (Askell et al., 2021).
However, these definitions often require domain-
specific adaptations to be truly effective. In educa-
tional contexts, for instance, ‘helpfulness’ takes on
a new meaning; rather than providing immediate
answers, LLMs should guide students through a
structured step-by-step problem-solving processes
to encourage active learning and critical thinking
(Paul and Elder, 1995; Prince, 2004; Chi, 2009).
This objective, which we term ‘pedagogical align-
ment,’ involves breaking complex problems into
manageable steps and providing hints and scaf-
folded guidance rather than direct answers (Brans-
ford et al., 2000; Hattie and Timperley, 2007). Pre-
vious adaptation of LLMs for education, such as
the CLASS framework (Sonkar et al., 2023), relied
on supervised fine-tuning (SFT). However, SFT
doesn’t explicitly favor pedagogically effective re-
sponses, a key aspect of pedagogical alignment
(Christiano et al., 2017; Ziegler et al., 2019).

In this paper, we propose a novel approach
to achieve pedagogical alignment by modeling it
as learning from human preferences (LHP). This
method allows us to represent desired teaching be-
haviors as preferences, enabling more nuanced op-
timization than SFT. However, a significant chal-
lenge in applying LHP is the scarcity of high-
quality, pedagogically-sound preference data. To
address this, we introduce a key innovation: lever-
aging the structured output from the CLASS frame-
work (Sonkar et al., 2023) to create meaningful
preference pairs of pedagogically aligned and mis-
aligned responses. This enables us to generate a
large-scale, synthetic preference dataset that trans-
forms abstract tutoring principles into concrete,
comparative examples, allowing LHP algorithms
to learn effective teaching strategies.

Next, using this preference dataset, we study
the effectiveness of three LHP algorithms: Direct
Preference Optimization (DPO) (Rafailov et al.,
2023), Identity Preference Optimization (IPO)
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Figure 1: The image depicts the comparison between a traditional Large Language Model (LLM) interaction (left)
and a pedagogically-aligned LLM interaction (right). The traditional LLM directly provides the user with the answer,
while the pedagogically-aligned LLM guides the student to the solution by presenting a series of subproblems. This
elucidates the concept of pedagogical alignment, emphasizing the transformation from direct problem-solving to a
guided, scaffolded learning experience.

(Azar et al., 2023), and Kahneman Tversky Op-
timization (KTO) (Ethayarajh et al., 2024) for ped-
agogical alignment of three open-source LLMs -
Llama (Dubey et al., 2024), Mistral (Jiang et al.,
2023) and Zephyr (Tunstall et al., 2023). We eval-
uate the LLMs using pedagogical alignment accu-
racy and F1 score which measure if the models pro-
duce the desired pedagogical responses. Our results
show that DPO and KTO significantly improve
Llama, Mistral and Zephyr’s performance, improv-
ing pedagogical alignment accuracy by 13.1%,
8.7% and 50.0%, respectively, compared to SFT.

Existing evaluation methods for LLMs in edu-
cation also fail to adequately quantify pedagogical
alignment. To address this gap and compare LHP
with SFT, we introduce a second preference dataset
generation technique and a novel perplexity-based
evaluation approach. This allows us to quantita-
tively measure an LLM’s tendency to provide step-
by-step guidance versus direct answers, offering a
robust metric for pedagogical alignment. Using our
technique we generate pedagogically misaligned
actions, which we then compared to the aligned ac-
tions in terms of perplexity. Our analysis revealed
that base models are more inclined to provide direct
solutions than offer hints and guidance. While SFT
partially corrects this behavior, it doesn’t fully opti-
mize it. However, LHP dramatically optimizes this
behavior, promoting guidance over direct solutions.

This shift in behavior underscores the effective-
ness of LHP in aligning LLMs with educational
objectives, providing compelling evidence for its
superiority over SFT in fostering effective learning
experiences.

2 Related Work

2.1 Algorithms for LHP
Recent developments in the field of learning from
human preferences (LHP) and reinforcement learn-
ing through human feedback (RLHF) present
promising alternatives for pedagogical alignment.
RLHF refines LLM’s behavior based on human-
derived preferences or feedback, promoting a more
profound congruence with human ethical standards
and objectives. The seminal work by (Ziegler et al.,
2019) introduced the concept of leveraging hu-
man preferences to steer the fine-tuning process
of language models, thereby laying the founda-
tional stone for RLHF. Subsequent advancements
(Nakano et al., 2021; Ouyang et al., 2022) have
led to notable enhancements in the RLHF pipeline,
augmenting alignment efficiency and overall model
performance.

More recently, Direct Preference Optimization
(DPO) (Rafailov et al., 2023) has emerged as a
streamlined and robust advancement over RLHF,
offering superior performance by forgoing the ne-
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Prompt: Your goal is to create a mock
conversation between Student and a Tutorbot
, an AI-powered chatbot designed to help
Student's with a question:

"Student": "Q. {problem}",
"Evaluation of Student Response": "..",
"Action Based on Evaluation": "..",
"Subproblem State": "..",
"Tutorbot": "Let's break the problem into

subproblems and tackle the subproblems one
by one. Let's begin with the first
subproblem...",

Evaluation of Student Response:
a) Evaluating Incorrect Responses
b) Evaluating Correct Responses
c) Evaluating Partially Correct Responses
d) Evaluating Ambiguous or Unclear or Short

Responses
e) Redirecting Off-topic Responses
f) Responding to Student Inquiries
g) N/A

Prompt continues:
If "a" is the evaluation, then:

Action 1) Promptly notify the student about

the mistake, Provide constructive feedback
to pinpoint the errors, Offer helpful hints

Action 2) Step in to provide a solution if the

student is unable to answer even after
multiple attempts.

...
If "c" is the evaluation, then:

Action 4) Acknowledge the accurate parts,

Promptly notify the student about the
mistake, Provide constructive feedback to
pinpoint the errors, Offer helpful hints

Action 5) Step in to provide a solution if the

student is unable to answer after multiple
attempts

...

Subproblem states=:
x) One of the subproblems is currently being

solved
y) Subproblem finished, moving to next

subproblem
...

Table 1: Synthetic conversational data generation prompt of CLASS framework. While CLASS introduced actions
for interpretability, in our work we utilize these actions in a novel way to construct a preference dataset that
distinguishes pedagogically preferred responses from less effective ones for training our LHP models.

cessity for an explicit reward model. DPO en-
hances alignment efficiency by directly optimizing
a preference-based loss function, thereby simpli-
fying the implementation and the operational ef-
ficiency. DPO is designed to directly leverage a
dataset of preferences, represented as (x, yw, yl),
where each tuple consists of a prompt x, a preferred
response yw, and a dis-preferred response yl. Let,
πθ be the LLM being finetuned, and πref be a ref-
erence LLM (generally an SFTed model). Then,
DPO’s optimization problem can be written as:

W = β log
πθ(yw|x)
πref(yw|x)

, L = β log
πθ(yl|x)
πref(yl|x)

,

LDPO(πθ;πref) = −E(x,yw,yl)∼D [W − L] (1)

where σ is the sigmoid function, and β is an
algorithmic parameter.

DPO tends to overfit to the preference dataset
and is sensitive to hyperparameter tuning. Recently
Identity Preference Optimization (IPO) (Azar et al.,
2023) was introduced to address DPO’s overfitting
issues. With addition of a regularization term to
the DPO’s loss function, IPO also trains models

to convergence without requiring early stopping
using:

LIPO(πθ;πref) = −E(x,yw,yl)∼D[(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

− 1

2β

)2
]

Both DPO and IPO methodologies necessitate
a dataset comprising paired preferences, denoted
as (x, yw, yl). The assembly of such datasets in a
real-world context is notably labor-intensive and
financially burdensome. Kahneman-Tversky Opti-
mization (KTO) (Ethayarajh et al., 2024) presents
a solution to this challenge by introducing a loss
function formulated exclusively on the basis of sin-
gular instances identified as “good” or “bad”.

All three methods, DPO, IPO, and KTO, re-
quire a dataset consisting of prompts, accepted
responses, and rejected responses. The curation
of such datasets in a real-world context is notably
labor-intensive and financially burdensome. How-
ever, in the subsequent section, we introduce our
innovative reward/preference data generation ap-
proach, which effectively circumvents these chal-
lenges, paving the way for cost-effective pedagogi-
cal alignment of LLMs.
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2.2 Synthetic Student Data Generation

To create our preference dataset, we adapt the
CLASS framework (Sonkar et al., 2023) that uses
GPT-4 (Bubeck et al., 2023) to generate synthetic
conversational datasets. These datasets simulate a
range of interactions between students and GPT-4
using various prompts. An example prompt is illus-
trated in Table 1. The prompt instructs the model
to first evaluate the student response (Evaluation
of Student Response), consider which action to
employ (Action based on Evaluation), determine
the sub-problem (Subproblem State), and condi-
tioned on these fields generate the reply to the stu-
dent. While the CLASS framework introduced
these fields to enhance interpretability for teachers
and other educational stakeholders, we utilize them
differently to construct a preference dataset, as we
will discuss in the next section.

3 Preference Data Generation for
Pedagogical Alignment

In this section, we describe our DPO, IPO, and
KTO compatible data generation pipeline which
we also outline in Figure 2. The objective is to gen-
erate a preference dataset Dp which necessitates
distinguishing between pedagogically chosen and
rejected tutor responses based on their alignment
with desired scaffolding strategies. Dp will mimic a
dataset structure that is compatible with DPO, IPO,
and KTO to optimally represent these preferences.
This dataset has three fundamental components:
context, chosen, and rejected. In our case, the con-
text represents the accumulated conversational his-
tory between the student and the tutor leading up
to a particular interaction point, providing the nec-
essary backdrop for the tutor’s next dialogue turn.
The chosen contains the pedagogically preferred
or optimal tutor responses to the context, while re-
jected includes those tutor responses considered
less effective or misaligned with the scaffolding
approach.

Conversational Dataset Dc and Agents: We
use the conversational prompt listed in Table
1 to generate a dataset represented by Dc =
{(xi,yi)|i = 1, . . . , N}, comprising N student-
tutor conversational turns. Each x represents a se-
quence of student utterances, and each correspond-
ing y represents the tutor response.

To generate the preference dataset Dp from Dc,
we employ three autonomous agents: GPT-student
(AG), GPT-tutor (AT), and SFT-tutor (AS). The

conversation starts with GPT-student AG posing
a question (Q) sourced from a question bank to
which both GPT-tutor AT and SFT-tutor AS pro-
vide responses in the following JSON structure:

yi =





“Eval of Student Response": “a, b, c, . . . , g"
“Action Based on Eval": “1, 2, 3, . . . , 12",
“Subproblem State": “w, x, y, z",
“Subproblem": “...",
“Tutorbot": “..."

Defining Context: We define the context Ct

for any given response at time t as all preceding
conversational turns up to that point:

Ct = {(x(t)
i ,y

(t−1)
i )|i < t},

where x
(t)
i denotes the sequence of student re-

sponse till time t, and y
(t−1)
i denotes all tutor re-

sponses up to, but not including, the response at
time t. This construction provides a detailed back-
drop for each next tutor interaction, feeding into
the decision mechanism for chosen and rejected
responses.

Preference Dataset Dp Construction: Given
this understanding of context, Dp is structured to
encapsulate interactions where the pedagogically
preferred (chosen) response diverges from the al-
ternative (rejected) based on specific pedagogical
criteria. This divergence is identified by a func-
tion f that assesses the pivotal attributes of each
response. Hence, Dp is defined as:

Dp =
{
(Ct,y

Chosen
t ,y

Rejected
t ) |yChosen

t = yAT
t ,

y
Rejected
t = yAS

t , and f(yAT
t ) ̸= f(yAS

t ),

∀t ∈ {1, . . . , N}
}

where Ct = x, yw = ychoosen, yl = yrejected
from DPO equation (2.1) from section 2.1, and the
function f is the key to distinguishing between cho-
sen and rejected tutor responses. f indicates a dis-
crepancy between AT’s and AS’s responses if any
of the fields “Evaluation", “Action Based on Evalu-
ation", or “Subproblem State" diverge between AT
and AS, f asserts AT’s response as preferable, un-
der the assumption that AT offers a more accurate
pedagogical model, alongside the rejected response
from AS. Figure 2 illustrates this conception with
a concrete example: GPT-tutor (AT) and SFT-tutor
(AS) provide different responses since the Action
fields are different, so we choose the GPT-tutor
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Figure 2: This figure shows the process of generating pedagogically-aligned preference data using the CLASS
framework. The GPT-student asks a question, to which both the GPT-tutor and SFT-tutor respond. The key focus
here is on the divergence in the ‘Action Based on Evaluation’ between the two tutors. In this example, the GPT-tutor’s
response is deemed more pedagogically aligned because it encourages the student to engage in critical thinking and
attempt the problem again, instead of directly providing the correct answer. This action mismatch between the two
tutor responses allows us to construct a preference dataset that distinguishes between the pedagogically preferred
(chosen) and less effective (rejected) responses.

response as the accepted one and the SFT-tutor
response as the rejected one. This condition is cap-
tured through the function f—mapping responses
to their pedagogical attributes:

f(yA
i ) =

(
Eval(yA

i ),Action(yA
i ),Subprob(y

A
i )

)

• Eval(yA
i ) extracts insights on the tutor’s grad-

ing of student’s solution or question under-
standing.

• Action(yA
i ) outlines the tutor’s recommended

actions based on the evaluation.

• Subprob(yA
i ) provides an understanding of

the tutor’s perception of the student’s current
understanding or progress on sub-problems
within a larger problem context.

The evaluation of these attributes by f facilitates
an objective basis to deem one response as chosen
(preferable) and another as rejected (less aligned
with desired pedagogical outcomes) through a sys-
tematic assessment of their pedagogical value and
alignment.

4 Experiments

In this section, we provide a comprehensive
overview of our dataset construction, experimental
design, and the subsequent findings derived from
the application of state-of-the-art LHP algorithms
to train pedagogically-aligned LLMs.

4.1 Dataset and Evaluation

Our experimental design requires an extensive con-
versational dataset to train and test SFT and LHP
models effectively. The CLASS framework used
GPT-4 to generate 610 conversations to train their
SFT model. However, we need to generate a larger
volume of conversations to train LHP models and
conduct comprehensive testing. Following the strat-
egy outlined by CLASS, we set about creating these
additional conversations. We used the CLASS scaf-
folding prompt to generate the problems, subprob-
lems, and associated hints, which were based on
biology topics from OpenStax college textbooks
(Clark et al., 2018). These problems seed the con-
text of the conversations generated through GPT-4
in the next step using the CLASS conversational
prompt. In these simulated student-tutor conversa-
tions, the tutor uses the subproblems and hints to
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Model Metric SFT DPO IPO KTO
Llama Acc 64 (62, 61, 70) 77 (74, 74, 84) 74 (71, 70, 81) 75 (73, 71, 82)

F1 0.51 (0.54, 0.44, 0.55) 0.57 (0.62, 0.51, 0.59) 0.54 (0.57, 0.47, 0.57) 0.54 (0.58, 0.47, 0.58)
Mistral Acc 65 (61, 61, 72) 74 (71, 69, 80) 71 (67, 67, 79) 72 (69, 69, 79)

F1 0.47 (0.49, 0.41, 0.5) 0.52 (0.54, 0.47, 0.56) 0.5 (0.53, 0.45, 0.54) 0.51 (0.54, 0.46, 0.53)
Zephyr Acc 23 (22, 21, 26) 73 (71, 70, 79) 72 (70, 69, 78) 75 (72, 72, 81)

F1 0.26 (0.29, 0.23, 0.25) 0.55 (0.58, 0.45, 0.62) 0.52 (0.57, 0.45, 0.55) 0.56 (0.59, 0.47, 0.62)

Table 2: SFT vs DPO, IPO, KTO. Each cell displays the average accuracy and F1 score across three classification
fields: Evaluation of Student Response, Action Based on the Evaluation, and Subproblem State. We observe
consistent improvements in both accuracy and F1 score for all three alignment algorithms—DPO, KTO, and
IPO—compared to their SFT counterparts across the models Llama (Llama-3.1-8B-Instruct), Mistral (Mistral-7B-
Instruct-v0.2), and Zephyr (zephyr-7b-beta). Notably, DPO and KTO consistently outperform IPO for all models.

guide the student toward the final answer. Through
this methodology, we successfully generated an
additional 1128 conversations, resulting in 1738
conversations. Each conversation, on average, com-
prises approximately 8 rounds and 1311 words.
This dataset provides a solid platform for training
and evaluating SFT and LHP models.

To partition the training and testing set for SFT
and LHP, we randomly sampled our conversational
dataset into three partitions: SFT training dataset
Dc (600 conversations), LHP training dataset Dp

(600 conversations), and test dataset Dt (450 con-
versations). As each round within the conversation
is processed into a separate question-answer (QA)
pair, Dc contains 4942 QA pairs, Dp contains 4921
QA pairs, and Dt contains 3701 QA pairs.

For the evaluation, we focus on the three clas-
sification fields within the model JSON responses
described in Section 3: Evaluation of Student Re-
sponse, Action Based on Evaluation, and Subprob-
lem State. We employ accuracy and F1 score in
these three fields to measure the pedagogical align-
ment of LLMs since these metrics offer a com-
prehensive view of the model’s performance in
evaluating the correctness of the responses (Eval-
uation of Student Response), the appropriateness
of the actions (Action Based on Evaluation), and
the state of problem-solving (Subproblem State).
Hence, LLMs that achieve higher accuracy and F1
score in these fields are considered to provide more
pedagogically aligned assitance to students.

4.2 Models and and Training Details

We experimented on three different LLMs:
Llama (Llama-3.1-8B-Instruct), Mistral (Mistral-
7B-Instruct-v0.2) and Zephyr (zephyr-7b-beta)
with beta of 0.1 for DPO, IPO, and KTO across
all models. Our experiments included training and
evaluating SFT and LHP models. It took around

18 NVIDIA A6000 GPU hours for one cycle (SFT
+ Data Generation + LHP + Evaluation). A total
of 9 cycles, which are 162 GPU hours, are needed
to complete all the experiments. We conducted
the SFT experiments using FastChat (Zheng et al.,
2023). For the choice of SFT hyperparameters,
we refered to parameters used to instruct fine-tune
Vicuna (Zheng et al., 2023): We employed a learn-
ing rate of 2 × 10−5 with the AdamW optimizer
(Loshchilov and Hutter, 2019), a batch size of 16, a
cosine scheduler, a weight decay of 0.05, a warmup
ratio of 0.1, and a total of 3 epochs. We conducted
the LHP experiments using TRL (von Werra et al.,
2020). For the choice of LHP hyperparamters, we
use beta of 0.1, a learning rate of 1e− 7 with the
AdamW optimizer, a batch size of 16, a cosine
scheduler, a weight decay of 0.05, a warmup ratio
of 0.1, and a total of 3 epochs.

4.3 Main Findings: SFT vs LHP

In this experiment, we compared three alignment
algorithms: Direct Preference Optimization (DPO),
Identity Preference Optimization (IPO), and Kah-
neman Tversky Optimization (KTO) on the SFT
models. We measured the accuracy and F1 score
across three classification fields in the responses:
Evaluation of Student Response, Action based on
Evaluation, and Subproblem State.

We observed substantial performance improve-
ments across all three SFT models—Llama, Mis-
tral, and Zephyr. Specifically, Llama achieved ac-
curacy gains of 13.1%, 10.1%, and 10.9% from
DPO, IPO, and KTO, respectively. Mistral demon-
strated increases of 8.7%, 6.1%, and 7.4%, while
Zephyr showed improvements of 50.0%, 50.2%,
and 52.0% (Table 2). A similar trend was observed
in F1 scores: Llama exhibited increases of 6.3%,
2.7%, and 3.2%, Mistral showed gains of 5.6%,
3.7%, and 4.3%, and Zephyr saw improvements of
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29.3%, 26.7%, and 30.2% for DPO, IPO, and KTO,
respectively. Notably, DPO and KTO significantly
outperformed IPO across all models. Also note
these results are for a fixed beta of 0.1. As we show
in section 4.6, beta hyperparameter tuning can fur-
ther boost the performance of LHP algorithms.

This experiment shows the pivotal role of align-
ment algorithms in improving the accuracy and F1
score of SFT models. All models – Llama, Mis-
tral and Zephyr exhibit pronounced improvements
using LHP algorithms compared to SFT.

4.4 Pedagogical Shifts: Perplexity
Comparison of SFT and LHP

For understanding the effectiveness of LHP algo-
rithms compared to SFT, we propose a second pref-
erence dataset generation technique. This tech-
nique specifically allows us to perform a perplexity
analysis to compare the LLM’s tendency to provide
hints and guidance versus direct responses.

Dataset Construction: The essence of peda-
gogical alignment is the LLM’s propensity to offer
guidance (as seen in Actions 1 and 4) over direct
solutions (as in Actions 2 and 5). By this definition,
Action 2 can never precede Action 1, and likewise,
Action 5 can never precede Action 4 (for more de-
tails about actions please refer to Table 1). With
this critical insight, we use GPT-4 to generate peda-
gogically misaligned Actions (Action 2 for the first
occurrence of Action 1 and Action 5 for the first oc-
currence of Action 4). This approach allows us to
compare the perplexity of responses corresponding
to Action 1 and its misaligned counterpart Action
2, and similarly for Actions 4 and 5.

We then use this newly constructed Action
dataset to evaluate the perplexity of responses gen-
erated by the original instruct model (Base) to its
SFT and LHP variants.

Perplexity Findings: Our analysis, as shown in
table 3), reveals interesting patterns across the three
models: (A) Llama: The base model shows similar
perplexity across all actions, indicating no strong
preference for guidance or direct solutions. SFT
increases perplexity for Actions 2 and 5, shifting
towards more guidance. Both DPO and KTO fur-
ther optimize this behavior, with DPO showing the
lowest perplexity for Actions 1 and 4; (B) Mistral:
The base model shows slightly higher perplexity
for Actions 1 and 2. SFT dramatically increases
perplexity for Actions 2 and 5, strongly favoring
guidance. DPO and KTO further reduce perplexity

for Actions 1 and 4, with DPO showing slightly
better optimization; (C) Zephyr: The base model
shows relatively uniform perplexity across actions.
SFT significantly increases perplexity for Actions
2 and 5. DPO and KTO further optimize this behav-
ior, with DPO showing lower perplexity for Actions
1 and 4, while KTO shows higher perplexity for
Actions 2 and 5.

These results demonstrate that SFT partially
shifts model behavior towards providing more guid-
ance, but LHP methods (DPO and KTO) further
optimize this behavior. For Mistral and Zephyr,
LHP methods dramatically increase the perplexity
gap between guidance actions (1 and 4) and direct
solution actions (2 and 5), indicating a significant
shift towards pedagogical alignment. The perplex-
ity analysis provides compelling evidence for the
effectiveness of LHP methods in achieving peda-
gogical alignment, consistently outperforming SFT
across all three models.

Model A1 A2 A4 A5
Llama (Base) 2.02 2.04 2.07 2.01
Llama (SFT) 1.77 2.44 1.87 2.45
Llama (DPO) 1.70 2.45 1.78 2.43
Llama (KTO) 1.74 2.48 1.81 2.46
Mistral (Base) 2.11 2.06 2.01 1.97
Mistral (SFT) 2.06 5.51 2.14 5.37
Mistral (DPO) 1.86 5.49 1.93 5.31
Mistral (KTO) 1.90 5.01 1.98 4.93
Zephyr (Base) 2.05 2.09 2.04 2.07
Zephyr (SFT) 2.09 13.9 2.18 13.06
Zephyr (DPO) 1.91 16.44 1.97 15.66
Zephyr (KTO) 1.97 16.76 2.03 16.16

Table 3: Perplexity analysis of model responses cor-
responding to different actions. Lower perplexity for
Actions 1 and 4 indicates a higher likelihood of pro-
viding scaffolded guidance like hints, while higher per-
plexity for Actions 2 and 5 suggests a lower tendency
to offer direct solutions. Results show SFT partially
improves pedagogical alignment, while LHP methods
(DPO, KTO) further optimize it by widening the per-
plexity gap between guidance (Actions 1, 4) and direct
solution (Actions 2, 5) responses. For more details about
actions please refer to Table 1.

4.5 Pedagogical Consistency Over Time: SFT
vs. LHP in Extended Conversations

To assess the robustness and consistency of peda-
gogical alignment across extended conversations,
we conducted an in-depth analysis of model accu-
racy across multiple conversation rounds. This
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Figure 3: Comparison of multi-round performance for SFT vs. LHP methods (DPO, IPO, KTO) across Llama,
Mistral, and Zephyr models. The graphs illustrate average accuracy over 8 conversation rounds, revealing the
superior performance of LHP methods in maintaining pedagogical alignment across extended conversation context.
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Figure 4: Performance of LHP algorithms (DPO, IPO, and KTO) as a function of beta. Our results indicate that
KTO outperforms both DPO and IPO with optimal beta hyperparameter search.

analysis is important because as conversations
progress, the context becomes more complex and
lengthy, potentially challenging the model’s ability
to maintain consistent pedagogical alignment.

The analysis reveals striking differences in peda-
gogical alignment between SFT and LHP methods
across all three models. As can be seen in Fig-
ure 3, Llama’s SFT model shows a clear decline
in alignment as conversations progress, dropping
from 75% to 60% by round 8, while LHP meth-
ods maintain consistent alignment around 75%.
Mistral and Zephyr demonstrate even more pro-
nounced contrasts. Their SFT models struggle with
pedagogical alignment in extended conversations,
with Mistral fluctuating between 63 − 69% and
Zephyr performing poorly at 11 − 30%. In stark
contrast, all LHP approaches (DPO, IPO, KTO)
for both models maintain high pedagogical align-
ment above 70% throughout, with Zephyr show-
ing the most dramatic improvement over its SFT
counterpart. This consistent performance of LHP
methods across all models, particularly in later con-
versation rounds, underscores their effectiveness in
maintaining pedagogical alignment even as context
complexity increases.

These results demonstrate that LHP-aligned
models maintain high pedagogical alignment even

with increasing context length, unlike SFT mod-
els which tend to degrade in performance over ex-
tended conversations. This robustness is crucial
for effective tutoring, as it ensures the model can
provide reliable guidance throughout a problem-
solving session, regardless of its context length.

4.6 Effect of Beta on LHP Algorithms

In this experiment, we analyze the impact of the
beta parameter on the performance of LHP algo-
rithms. Beta is a key hyperparameter in all three
alignment algorithms (DPO, IPO, and KTO). It
controls the strength of the Kullback-Leibler di-
vergence penalty between the trained model and
the reference model within the loss function. The
choice of beta depends on the specific model and
dataset and thus necessitates an empirical study.
As we show next, beta hyperparameter tuning can
significantly affect the performance of LHP algo-
rithms, with KTO emerging as the top performer.
Similar to experiments in Section 4.3, we measure
the average accuracy and F1 score across the three
classification fields. We find that the performance
of all three algorithms is sensitive to the choice
of beta, but to varying degrees and with different
optimal values for each algorithm and model.

For DPO, we observe that lower beta values (0.1
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or 0.3) generally yield the best results. Llama
achieved the highest average accuracy of 77.3%
and average F1 score of 0.57 with beta as 0.1. Mis-
tral performed best with beta = 0.1, reaching 74.1%
accuracy and 0.52 F1 score. Zephyr showed similar
performance for beta = 0.1 and 0.3, with a slight
edge for 0.1 (73.4% accuracy, 0.55 F1 score).

IPO demonstrated less sensitivity to beta
changes, especially for Llama and Mistral. Llama’s
performance peaked at beta = 0.6 with 74.9% ac-
curacy and 0.54 F1 score. Mistral showed mini-
mal variation, with slightly better results at beta
= 0.6 (71.4% accuracy, 0.51 F1 score). Zephyr
performed best with beta = 0.3, achieving 72.6%
accuracy and 0.55 F1 score.

KTO emerged as the top performer, showing
consistent improvement with increasing beta values
across all models. For Llama, performance peaked
at beta = 0.9 with 78.1% accuracy and 0.57 F1
score. Mistral also showed best results at beta =
0.9, reaching 74.7% accuracy and 0.51 F1 score.
Zephyr demonstrated steady improvement, with
optimal performance at beta = 0.9 (75.7% accuracy,
0.55 F1 score).

Notably, with optimal beta values, KTO outper-
forms both DPO and IPO across all models, empha-
sizing its effectiveness in pedagogical alignment
tasks when properly tuned. Our findings under-
score the necessity of careful hyperparameter tun-
ing in LHP algorithms to achieve optimal pedagog-
ical alignment. They also suggest that KTO, when
properly tuned, may be particularly well-suited for
tasks requiring sustained pedagogical alignment.

5 Conclusion

In this paper, we have investigated the application
of learning from human preferences (LHP) meth-
ods to align LLMs with educational goals, aiming
to foster optimal student learning outcomes. By
constructing a preference dataset specifically de-
signed for pedagogical alignment, we have laid
the foundation for enhancing the effectiveness of
LLMs in educational contexts. Our experimen-
tal results, derived from applying LHP alignment
algorithms on state-of-the-art open-source LLMs,
demonstrate the superiority of LHP methods over
standard supervised fine-tuning (SFT), significantly
improving the alignment of LLMs with pedagogi-
cal objectives. Our another key contribution is the
development of a novel approach for evaluating the
pedagogical effectiveness of LLMs. By curating

a preference dataset that compares the perplexity
of responses offering scaffolding versus those pro-
viding direct solutions, we have introduced a new
methodology that quantifies the extent to which
LLMs prioritize pedagogically effective actions.
This approach opens up new possibilities for as-
sessing and optimizing the performance of LLMs
in educational settings, providing a valuable tool
for researchers and practitioners alike.

6 Limitations

While our methodology shows promising results,
there are certain inherent limitations that are chal-
lenging to overcome. One such limitation is the
dynamic and complex nature of the educational
landscape. The effectiveness of our approach may
vary depending on a multitude of factors, including
the diversity of student learning styles, the evolv-
ing nature of educational content, and the rapid
advancements in AI technology. Additionally, com-
putational constraints may also limit the scalability
of our approach in larger, more diverse educational
settings. More comprehensive user studies can
assess the impact of these aligned models in real-
world educational settings.

7 Ethics and Risks

The use of LLMs in education comes with ethical
considerations and potential risks. These include
the need to ensure the models do not amplify biases,
the importance of protecting sensitive student data,
and the necessity of maintaining human guidance
in the learning process. In addition, the impact
of LLMs on learning outcomes should be contin-
uously evaluated to ensure their effectiveness and
avoid unintended negative consequences.
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