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Abstract

This paper explores the application of Varia-
tional Autoencoders (VAE) in text generation,
focusing on overcoming challenges like poste-
rior collapse and the limitations of simplistic
prior distributions. We investigate a transition
from VAE to text autoencoders (AE), which
model a compact latent space and preserve the
capability of the language model itself. Our
method involves layer-wise latent vectors regu-
larized by orthogonal constraints to encourage
distinct semantic spaces. In particular, we esti-
mate an empirical prior online from the learned
latent vectors to support sampling during gen-
eration like VAE. Experimental results on stan-
dard benchmarks demonstrate that the autoen-
coders generate higher quality and more diverse
text than the state-of-the-art VAE-based Trans-
former models, offering an effective alternative
for generative language modeling.

1 Introduction

Variational Autoencoder (VAE) offers an effective
approach to train generative models with latent
variables (Kingma and Welling, 2014; Rezende
et al., 2014). By adopting the paradigm for train-
ing language models, the latent variables can help
to capture the underlying causal structure of the
generative process more effectively, and provide an
interpretable representation of high-level features
like topics or syntactic properties (Bowman et al.,
2016; Hu et al., 2017; Hu and Li, 2021; Hu et al.,
2022). Moreover, representing sentences in a low-
dimensional latent space facilitates manipulation
and guided generation using interpretable vector
operators. VAEs have demonstrated their success
in generating stylistic text (John et al., 2019; Hu
and Li, 2021), stories (Yu et al., 2020; Fang et al.,
2021), and dialog (Yang et al., 2023). Optimus (Li
et al., 2020), the pioneering large-scale pretrained
VAE for text, underscoring the advantages high-
lighted during the pre-training phase.
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Figure 1: Illustration of VAE and AE-based models.

While VAEs possess promising theoretical ad-
vantages, they face challenges such as posterior
collapse (Bowman et al., 2016; van den Oord et al.,
2017; Dai and Wipf, 2019), Successfully training
these models necessitates the use of carefully de-
signed techniques (Bowman et al., 2016; Higgins
et al., 2017; Yang et al., 2017; He et al., 2019;
Fu et al., 2019), and the learned posterior often
deviates significantly from the hypothetical prior,
leading to undermining the quality of the generated
text. The drawbacks of VAE can be attributed to
the simplistic prior and its restriction on the latent
distribution induced by the KL divergence term
(Dai and Wipf, 2019) (the upper part of Figure 1).
Following the practice of VAE in image generation,
text VAE adopts such a prior to represent plausi-
ble language. However, autoregressive language
models themselves possess a strong ability to gen-
erate linguistically valid outputs, which weaken the
role of the hypothetical prior (Bowman et al., 2016;
Yang et al., 2017; Hu et al., 2022).

Based on the above observations, we investi-
gate the potential of AE in achieving what can be
achieved by text VAE. Typically, VAE degenerates
to AE when removing the regularization of samples
to the prior. The text AE precisely preserves the
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semantics of the input but lacks the capability of
generative modeling, specifically the ability to sam-
ple novel latent vectors. To address this issue, we
propose to estimate the prior based on the learned
features of AE, i.e., empirical prior distribution.
The whole model is illustrated in the lower half of
Figure 1. Specifically, we introduce multiple la-
tent vectors for AE induced from different encoder
layers. To encourage the development of expres-
sive and distinct semantic space, we regularize the
latent vectors with an orthogonal regularization.
The empirical prior is derived by summarizing the
distribution of the latent vectors from the train-
ing data while respecting the modeling capability
of the language model itself, and we employ an
online method to estimate the empirical prior for
efficiency.

We conduct experiments on the standard bench-
marks used to evaluate text VAE in terms of re-
construction perplexity and evaluation of generated
samples. Whether using deterministic latent vec-
tors or sampling the latent vectors from the empiri-
cal posterior, the perplexity of the AE is lower than
that of the VAE models. The underlying reason is
that not adding a simplistic prior avoids interfering
with the language model’s own capability, greatly
increasing fidelity. In terms of generation, the text
generated using sampling from the empirical prior
distribution outperforms the state-of-the-art VAE
models (e.g., DELLA (Hu et al., 2022)) on qual-
ity and diversity. The analyses demonstrate that
the AE model requires fewer latent variables, and
the visualization shows that the AE model learns a
similar latent space structure to DELLA. We will
release the code upon acceptance.

2 Related Work

VAE Inimage VAE, a simplistic prior often leads
to posterior collapse, or, in cases where collapse
is avoided, a pronounced mismatch between the
prior and posterior distributions can compromise
generative performance. Consequently, researchers
have explored nuanced priors, necessitating corre-
sponding adjustments to model architectures and
training objectives (Kingma et al., 2016; Tomczak
and Welling, 2018; Dai and Wipf, 2019; Vahdat and
Kautz, 2020). Ghosh et al. (2020) investigate the
potential of regularized autoencoders on small im-
age generation datasets, which use Gaussian Mix-
ture Models to conduct ex-post density estimation.

In NLP, text VAE leverages various intriguing

characteristics of the latent space (John et al., 2019;
Li et al., 2020; Hu and Li, 2021). However, the
modeling capacity and empirical performance are
limited primarily due to KL vanishing. In such
cases, the decoder disregards the latent space en-
tirely and degenerates into a simplified language
model. Various training techniques have been pro-
posed such as annealing (Bowman et al., 2016; He
et al., 2019; Li et al., 2019; Fu et al., 2019), KL
thresholding (Zhu et al., 2020), and the combina-
tion with pretrained Transformer models (Li et al.,
2020; Hu et al., 2022). Li et al. (2019) pretrain the
inference network with an autoencoder objective.
In addition, there have been efforts to propose more
powerful prior distributions (Pelsmaeker and Aziz,
2020; Ding and Gimpel, 2021; Dai et al., 2021;
Fang et al., 2022; Yang et al., 2023). For example,
DPrior (Fang et al., 2022) uses learnable vectors
(dictionary atoms) to introduce a data-driven prior,
and Dior-CVAE (Yang et al., 2023) employs a dif-
fusion model to enhance the prior.

Nevertheless, there is a lack of research address-
ing the necessity of the prior distribution in this
context. Considering the inherent robustness of
language models in effectively modeling and gen-
erating coherent text, allowing the prior distribution
to adapt to the empirical language distribution may
be more advantageous than enforcing the condi-
tion variables to conform to a fixed prior distribu-
tion. We are the first to demonstrate that removing
the hardcoded prior makes the AE-based language
models achieve better sample quality and diversity
performance than the state-of-the-art VAE Trans-
formers.

Li et al. (2020) first pretrain a big language
model in the VAE paradigm, and indicate its su-
perior controllability and capability than casual
language models. They strive to assist the research
community in acknowledging the significance of la-
tent conditional language modeling in pre-training
and making it more feasible in practice. However,
the training difficulty may limit the development
of scaling up text VAE. In comparison, AE is nat-
urally suitable for large-scale pretraining, which
can be traced back to the restricted Boltzmann ma-
chines (Hinton and Salakhutdinov, 2006). The ad-
ditional high-level guidance before the next token
prediction can help to capture the underlying causal
structure of the generative process. Moreover, the
learned latent space allows better controllability
and interpretability. These advantages can be more

13629



appealing when further scaling up.

Conditional Language Models. Conditional lan-
guage models can generate sentences with de-
sired attributes such as sentiments or topics.
CTRL (Keskar et al., 2019) extends Transformer
to a conditional one which introduces various
control codes as prefixes. POINTER (Zhang
et al., 2020) uses an insertion-based method for
hard-constrained text generation. Similarly, Co-
Con (Chan et al., 2021) introduces a conditional
control module into the GPT model. These condi-
tions are symbolic and require feature engineering.
Relying on such coarse features may limit mod-
els’ capacity to comprehend and generate language
effectively. Text VAE can be regarded as latent
conditional language models by leveraging the ex-
pressive power of compact latent spaces (Bowman
etal., 2016; Hu et al., 2017; Hu and Li, 2021). Sim-
ilar to text VAE, we use low-dimensional latent
vectors to represent conditions. Instead of restrict-
ing the latent to a predefined prior like in VAE,
we investigate the feasibility of AE-based condi-
tional language models with the introduction of an
empirical prior.

3 Method

3.1 Neural Language Models

Given an observed text sequence of length T,
x = {x1,...,x7}, neural language models (Ben-
gio, 2008) (NLM) are trained to generate every
token conditioned on the previous tokens

T
po(x) = [ [ po(zelz<e), (1)
t=1

where 6 is the model parameter. The model is
typically trained via maximum likelihood estima-
tion, and the representative model family is GPT
(Radford et al., 2019; Brown et al., 2020). The
generation process relies solely on previous words,
which limits their ability to be guided by higher-
level structures, such as tense and topics.

3.2 VAE

Different from the conventional NLM, the decoder
of VAE takes sampled latent variables as condi-
tional factors for generation. Concretely, a latent
vector z is first sampled from the prior distribution
of the latent space p(z), and the decoder generates
the text sequence x from a conditional distribution

pe(x|z) in an auto-regressive manner:

T
po(al2) = [[ oo, ). @
t=1

In particular, p(z) is usually assumed to be a stan-
dard Gaussian distribution. Unlike the conventional
language models which take a prefix as input, the
VAE-based conditional language models use the la-
tent vector 2 to determine the high-level semantics.

The training procedure of VAE is also known
as inference. The parameter set of the decoder 6
is typically learned by maximizing the marginal
log-likelihood:

logpg () = log / po(z|z)p(2)dz.  (3)

Due to the intractable optimization, the variational
inference is introduced and the objective is changed
to maximize the evidence lower bound (ELBO):

logpa () > LrLBo =Eq, (2[2) [log pa(z|2)] —
KL (gg(2])||p(2)) . (4)

In practice, VAE utilizes amortized variational in-
ference (Kingma and Welling, 2014; Mnih and
Gregor, 2014), which introduces a neural encoder
¢4(z|) to approximate the true posterior. More-
over, ¢y (z|z) is usually assumed to be Gaussian
and the re-parametrization trick can be used. The
training process is illustrated in the upper part of
Figure 1, the posterior is regularized to match the
prior, and the decoder takes the latent vectors sam-
pled from the posterior as the input.

3.3 AE with Empirical Prior Estimation

In this section, we describe the details of the AE
model including the encoder, decoder, training pro-
cedure, and the method of empirical distribution
estimation.

Encoder As shown in the lower half of Figure 1,
we model layer-wise latent vectors Z = {z'},,
where N denotes the number of latent vectors.
For each input sequence z, we append a virtual
token s to absorb the semantic information of
the input sequence. We feed the whole sequence
{z1,z9,...,x, s} into the encoder, and obtain a
sequence of contextualized representations of the
virtual token across layers {s'} . Each z¢ is cal-
culated by projecting s’ into a lower dimension:

2 = Wippns' + 1, )

down
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where Wéown € R%*d= and b’;lown are the train-
able parameters, and dj, and d, indicate the dimen-
sion of the hidden states and latent vectors, respec-
tively. The linear transformations are not shared
considering distinct semantic spaces in different
layers. In addition, we keep a latent vector for
every certain layer to enable compact semantic rep-
resentations, considering that the representations
of adjacent layers are relatively similar (van Aken
et al., 2019; Sajjad et al., 2022). We can easily
adjust the number of latent vectors, and the maxi-
mum number of latent vectors equals the number
of encoder layers. Compared to VAE, the encoder
output of AE is deterministic latent features instead
of the parameters of the posterior.

Decoder We treat Z as additional memory at-
tended by other tokens via self-attention, which
has shown the superiority to regarding Z as extra
input token embeddings (Li et al., 2020). Specifi-
cally, for z' obtained in the ith encoder layer, we
only inject it into the ¢th decoder layer rather than
all the layers, to encourage the latent vectors to
learn different aspects of the input semantics. Be-
fore being attended, 2* is projected into the same
dimension of hidden states of the decoder with a
distinct linear transformation:

hy = Wip2" + by, (6)
where W, € R%*? and b}, are the trainable
parameters. Such an infusion mechanism of latent
vectors requires no modification of the decoder
architecture.

Training The overall training objective is

||
1
L= Z logpy (2|2 <i, Z) + ALort, (7)

]

where A is the coefficient of the additional orthogo-
nal regularization £,,; on the latent vectors:

Lon= 5 |22 - 1. ®

where /5 () denotes L2 normalization on each la-
tent vector and I denotes the identity matrix. The
regularization is used to encourage the learned la-
tent vectors as the basis in the latent space and
reduce information redundancy.

Empirical Prior Estimation During training, we
employ an efficient online method to estimate the

empirical prior distribution for each 2%, based on
all of the observed latent features encoded by the
model. Specifically, we assume the distribution
Gaussian N (u1, 02I) and update the parameters
with an exponential moving average (EMA):

p=Aup+ (1= A)u, ©))

o? = \o% + (1 - \)o?, (10)
1 m

== 11

pB = ;Z (11)
1 m

oh=— ;(Z — 1p)?, (12)

where A € [0,1) is a momentum coefficient of
EMA and is set to 0.1. Moreover, B denotes a
mini-batch of size m, and up and 0% denote the
empirical mean and variance of B, respectively.
For better readability, we have omitted the super-
script ¢ in the formulas. When the training is fin-
ished, we can sample latent vectors from the esti-
mated empirical prior and use them to generate new
sentences, which is similar to the generation proce-
dure of VAE. We can also use offline methods to
estimate the prior, and we discuss the comparison
in Section 4.4.

In addition, we can use the observed features
in the training set based on nearest neighbor re-
trieval to estimate the empirical posterior q(z*|z)
for each z*. Concretely, we run the trained encoder
by an additional forward pass over the training data
and store the latent vectors. Then, we use each
dimension zg of the latent vector z' as a pivot to
retrieve M neighbor latent variables with L1 dis-
tance. The retrieved values comprise a set of new
latent vectors {#™}M which are used to estimate
the empirical posterior. If the ¢(z*|z) is assumed
to be Gaussian, the retrieved latent vectors are used
to calculate the empirical variance.

4 Experiments

4.1 Settings

We evaluate our model on the representative bench-
marks for text VAE, i.e., Yelp (Yang et al., 2017),
Yahoo (He et al., 2019), and SNLI (Bowman et al.,
2015). The preprocessing follows (Hu et al., 2022),
and the numbers of sentences of the training set, de-
velopment set, and test set are 100K, 10K, and 10K,
respectively. We focus on the Transformer VAE
models as the baselines, and the setting follows
DELLA (Hu et al., 2022) for a fair comparison.
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Quality Diversity
Model # | PPL| | AUT grppr [ MAUVET | Self-BLEU] | Distf | JS]
Yelp

GPT2 124M | 22.13 | - 56.92 0.12 65.90 17.96 | 0.51
Optimus 234M | 22.79 32 - - - - -

Embedding | 124M | 1998 | 6 56.34 0.42 65.27 1559 | 0.44
Memory 125M | 19.95 | 11 57.37 0.46 63.90 16.91 | 0.39
Softmax 124M | 20.14 | 13 | 56.83 0.45 64.26 16.51 | 0.40
DELLA 193M | 1235 | 23 | 57.15 0.55 60.02 17.63 | 0.43
AE(EMA) 5414 0.61 56.50 20.28 | 0.25
AE(Full) 125M | 604 | 32 | 5596 0.69 58.63 18.62 | 0.26
AE(Diag) 55.04 0.61 57.57 19.52 | 0.26

Yahoo

GPT2 124M | 2417 | - 4425 0.15 54.06 21.07 | 0.28
Optimus 234M | 23.11 | 32 - - - - -

Embedding | 124M | 22.18 | 3 42.27 0.31 54.15 20.80 | 0.32
Memory 125M | 22.03 | 18 | 45.20 0.37 54.59 21.87 | 0.33
Softmax 124M | 2235 | 19 | 4428 0.34 54.49 21.65 | 0.32
DELLA 193M | 1149 | 21 | 44.67 0.38 48.53 21.88 | 0.31
AE(EMA) 211 0.50 43.66 28778 | 0.26
AE(Full) 125M | 7.62 | 32 | 43.01 0.49 45.40 26.21 | 0.27
AE(Diag) 4251 0.50 44.16 27.98 | 0.27

Table 1: Evaluation results on Yelp and Yahoo. The best results are highlighted in bold.

The encoder and decoder shared the same parame-
ters initialized with 12-layer GPT-2 (Radford et al.,
2019). The dimension of the latent variable is set
as 32 for all of the models, and the number of latent
vectors in AE is set as 4 and 3 for Yelp and Yahoo,
respectively. The batch size is 128, and the learning
rate is 5e-5. The dropout rate is set to 0.1 by default
and set to 0.7 for SNLI. Beam search is adopted
to generate sentences with a beam size of 10. In
addition to EMA, we investigate offline methods of
the empirical prior estimation and assume the latent
variables with “Full” Gaussian and “Diag” Gaus-
sian, which have the general covariance matrix and
diagonal covariance matrix, respectively.

4.2 Baselines

We compare our models with the following base-
lines: GPT-2 (Radford et al., 2019), a fine-tuned
language model; Optimus (Li et al., 2020), which
is the first pretrained large text VAE with a pre-
trained BERT as the encoder and GPT-2 as the
decoder; Embedding (Hu et al., 2022), in which the
latent vector is added to the token embedding at
each decoding step; Memory (Fang et al., 2021), in
which the latent vector is attended by self-attention
in each decoder layer; Softmax (Wang and Wan,
2019), which uses the latent vector to intervene
the output softmax; and DELLA (Hu et al., 2022),
which learns hierarchical latent variables with each
inferred by each encoder layer and injected into the
decoder layers by low-rank tensor product. Mem-
ory, Softmax, and Embedding are reimplemented

by Hu et al. (2022) using the same setting.

4.3 Evaluation Metrics

The evaluation metrics include two parts. The
first part measures the training performance of
the generative language model including recon-
struction perplexity (PPL) and active units (AU)
(Burda et al., 2016) which denotes the total num-
ber of active units in z. The second part evaluates
the quality and diversity of sentences generated
based on latent variable sampling. Specifically,
the quality metrics focus on the measurement of
the divergence between human-written text and the
generated one including BLEU (Papineni et al.,
2002) and MAUVE (Pillutla et al., 2021). The di-
versity metrics measure the self-similarity of the
generated sentences, and low-similarity sentences
are preferred. We report Self-BLEU (Zhu et al.,
2018), Dist (Li et al., 2016), and JS (Jaccard simi-
larity) (Wang and Wan, 2018). The details of the
metrics are shown in Appendix D.

4.4 Main Results

Table 1 presents the performance comparison be-
tween the VAE and the AE Transformers on Yelp
and Yahoo.

First of all, the AE models achieve significantly
lower PPL, which is highly intuitive. The low per-
plexity indicates the advantage of such a simpler
training paradigm and a better fidelity to the input
semantics through the latent conditions. Allowing
the distribution of latent variables distribution to
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adapt to the learned features is more natural and
powerful than forcing it to a predefined prior. Com-
pared to the standard language model GPT-2, the
advantage is more pronounced because reconstruc-
tion is easier when the semantics of the text to gen-
erate is known. Moreover, the AE models achieve
higher AU scores, indicating the latent vectors are
fully exploited to encode semantics.

One important role of text VAE is its generative
ability to generate new text based on the abstract
condition. The quality scores BLEU and MAUVE
assess whether the distribution of the set of sen-
tences generated based on the samples is faithful
to the distribution of the test set. In this aspect, al-
though the AE models obtain slightly lower BLEU
scores, they achieve obviously higher scores on the
model-based MAUVE, which demonstrates a much
stronger correlation with human ratings (Pillutla
et al., 2021). Concretely, the AE(EMA) models ob-
tain 0.61/0.50 MAUVE scores on Yelp and Yahoo,
significantly outperforming DELLA (0.55/0.38).
In particular, AE(Full) achieves a high MAUVE
score of 0.69. These results indicate that the prior
distribution obtained by adapting to the model’s
distribution is meaningful and faithful.

The AE models achieve the best results across
all of the diversity metrics. Concretely, the
AE(EMA) models obtain lower Self-BLEU scores
than DELLA by 3.52 and 4.87 on Yelp and Yahoo,
respectively. For the Dist score, the performance of
the AE(EMA) models surpasses the previous best
results by 2.23 and 6.90. The superior diversity
demonstrates that the empirical prior is more ex-
pressive than the standard Gaussian. In addition,
the easier-to-train AE does not affect the capability
of the decoder and exhibits better adaptability to
the variants of latent variables.

Finally, we investigate the performance of differ-
ent density estimation methods for the empirical
prior. Specifically, AE(Full) and AE(Diag) apply
the existing density estimation algorithms' with
full and diagonal covariance matrixes, respectively.
We can see that AE(EMA) achieves comparable
performance to its counterpart AE(Diag), indicat-
ing that the EMA is an effective approximation of
the offline estimation and is more efficient without
the additional pass of the training data. Further-
more, the EMA approach offers increased conve-
nience for scaling up to larger models and datasets.

"https://scikit-learn.org/stable/modules/generated/
sklearn.mixture.GaussianMixture.html

M NS | PPL
- - 6.04%
10 I 891
20 1 7.60
50 1 6.84
100 1 6.67
100 | 5 6.67
100 | 10 | 6.67
200 1 6.88

Table 2: Estimated perplexity using the empirical pos-
terior on the Yelp test set. M denotes the number of
retrieved latent vectors to estimate the empirical pos-
terior of AE. N.S denotes the number of samples to
calculate the average PPL.
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Figure 2: BLEU, MAUVE, Self-BLEU, and DIST on
Yelp with different coefficients of the orthogonal regu-
larization loss A. The higher the scores, the better the
performance. We convert all scores into percentages.

AE(Full) tends to perform better on the quality
metrics while performing inferior on diversity. The
underlying reason is that the distributions with full
covariance matrixes are highly expressive to fit
more details, while the diagonal Gaussian is sim-
pler for better generalization. The additional results
on SNLI are given in Appendix A.

5 Analysis

5.1 Empirical Posterior Estimation

The VAE models usually use multiple sampled la-
tent vectors from the posterior distribution to calcu-
late the weighted average perplexity. In Table 2, we
investigate the PPL of stochastics sampling from
the empirical posterior of the AE model. The re-
sults show that the estimated PPL scores are higher
than the exact value (6.04) but still lower than the
VAE model (e.g., 12.35 achieved by DELLA in
Table 1). As M increases from 10 to 100, the es-
timated PPL decreases. Moreover, VAE typically
requires a large NS (e.g., 30) to estimate PPL,
while it is not sensitive for the AE to NV S.
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Figure 3: Performance of different numbers of latent
vectors. The higher the scores, the better the perfor-
mance. All scores are displayed in percentages.

5.2 Effect of Orthogonal Regularization

In this section, we display the influence
of the orthogonal regularization loss.  The
value of the coefficient A is chosen from
{0.0,0.1,0.01,0.001,0.0001}, and we show the
generation metrics BLEU and MAUVE, and diver-
sity metrics, (100 - Self-BLEU) and DIST on Yelp
in Figure 2. As ) increases to 0.01, the MAUVE
score reaches its peak and then decreases when
A increases to 0.1. The orthogonal regularization
also improves the Self-BLEU and DIST scores, and
the reason can be that the decrease of the overlap-
ping information between latent vectors brought
by the regularization leads to a more diverse rep-
resentation. Notably, we do not fine-tune the co-
efficient and a value of 0.01 performs consistently
well across all of the datasets. This coefficient is
also the only hyperparameter we introduce, and it
is easier to train the AE model than the VAE mod-
els which introduce various training tricks such as
KL annealing, BOW loss, and cyclical schedule.

5.3 Number of Latent Variables

AE is easier to train than VAE and may have differ-
ent requirements for the number of latent variables,
which controls the abstraction levels of the input.
In this experiment, we investigate its influence on
the performance of our AE model. As depicted in
Figure 3, increasing the number of latent variables
results in lower Self-BLEU scores and higher Dist
scores, which means lower similarity between gen-
erated sentences. The result is intuitive, and the
model can generate a wider range of latent com-
positions with more latent vectors. However, an
excessive number of latent vectors (i.e., 12) can
lead to a decrease in generation quality, possibly

Model Quality Diversity
BLEU{ | MAUVET | S-BLEU| | Distt
Uniform 54.14 0.61 56.50 20.28
High 53.69 0.46 55.92 21.02
Low 60.60 0.22 65.93 15.54
Beam(10) 54.14 0.89" 56.50 20.28
Gready 36.10 0.50" 40.00 29.61
TopK(50) 30.36 0.381 31.29 36.06
TopP(0.95) 30.81 0.407 31.84 36.24

Table 3: Effect of the positions of latent variables pro-
duction and decoding strategies on Yelp. S-BLEU de-
notes the Self-BLEU score. The number with dagger {
denotes the MAUVE scores are calculated with a scal-
ing parameter of 3 to help with interpretability.

due to overfitting caused by the relatively small
dataset. The choice of the number of latent vectors
can influence the trade-off between quality and di-
versity. Moreover, as mentioned in Section 4.4, the
AE model achieves better performance with fewer
latent vectors compared to DELLA.

5.4 Position of Latent Variables Production

We employ uniform distribution for the latent vari-
ables across the encoder layers and investigate the
effect of the position of the latent vector produc-
tion in this section. The number of latent vectors
is set to 4. As shown in the upper part of Table
3, the quality scores of the variant producing la-
tent vectors from the higher layers are inferior to
the uniform one especially on the MAUVE score,
while the diversity scores are similar. The perfor-
mance of producing latent vectors from the lower
layers is significantly degenerated. The underlying
reason is that the semantic information in the shal-
low encoder layers is not abstract enough to fit with
the purpose of learning abstract latent variables.

5.5 Decoding Strategies

The additional latent condition sampled from em-
pirical prior may affect the performance of differ-
ent decoding strategies. We investigate commonly
used decoding strategies consisting of greedy
search, beam search, Top-K sampling (Fan et al.,
2018), and Top-P sampling(Holtzman et al., 2020).
Since the sampling-based decoding algorithms get
low MAUVE scores with the default scaling param-
eter, we decrease it to 3.0 for all of the methods
to help with better interpretability following (Pil-
lutla et al., 2021). The results are shown in the
bottom half of Table 3. Despite better diversity
scores, the sampling-based decoding algorithms
archive much lower scores on quality, indicating a
tendency to generate sentences different from the
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Figure 4: BLEU, MAUVE, and Self-BLEU of generated
text using different coefficients of the standard deviation
of the DELLA’s prior.

(a) DELLA (b) Ours

Figure 5: T-SNE of latent vectors.

training distribution. The deterministic decoding
algorithms are a more suitable choice considering
the overall performance, and beam search achieves
the best quality-diversity trade-off. Possibly the
sampling-based decoding algorithms can perform
better when pretraining on massive text with the
proposed framework, which is left as future work.

5.6 Stretching Prior of VAE

The high diversity can be attributed to diverse
latent variables sampled from the no overly re-
stricted empirical prior. To make DELLA generate
more diverse text, we sample latent variables from
stretched priors. The result is shown in Figure
4. As we increase the coefficient of the standard
deviation, we are more likely to sample latent vari-
ables beyond the standard Gaussian prior, and the
generated sentences are more diverse, i.e., lower
Self-BLEU scores. However, the quality of the
generated text becomes worse. This indicates that
the decoder of DELLA cannot handle the out-of-
distribution latent variables well. By contrast, the
scope of exploration in the AE model is more flexi-
ble, and the decoder capacity is not affected.

- Grammaticality Novelty Overall
DELLA 17.0% 28.5% 24.5%
AE 35.0% 31.0% 42.5%
No-pref 48.0% 40.5% 33.0%

Table 4: Human evaluation of grammaticality, novelty,
and overall quality on SNLI.

6 Human Evaluation

We conduct a human evaluation to compare sam-
ples generated by the AE model and the SOTA base-
line DELLA using an A/B test (Subramanian et al.,
2018). We sample 200 sentences from the gener-
ated sentences of each model. We present three
annotators with two samples, one from each model,
and ask them to indicate their preference based on
grammaticality, novelty, and overall quality (Table
4). We can see that the AE model performs bet-
ter than DELLA. Moreover, the AE model is less
prone to generating sentences with grammatical
errors, which may be attributed to not affecting the
capability of the language model itself.

7 Case Study

Visualization We employ t-SNE to inspect the
representation space of DELLA, our AE, and GPT-
2. Using the Yelp development set, we categorize
1-star sentences as negative and 5-star sentences
as positive. Figure 5 depicts clearer separation in
DELLA and AFE’s latent representations, indicating
that the similar latent space to disentangle seman-
tics. By contrast, the sentence representations of
GPT-2 obtained by average token representations
exhibit entangled semantic discernment (Figure 6
in Appendix), demonstrating the superiority of the
conditional language models.

Interpolation Samples of mid-point interpola-
tion between two random sentence pairs are shown
in Figure 7 (Appendix F). The interpolated sen-
tences exhibit meaningful semantic interpolation.

8 Conclusion

We investigated training latent conditional lan-
guage models with autoencoding, which removes
the prior and the corresponding restriction in VAE.
We found that adapting the prior distribution to the
language model can satisfy the need for sampling
without affecting the modeling capability of the
language model itself. The generated samples from
the empirical prior achieve better quality and diver-
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sity than the VAE-based models. Future work in-
cludes the extension of AE-based language models
to large-scale pertaining and instruction fine-tuning,
in which the high-level semantic condition of the
target sequence may have additional benefits.
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9 Limitations

In this study, our focus was primarily on fine-tuning
the GPT-2 model to investigate the potential of text
AE as a generative model. Pretraining a big text
AE model on massive text is an interesting direc-
tion, which we leave as future work. Additionally,
we identify the exploration of latent conditional
language models within the contexts of in-context
learning and instruction fine-tuning paradigms as
promising avenues for future research.
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suring that no private data or non-public informa-
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evaluation, we have engaged three annotators who
possess degrees in English Linguistics or Applied
Linguistics. We have established a fair compensa-
tion rate of $25 per hour for their valuable services.
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A Additional Experiment Results

The results on SNLI are shown in Table 5. The AE
models also achieve better performance than the
VAE baselines.

B Computational Details

We implemented our model and conducted experi-
ments using the Huggingface Transformers library
version 4.29.0. The experiments were performed
on NVIDIA A100 GPU. All experimental results
are trained and tested in a single run with seed 42
following Hu et al. (2022). For parameter sizes,
Optimus uses BERT as the encoder, while the oth-
ers use GPT-2. We also follow DELLA to share the
parameters of the encoder and decoder. The param-
eter sizes are listed as follows: GPT-2 (124M), Op-
timus (234M), DELLA (193M), and AE (125M).

C Dataset Licenses

For the licenses of the datasets, Yelp uses its own
license, Yelp Data Agreement, which allows their
data for academic use. SNLI uses CC BY-SA 4.0.
The license for the Yahoo Dataset is not found.

D Metrics

Here, we provide comprehensive details about the
evaluation metrics.

Activate Units (AU) (Burda et al., 2016) refers
to the number of unique units (neurons or dimen-
sions) in the latent space that are activated dur-
ing the encoding of input data. Monitoring acti-
vated units can provide insights into the diversity
and richness of the learned latent representations.
Higher activation of different units suggests a more
expressive latent space.

BLEU (Papineni et al., 2002) measures the n-
gram overlap between generated sequences and
reference sequences. In the context of text VAE,
all samples in the test set are considered references
for each generated example.

MAUVE (Pillutla et al., 2021) directly evalu-
ates the learned distribution from a text generation
model against the distribution of human-written
text using divergence frontiers, which has been
demonstrated to have a higher correlation with hu-
man judgments. It relies on pre-trained language
models like GPT-2.

Self-BLEU (Zhu et al., 2018) is a variation of
BLEU where the metric is computed by compar-
ing a set of generated samples against each other
rather than reference texts. This metric helps to
evaluate the diversity of generated outputs. Lower
Self-BLEU scores indicate more diverse and varied
generated text.

Dist (Li et al., 2016) measures the proportion of
distinct n-grams in generated samples. A higher
proportion of distinct n-grams indicates more di-
verse samples. We use bigrams following previous
studies.

Jaccard Similarity (JS) (Wang and Wan, 2018)
measures the similarity between two sets by calcu-
lating the intersection divided by the union of the
sets.

E Visualization of Sentence
Representations

The t-SNE plot depicting the GPT-2 sentence rep-
resentations is presented in Figure 6. It can be
observed that the representation space is more en-
tangled compared to AE and VAE models.

F Case Study

VAE has been shown good at linear interpolating
between latent vectors. We also conduct the inter-
polation with AE on SNLI. The examples in Figure
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Quality Diversity
Model PPLL | AUT —grgo7 | MAUVET | Self-BLEU] | DistT
SNLI ‘
GPT-2(small)
GPT2 2019 | - 63.57 0.71 7534 19.11
Optimus 16.67 - - - - -
Embedding | 13.79 | 20 | 59.26 0.72 65.59 20.89
Memory 1378 | 10 | 62.80 0.67 54.59 21.87
Softmax 1421 | 16 | 60.51 0.71 71.84 18.59
DELLA 513 | 23 | 6294 0.69 36.85 32.61
AE(EMA) 5373 0.70 36.06 34.95
AE(Full) 176 | 32 | 6136 0.75 41.50 30.67
AE(Diag) 60.26 0.66 40.71 30.50
GPT-2(medium)
AE(EMA) 58.19 0.82 30.75 3134
AE(Full) 218 | 32 | 6216 0.83 42.68 29.34
AE(Diag) 62.28 0.75 42.93 28.61

Table 5: Evaluation results on SNLI. The best results are highlighted in bold.

Negative
Positive

Figure 6: T-SNE plot for GPT-2.

-

S1: the man works on the net .
S1-*-S2: the man is working on the tube .
S2: the man is waiting at the tube shop .

S1: children are looking to see if the coast is clear .
S1-*-S2: a man is looking to see a bike pass through
the fair .

S2: aman is riding a bike through a park .

S1: a man is taking beautiful photos by the river .
S1-*-S2: a man is enjoying the beautiful sun by the
river .

\52: a goat is enjoying the sun on the farm .

Figure 7: Case study.

7 show that the interpolated sentences exhibit mean-
ingful semantic interpolation.
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