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Abstract

The recent integration of chemistry with natural
language processing (NLP) has advanced drug
discovery. Molecule representation in language
models (LMs) is crucial in enhancing chem-
ical understanding. We propose Augmented
Molecular Retrieval (♡AMORE), a flexible
zero-shot framework that assesses trustworthi-
ness of Chemical LMs of different natures:
trained solely on molecules for chemical tasks
and on a combined corpus of natural lan-
guage texts and string-based structures. The
framework relies on molecule augmentations
that preserve an underlying chemical, such
as kekulization and cycle replacements. We
evaluate encoder-only and generative LMs by
calculating a metric based on the similarity
score between distributed representations of
molecules and their augmentations. Our ex-
periments on ChEBI-20 and QM9 benchmarks
show that these models exhibit significantly
lower scores than graph-based molecular mod-
els trained without language modeling objec-
tives. Augmentation of SMILES representa-
tions leads to decreased performance on chem-
ical property prediction tasks in the Molecu-
leNet benchmark. Additionally, our results on
the molecule captioning task for cross-domain
models, MolT5 and Text+Chem T5, demon-
strate that our representation-based evaluation
metrics significantly correlate with the classi-
cal text generation metrics like ROUGE and
METEOR.

1 Introduction

Drawing inspiration from the progress of
Transformer-like architectures in NLP (Vaswani
et al., 2017), the drug discovery community has
embraced state-of-the-art molecular-generation
methodologies. This includes leveraging LM-
based approaches such as ChemBERTa, T5Chem,
ChemFormer, and BARTSmiles (Chithrananda

*These authors contributed equally to this work. The order
of author names was randomly determined.

et al., 2020; Lu and Zhang, 2022; Irwin et al., 2022;
Chilingaryan et al., 2022). SMILES (Simplified
Molecular Input Line Entry System) (Weininger,
1988), a commonly employed molecular rep-
resentation, enables the use of molecules in a
string-based format. These single-domain models
are usually pre-trained on large SMILES datasets
like ZINC-15 (Sterling and Irwin, 2015), then
fine-tuned for downstream tasks like reaction and
property prediction on datasets like USPTO (Lowe,
2012, 2017) and MoleculeNet (Wu et al., 2018a).

Recently, LMs like MolT5 (Edwards et al.,
2022a) and Text+Chem T5 (Christofidellis et al.,
2023) have been introduced to integrate chemical
and linguistic knowledge. These models were pre-
trained on chemical and textual data, e.g., the large
C4 (Raffel et al., 2020) and ZINC-15, and fine-
tuned on cross-domain tasks like molecule cap-
tioning. However, the evaluation of downstream
tasks does not directly assess knowledge of chem-
istry, such as understanding various representations
of the same molecular chemical structure. In this
work, we seek to answer the following research
question (RQ):

Do chemical language models (ChemLMs) learn
patterns and relationships within symbolic rep-
resentations of molecular structures during pre-
training, enabling them to differentiate molecular
structures based on learned patterns?

Our main contribution is the novel unified ap-
proach (Fig. 1) to verify if ChemLMs have ef-
fectively grasped the fundamental rules on the
construction of molecular representations, such as
SMILES. Our hypothesis posits that augmentation
should not significantly alter the similarity score
between distributed representations of molecules
and their augmented versions. To address the RQ,
we conduct experiments using BERT-based (De-
vlin et al., 2019), GPT-based (Brown et al., 2020),
and T5-based (Raffel et al., 2020) models.
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MOLECULE

3-Hydroxy-5-methyl-1-
naphthoate

CHEMICAL EMBEDDING SPACE

DESCRIPTION: 3-hydroxy-5-methyl-1-naphthoate is a member of the class of naphthoates that is 1-
naphthoate substituted at positions 3 and 5 by hydroxy and methyl groups respectively; major species at pH
7.3. It has a role as a bacterial metabolite. It is a conjugate base of a 3-hydroxy-5-methyl-1-naphthoic acid.

Cc1cccc2c(C(=O)O)cc([O-])cc12

CC1=C3C=C(C=C(C3=CC=C1)C(=O)O)[O-]
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[CH3][c]1[cH][cH][cH][c]2[c]([C](=[O])[OH])[cH][c]([O-])[cH][c]12

CC1=C2C=C(C=C(C2=CC=C1)C(=O)O)[O-]
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Figure 1: Our evaluation involves generating augmented molecules for all molecules in a dataset using one of four
augmentation procedures. By encoding original molecules and augmented SMILES representations and calculating
distances between embeddings, the study determines model performance based on top-1 accuracy, where the correct
augmented SMILES must be retrieved at the top rank.

Our work is designed to provide insights into the
extent to which ChemLMs can discern molecular
structures and the impact of augmentation on their
performance. To summarize, our main contribu-
tions are as follows:

• We propose Augmented Molecular Retrieval
(♡AMORE)1, a novel framework for qual-
ity assessment of chemical language mod-
els. It relies on augmentations of molecular
SMILES string representations that are known
to produce alternative representations without
changing an underlying molecule. Unlike su-
pervised fine-tuning-based methods for chemi-
cal LM quality assessment adopted from NLP,
our framework adopts known chemical facts
to perform a fully unsupervised evaluation in
a zero-shot setting.

• Extensive evaluation has revealed that embed-
ding spaces of the existing state-of-the-art uni-
modal and cross-modal chemical LMs are not
robust to four SMILES augmentation types
known to be identity transformations in terms
of the underlying molecules.

• We show that the state-of-the-art ChemLMs
fail on a wide range of molecule understand-
ing tasks when an augmented representation
of the same molecule is passed. The explored
tasks include molecule captioning, molecu-
lar binary and multi-class classification, and
molecular property prediction.

1AMORE is available at https://github.com/
ChemistryLLMs/AMORE

2 ♡AMORE: Augmented Molecular
Retrieval

In this section, we introduce AMORE, a flexible
embedding-based evaluation framework for Lan-
guage Model analysis in the chemistry domain.

Methodology. Our evaluation metrics are built
on distributed representations of molecules and
their augmentations. Let X1 denote the dataset
comprising original representations of molecules,
represented as x1, x2, . . . , xn. Through SMILES
augmentation, we generate the X ′

1 dataset, con-
taining augmented representations of the same
molecules, represented as x′1, x

′
2, . . . , x

′
n. In

each experiment, a model encodes the augmented
SMILES representations of molecules. Let e(xi)
represent the embedding of SMILES xi from the
original dataset, and e(x′j) represent the embedding
of the augmented SMILES x′j from the augmented
dataset, where i, j denote indices corresponding
to molecules. The distance between embeddings
e(xi) and e(x′j) is computed using a distance met-
ric such as Euclidean distance. Suppose we retrieve
the closest SMILES representation to the original
one xi among the augmented ones x′j . When the
nearest molecule from the augmented dataset is not
an augmentation of the original SMILES j ̸= i,
this indicates that a ChemLM does not recognize
the same chemical structure within the augmented
textual embedding space. The task formulation
strongly resembles entity linking (EL) where the
goal is to map an extracted entity to the most rel-
evant concept from a pre-defined vocabulary or
knowledge graph. Thus, we adopt the standard EL
evaluation methodology (Tutubalina et al., 2020;
Sakhovskiy et al., 2023, 2024) and use the top-k
accuracy as the evaluation metric: Acc@k = 1 if
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the correct augmented SMILES is retrieved at the
rank ≤ k, otherwise Acc@k = 0; in our case, k=1.
In addition, we compute the Mean Reciprocal Rank
(MRR) metric. This ranking metric can get a better
sense of the performance degradation with the aug-
mented SMILES strings since it reflects the average
ranking of true molecule (Radev et al., 2002).

The practical objective of our approach is to
compare embeddings for different textual represen-
tations of the same molecule structure. We use the
fast nearest neighbor search library FAISS (John-
son et al., 2019) that is efficient in a large-scale set-
ting. Our methodology’s theoretical implications
lie in understanding how efficiently ChemLMs re-
construct molecule structures from the textual rep-
resentations provided to them.

Augmentation Procedures. We follow four pop-
ular augmentations from (Ganeeva et al., 2024),
where the authors showed that augmentations led
to a decrease in ROUGE scores (Lin, 2004) in the
molecule captioning task when evaluated two cross-
domain T5 models, Text+Chem T5 and MolT5.
It is important to note that the use of machine
translation metrics restricts the number of mod-
els that can be compared, as these cross-domain
architectures require natural language tokens. We
adopt the following SMILES-based augmentation
procedures: 1. Canonicalization: we transform
SMILES strings into a standardized RDKit string
(Bento et al., 2020; Greg et al., 2022), reducing
ambiguity and facilitating accurate molecule com-
parisons. 2. Hydrogen: Hydrogen is commonly
omitted from SMILES, as restoring expected atom
connections is straightforward. However, molecule
properties depend on 3D chirality, which can de-
pend on hydrogen position. Explicitly including
hydrogen in SMILES allows a more comprehen-
sive representation, especially for hydrogen bond-
ing, stereochemistry, and reaction mechanisms.
3. Kekulization: Aromaticity is an essential con-
cept in organic chemistry, influencing molecular
stability, reactivity, and spectroscopic properties.
This involves transforming a SMILES string into
a Kekulized SMILES string, where the aromatic
π-electrons are static between every second car-
bon; 4. Cycles: In chemical graph theory, cycles
(or rings) play a fundamental role in characterizing
molecular structure and properties. Valid replace-
ment of cycle numerical identifiers with other ran-
dom numbers allows for testing the robustness of
models in recognizing cyclic structures and their

connectivity, providing insights into their ability to
handle diverse molecular topologies.

The key property of the four augmentations
listed above is that a resulting augmented SMILES
represents the same molecule as the original
non-augmented one. Intuitively, these augmenta-
tions can be seen as identity transformations on
molecules (i.e., xi and x′i are two different strings
representing the same underlying chemical). For
instance, the canonical SMILES for methane is
“C”, while the full version is “[CH4]” (carbon atom
is connected to four hydrogen atoms). As in or-
ganic chemistry, a carbon atom C is implied to be
connected to hydrogen atoms by default; hydrogen
atoms H are usually omitted for brevity. For more
examples of augmented SMILES, see Appx. A.

Overall, our ♡AMORE framework can be
briefly summarized as follows:

1. Take a set X = (x1, x2, . . . , xn) consisting
of n molecular representations;

2. Apply a transformation f to obtain a set of
augmented molecular representations X ′ =
(x′1, x

′
2, . . . , x

′
n), where x′i = f(xi). The only

constraint introduced for f is that it should not
change an underlying chemical. We execute
all augmentations through RDKit, a widely
recognized methodology within the chemistry
domain (Bento et al., 2020). As in this work,
we focus on textual molecular representations,
we can think of xi and x′i as being synonyms.

3. For each xi ∈ X and x′j ∈ X ′ obtain their
vectorized representations e(xi) and e(x′j), re-
spectively.

4. Evaluate the vectorized representations in a
retrieval task: given an embedding e(xi), a
model should be able to retrieve an embedding
e(x′i) of augmented x′i.

The augmentation vectors are in a similar em-
bedding space, allowing distance measurement be-
tween original and augmented molecules. The bet-
ter a model performs the AMORE retrieval task,
the more robust it is to the transformation f , indi-
cating the model knows f is a mapping between
synonymous representations.

Datasets. Our evaluation strategy relies on two
popular datasets: (i) a ChEBI-20 test set (Edwards
et al., 2021) and (ii) a subset from the QM9 (Rud-
digkeit et al., 2012; Ramakrishnan et al., 2014)
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(further called Isomers), consisting of isomers of
C9H12N2O. We select these datasets for the follow-
ing reasons: 1. Utilizing the ChEBI-20 test set,
which comprises approximately 3k molecule-de-
scription pairs, allows for comparisons with metrics
such as ROUGE (Lin, 2004) and METEOR (Baner-
jee and Lavie, 2005) in the molecule captioning
task. The ChEBI-20 train set was used to train
cross-domain ChemLMs. Hence, we follow the
recent papers (Christofidellis et al., 2023; Edwards
et al., 2022a), which use ChEBI-20 for benchmark-
ing on molecule captioning tasks. 2. The ChEBI-20
dataset comprises molecular structures that trans-
late into SMILES strings of varying lengths. This
diversity in sequence length and symbol sets could
potentially impact the mean characteristics of ac-
curately identified results. 3. Furthermore, some
molecules in the ChEBI-20 dataset may not be
suitable for augmentation using our proposed meth-
ods. For instance, cycle renumbering relies on
aromatic hydrocarbons, which are absent in non-or-
ganic compounds. This limitation may affect the
comprehensiveness of our evaluation.

Due to these reasons, it is essential to comple-
ment the evaluation with datasets that mitigate
these weaknesses. Therefore, we have selected
molecules from the QM9 dataset presented in the
PubChem database (Kim et al., 2016). There are
3300 and 918 molecules in the ChEBI-20 test set
and the Isomers set, respectively.

3 Models

For our experiments, we adopted various
Transformer-based (Vaswani et al., 2017) molecu-
lar representation models, including encoder-only,
encoder-decoder, and decoder-only architectures.
All models are publicly available at HuggingFace.
For more details, please see Appendix E.

Encoder-only A common approach is to train
BERT-based encoders on unlabeled SMILES us-
ing objectives like Masked Language Model-
ing. We evaluate: (i) PubChemDeBERTa (Schuh
et al., 2024), (ii) ChemBERT-ChEMBL (Zhang
et al., 2022), (iii) ChemBERTa (Chithrananda
et al., 2020), and (iv) ZINC-RoBERTa that are
pre-trained on SMILES from various chemical
databases, namely, PubChem (Kim et al., 2023)
and ZINC (Sterling and Irwin, 2015). Some mod-
els, e.g., ChemBERT-ChEMBL and ChemBERTa,
are known to be trained with augmented data.

Encoder-decoder We focus on two recent cross-
modal T5-based (Raffel et al., 2020) for text-related
chemical tasks: (i) Text+Chem T5 (Christofidel-
lis et al., 2023) and (ii) MolT5 (Edwards et al.,
2022b). We utilize base and large versions of
MolT5 and two base-sized versions of Text+Chem
T5. Additionally, we employed a biomedical LM
SciFive (Phan et al., 2021), a uni-modal textual T5-
based model pre-trained on the general-domain C4
corpus and PubMed database.

Decoder-only As a decoder-only model, we
adopt ZINC-GPT (Karl, 2024), a GPT-like (Rad-
ford et al., 2019) autoregressive language model
trained on 480K SMILES from the ZINC database.

Graph Neural Networks The different family of
models, so-called Graph Neural Networks (GNNs),
treat SMILES inputs as graph objects and run the
message-passing algorithm to produce nodes, ver-
tices, and complete graph embeddings (Gilmer
et al., 2020). The GNN performance can be consid-
ered as the upper limit for language models since
GNNs are robust to the proposed augmentations
(only edges’ types in graph structures may change
due to the chirality encoding). We used a GNN
checkpoint available from the DGL-LifeSci frame-
work (Li et al., 2021) to check this behavior.

4 Experimental Results

4.1 Molecule-augmentation retrieval

Our goal is to develop a unified framework to as-
sess trustworthiness of chemical models, which is
crucial for their application in chemical NLP tasks.
In particular, we use the AMORE framework to
empirically explore how well existing chemical lan-
guage models deal with “synonymous” SMILES
representations of the same molecule. Given an
original SMILES xi, we rank all augmented repre-
sentations x′j in terms of similarity between pooled
representations e(xi) and e(x′j) obtained from a
chemical LM. We assume that if a model retrieves
an augmented x′i of a higher rank given xi, it is
robust to the selected augmentation and is aware
that the given augmentation is an identity trans-
formation in molecules. E.g., the degraded per-
formance suggests models struggle to distinguish
non-augmented molecules from those with added
hydrogen, implying they are not aware hydrogen is
often omitted but implicitly present in SMILES. We
use mean-pooled embeddings from Transformer
layers as representations of SMILES.
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Model
Canon Hydro Kekul Cycle

Acc@1 Acc@5 MRR Acc@1 Acc@5 MRR Acc@1 Acc@5 MRR Acc@1 Acc@5 MRR

Cross-modal models
Text+Chem T5-standard 63.03 82.76 72.4 5.46 10.85 8.6 76.76 92.03 83.8 96.7 99.82 98.2
Text+Chem T5-augm 60.64 82.79 70.9 5.61 12.64 7.1 77.09 92.06 84.4 97.18 99.7 98.3
MolT5-base 55.64 59.79 50.9 5.97 7.27 5.5 62.76 80.52 70.9 90.94 97.18 93.8
MolT5-large 46.94 63.58 54.7 2.36 5.06 4.1 59.7 75.84 67.2 98.21 100 99.1

Unimodal models
BARTSmiles 25.76 38.09 31.8 1.21 2.15 2.2 39.03 54.97 46.9 61.67 71.24 66.2
ZINC-GPT 23.85 33.85 28.8 0.85 1.64 1.5 35.09 48.45 41.7 75.3 85.03 80.1
SciFive 29.73 44.94 39.9 2.58 4.64 2.9 48.21 68.15 62.4 98.48 100 99.2
PubChemDeBERTa 32.79 48.09 40.3 2.15 4.33 3.6 53.55 73.15 62.9 96.39 99.45 97.9
ChemBERT-ChEMBL 26.06 37.79 32.2 1.73 3.3 2.8 37.7 54.91 46.1 79.55 87.03 83.2
ChemBERTa 26.61 40.12 33.3 1.09 2.3 2.1 44.18 65.42 54.1 92.58 98.42 95.3
ZINC-RoBERTa 23.33 33.61 33.2 0.97 2.39 1.7 33.09 46.97 45.5 90.61 97.48 69.2

Graph Neural Network model
GNN 92.42 98.24 95.1 92.42 98.24 95.1 92.51 98.24 95.1 99.15 100. 99.6

Table 1: Top-1 / Top-5 accuracy (%) and Mean Reciprocal Rank (MRR) of ChemLMs and GNN for matching of
distributed representations of molecules with their augmentations on the ChEBI-20 dataset.

Model
Canon Hydro Kekul Cycle

Acc@1 Acc@5 MRR Acc@1 Acc@5 MRR Acc@1 Acc@5 MRR Acc@1 Acc@5 MRR

Cross-modal models
Text+Chem T5-standard 36.93 59.8 72.41 0.65 2.94 8.57 42.92 66.34 83.78 80.94 98.58 98.18
Text+Chem T5-augm 39 63.62 70.89 0.65 5.12 7.11 45.21 70.7 84.39 80.94 98.58 98.35
MolT5-base 29.96 44.55 37.62 0.54 3.16 2.65 36.17 51.96 44.32 76.36 92.37 83.52
MolT5-large 29.41 42.81 37.45 1.53 6.75 3.16 35.29 49.13 43.41 81.7 98.15 90.72

Unimodal models
BARTSmiles 27.89 42.05 31.76 0 0.87 1.11 31.81 48.58 37.38 41.83 44.77 42.43
ZINC-GPT 24.18 36.17 32.03 0.44 1.31 0.97 27.45 43.03 37.69 55.12 68.52 64.41
SciFive 22 33.44 39.95 0 1.2 2.97 24.62 37.8 62.41 93.14 98.04 99.22
PubChemDeBERTa 26.69 38.13 31.96 0.22 0.65 0.99 31.59 44.88 37.8 87.36 94.99 90.82
ChemBERT-ChEMBL 23.64 34.86 31.52 0.98 3.38 1.34 27.12 39.54 36.23 37.15 39.76 65.99
ChemBERTa 25.93 36.6 31.69 0.65 2.94 1.74 29.3 41.72 36.46 50.98 60.13 80.49
ZINC-RoBERTa 28.76 42.27 36.48 0.65 1.85 1.33 33.12 49.35 42.61 50.76 56.86 84.64

Graph Neural Network model
GNN 80.61 96.40 87.3 80.93 96.40 87.4 80.93 96.40 87.4 100. 100. 100.

Table 2: Top-1 / Top-5 accuracy (%) and Mean Reciprocal Rank (MRR) of ChemLMs and GNN for matching of
distributed representations of molecules with their augmentations on the Isomers dataset.

Our results for matching distributed represen-
tations of molecules with their augmentations on
CheBI-20 and Isomers datasets are presented in Ta-
ble 1 and Table 2. Higher top-1/ top-5 accuracy and
MRR indicate a model can recognize that varying
SMILES representations correspond to the same
molecule, i.e., robust to that type of augmentation.

Chemical LMs are not robust to SMILES aug-
mentations The existing ChemLMs struggle to
retrieve augmented SMILES for non-augmented
ones indicating that they are unable to recognize
synonymous SMILES variations. The finding
lets us assume that pre-training on SMILES leads
to memorization rather than an understanding of
chemistry and a poor generalization. No model per-
forms best on all augmentations and datasets, but
retrieval is higher on the less complex ChEBI-20
dataset, possibly due to the transformation of short
and non-aromatic molecules by our augmentations

being less frequent.

Robustness to different types of augmentations
varies significantly For all ChemLMs, augmen-
tation ordering concerning retrieval accuracy re-
mains consistent: the most challenging augmenta-
tion is explicit hydrogen addition, then transform-
ing into RDKit canonical, kekulization, and cycle
renumbering. Encoder-only PubChemDeBERTa,
ChemBERTa, and ZINC-RoBERTa models are not
far behind T5 models for cycle renumbering aug-
mentation on ChEBI-20. Surprisingly, retrieval
accuracy for hydrogen addition augmentation is ex-
tremely low for all models. On Isomers, all models
have failed to surpass 1% accuracy. We believe that
poor performance on hydrogen addition is caused
by its absence in pre-training data of these models:
hydrogen is always omitted whenever possible.

We note that from the construction, the output
of chemistry GNNs depends only on the molecular
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Figure 2: Performance on original and augmented
MoleculeNet test sets, showing the impact of different
data augmentation techniques on model performance
across regression (ESOL), binary classification (BBBP,
BACE), and multilabel classification tasks (SIDER).

graph structure, which can only be slightly changed
by the proposed augmentations (only edge types
change due to the chirality encoding). Thus, such
models outperform ChemLMs on the AMORE met-
rics, as shown in Tab. 2. Though it remains ques-
tionable whether comparing GNNs and LMs is fair,
we still find this comparison useful because, in gen-
eral, we would like to probe chemical ML models
of different natures. Indeed, GNNs do not solve
the NLP tasks out of the box, so we should con-
sider their metrics as the baseline for ChemLMs,
where the latter may be augmented with the graph
representations. A potential conclusion is incorpo-
rating parsing or graph representations into future
ChemLMs for improvements.

Chemical LMs benefit from cross-modality
For three augmentations except for cycle renumber-
ing, cross-modal models (MolT5 and Text+Chem
T5 variations) pre-trained on textual and chemi-
cal tasks yield higher retrieval accuracy consis-

tently. Scores of Text+Chem T5-standard and
Text+Chem T5-augm are, in most cases, higher
than scores of other models. Interestingly, Sci-
Five is the most robust to cycle renumbering on
both datasets, even though it is pre-trained on texts
only with no SMILES. The obtained top-1 accuracy
mostly matches with top-5 accuracy. The high-
est absolute top-5 accuracy gain is observed for
encoder-decoder cross-modal Text+Chem T5 mod-
els. For an inversed evaluation under the AMORE
framework (i.e., to retrieve an original SMILES
xi string given an augmented one x′i), please see
Appx. B. This performance is generally similar to
the one presented in Table 1.

4.2 AMORE and downstream tasks

While our experiments on augmented molecule re-
trieval explored the robustness of an embedding
space of chemical LM to SMILES augmentations,
another interesting unexplored question is the ro-
bustness of these models to augmentations when
solving a downstream task. We utilize two bench-
marks: 1) MoleculeNet (Wu et al., 2018b) with
chemistry tasks and 2) the ChEBI-20 dataset for the
molecule captioning task. The MoleculeNet bench-
mark is the established standard in the research
community to assess and compare the performance
of models on various molecular property prediction
tasks, spanning topics from quantum mechanics to
physiology. We consider 9 tasks from it: three re-
gression tasks (Lipophilicity, ESOL, FreeSolv), 3
binary classification tasks (HIV, BBBP, BBPA), and
3 multilabel classification tasks (Tox21, ToxCast,
SIDER). Part of the results are presented in Fig-
ure 2, and full results are provided in Appendix J.

Augmented SMILES lead to degraded perfor-
mance on chemical tasks Experiments showed
metrics generally degrade on augmented Molecu-
leNet test sets (Fig. 2). For example, RMSE on
the ESOL regression task increased from 0.87 to
7.93 with hydrogen addition. However, not all
augmentations had the same impact, with cyclic
augmentations having a smaller effect (0.93 to
0.99 for Text+ChemT5-standard). The impact
of augmentations was more distinct in binary
classification (BACE). PubChemDeBerta accuracy
dropped from 0.8 to 0.38 with hydrogen addi-
tion, with intermediate drops for other augmen-
tations. The major part of the model’s accuracy
range in binary classification (BBBP) is the follow-
ing: original—cycle—Kekule—canon—hydrogen.
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Augmentation −→ canon hydro
Metrics Acc@1 ROUGE2 METEOR Acc@1 ROUGE2 METEOR
Text+Chem T5-standard 63.03 0.381 0.515 5.46 0.187 0.314
Text+Chem T5-augm 60.64 0.377 0.514 5.61 0.201 0.336
MolT5-base 42.88 0.315 0.450 2.36 0.199 0.329
MolT5-large 46.94 0.390 0.532 2.7 0.174 0.317
Augmentation −→ kekul cycles
Metrics Acc@1 ROUGE2 METEOR Acc@1 ROUGE2 METEOR
Text+Chem T5-standard 76.76 0.413 0.574 96.7 0.483 0.600
Text+Chem T5-augm 77.09 0.410 0.546 97.18 0.458 0.581
MolT5-base 62.76 0.333 0.475 90.94 0.417 0.540
MolT5-large 59.7 0.405 0.546 98.21 0.477 0.603

Table 3: Detailed evaluation results of ChemLMs for the ChEBI-20 test set: top-1 accuracy (Acc@1, %) for
matching of distributed representations of molecules with their augmentations and ROUGE2 and METEOR for
matching of textual outputs of LMs with gold descriptions (molecule captioning task). Here, canon refers to RDKit
canonicalization, hydro to Hydrogen explicit addition, kekul to Kekulization, and cycles to cycle renumbering.

For multilabel classification, BERT-based models
(PubChemDeBerta, ChemBerta) outperformed T5-
based models, suggesting the latter may not be
well-suited for tasks with many classes. Addition-
ally, we ranked all models for each augmentation
type separately and found out that the rankings on
augmented test sets are consistent with ranking on
non-augmented test sets in general (see Appx. D).

Even simple augmentations are challenging
Our results on augmented molecule retrieval (see
Table 1 and Table 2) showed that cycle renumber-
ing changes the representation space less than other
augmentations. But on chemical tasks, metrics de-
grade even on these types of augmentations. It
seems that even the slightest distribution shift in
input SMILES can hinder the ability of a chemical
LM to solve downstream tasks.

Captioning quality is consistent with AMORE
From Table 3, the most significant drop in ROUGE
and METEOR is observed for the hydrogen addi-
tion augmentation, which is consistent with our
proposed AMORE metric. While ROUGE and
METEOR require labor-intensive labeled datasets
for evaluation, our proposed embedding distance-
based AMORE framework supports zero-shot
evaluation and only requires a set of SMILES
strings. Though the correlation between Acc@1
and ROUGE/METEOR is not 100% (40%/40% in
the case of canonicalization and 60%/32% in the
case of kekulization), we still suppose that such be-
havior is partly caused by the fact that ROUGE/ME-
TEOR metrics are not ideal and may decrease for
linguistically richer models. Thus, both datasets
demonstrate that part of augmented molecule em-
beddings is the closest to its original ones. Still, it

strongly changes from one augmentation to another,
and among the tested models, there was not one of
the best metrics on all datasets and augmentations.

Representation robustness correlates across dif-
ferent augmentations The flexibility of our
framework allows us to take hidden representations
from an arbitrary intermediate layer of a ChemLM.
We explored how the retrieval-based top-1 accuracy
changes over different Transformer layers. Fig. 3
presents the layer-wise AMORE metric for T5 mod-
els. An interesting finding is that layer-wise re-
trieval quality strongly correlates across varying
augmentation types. For instance, Text+Chem T5-
standard faces a significant top-1 accuracy drop
on the 12th decoder layer for three of four aug-
mentation types simultaneously. The same stands
for SciFive’s decoder. For MolT5’s encoder and
decoder, a notable performance drop is observed
for the 3rd layer. However, layer dynamics is not
consistent across different Chem LMs.

Levenshtein: discrepancy between different
types of augmentations To further discover the
root of ChemLM’s performance degradation on
augmented test sets, we explored the dependency
between molecule captioning quality on CheBI20
and simpler SMILES string properties. In partic-
ular, for each augmented test set, we measure av-
erage string length and the Levenshtein distance
between the original SMILES and an augmented
one. For each pair of original and augmented
SMILES, we define Levenshtein ratio as the ratio
between their Levenshtein distance and the length
of the original SMILES string. Additionally, we
include the Spearman’s correlations between the
target metrics, such as ROUGE1 and METEOR,
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Figure 3: Top-1 retrieval accuracy (Acc@1) on CheBI-20 dataset calculated for hidden representations for different
layers of encoder-decoder chemical LMs. The 0-th layer is the initial token embeddings (embedding layer) before
any Transformer layers. The first row presents the results for encoders; the second row stands for decoders.

and the Levenshtein ratio for MolT5 model. The
results are shown in the Table 11 of the Appendix I.
While high string length (Levenshtein ratio for hy-
drogen augmentation is three times larger than for
canonicalization or kekulization case) could par-
tially explain poor generalization on hydrogen addi-
tion augmentation, low correlation values between
the target metrics and Levenshtein ratio indicates
that string variation is not the only challenge. A
deeper insight into generalization limitations on
augmented data requires a future work.

5 Discussion

In this paper, we release a general framework for
analyzing knowledge awareness of modern LMs in
the chemical domain. While we rely on L2 distance
as a similarity distance throughout all our experi-
ments, an arbitrary embedding similarity measure
can be employed. Similarly, possible augmenta-
tion types are not limited to the ones considered
in our research and can be extended. This flexibil-
ity might open new avenues for interpretation and
analysis for LMs in the chemical domain.

Our experiments have shed light on the research
question formulated in the Introduction and re-
vealed a few critical limitations of the existing

LMs in chemistry-related tasks. First, the embed-
ding space of chemical LMs is not robust even to
simple augmentations of SMILES strings known
as identity transformations of molecules in chem-
istry. While robustness to these augmentations can
vary across different model layers, no intermedi-
ate layer would be stable to SMILES augmenta-
tions. Second, the performance of chemical LMs
at downstream tasks, such as molecule captioning,
can be significantly limited when being passed an
out-of-distribution (OOD) input. These two find-
ings demonstrate that the existing chemical LMs
have problems with distinguishing the same
molecules in different representations during
NLP-inspired pre-training procedures. They over-
fit on a specific format of input molecular string
representations rather than truly gain an understand-
ing of molecules. Finally, cross-modal chemical
LMs tend to be more robust to OOD input samples,
highlighting the importance of further developing
multimodal models for chemistry and NLP. Mean-
while, metrics for the isomers dataset are lower and
show minimal differences across models, likely
attributed to the dataset’s structure comprising iso-
meric aromatic compounds with identical molecu-
lar formulas and atom counts.
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The key idea is that chemical models must accu-
rately translate augmented SMILES into molecular
structures. Without fully understanding SMILES
syntax and distinguishing same-structure SMILES,
ChemLMs remain vulnerable to real-world data
perturbations. This analysis aims to inform revi-
sions to the established pipeline for learning chem-
ical representations from NLP.

6 Conclusion

In this paper, we introduce AMORE, a novel
method (Fig. 1) based on embedding distance and
SMILES augmentation to explore and evaluate the
trustworthiness of language model’s representa-
tions of a chemical substance and its ability to
recognize molecule structures in SMILES string
representations. By using this method, we assessed
the most popular chemical LMs for several bench-
marks (ChEBI-20, QM9, and MoleculeNet). We
propose to use an isomeric subset of the QM9
dataset, which is novel to this task.

Though the first attempts to study the impact
of chemical augmentations on Text+Chem T5 and
MolT5 for molecule captioning exist, this is lim-
ited to cross-domain generative architectures re-
quiring NLP tokens, constraining the number of
suitable models for evaluation. The key novelty of
our paper lies in the proposed probing scheme. It
is the first application of computation of distances
between embeddings for benchmarking chemical
LLMs. As a result, our AMORE framework drasti-
cally extends this scope for evaluating and compar-
ing models in domain-specific diverse architectures,
including encoder-only versus generative models,
as well as uni-modal LMs (with molecule atom
tokens only) versus cross-modal models (atom +
NLP tokens). It is important to emphasize that
our method exploits unique specifics of the chem-
ical domain. In contrast with typical NLP tasks,
our augmentations lead to the creation of total syn-
onyms of a molecule, which are absent in general
words of natural language. Our framework opens
avenues for future research, ranging from under-
standing the functionality of molecule SMILES
representations in LMs to addressing weaknesses
in chemical tasks and enhancing efficiency.

Limitations

First, we evaluated modes that are publicly
available at HuggingFace (HF) (links in
Appendix E). We note that there are other

popular models such as Chemformer (https://
github.com/MolecularAI/Chemformer), Mol-
former (https://github.com/IBM/molformer)
and T5Chem (https://github.com/
HelloJocelynLu/t5chem), which we failed
to plug as HF checkpoints. Second, the evaluated
models primarily focus on the sequence format of
molecules, but it is important to consider in future
other formats, such as 3D structures, which also
hold significant importance. Third, we emphasize
that the evaluated models were developed for
research purposes and may contain unintended
biases, and any molecules generated by them
should undergo thorough evaluation through
standard clinical testing. Furthermore, SELFIES
(Krenn et al., 2022) and other molecule naming
systems are also widespread in the chemical field.
In our research we have focused on SMILES due
to its popularity, but the augmentations on other
systems are yet to be explored.

Ethics Statement

The models and datasets used in this work are pub-
licly available for research purposes. The incor-
poration of AI into applied chemistry brings forth
a variety of risks and ethical dilemmas. First, the
direct implementation of AI-generated predictions,
potentially hazardous or dangerous, without rig-
orous validation could result in human injuries,
casualties, and damage to laboratory facilities. Sec-
ond, the absence of proper oversight could lead to
the misuse of chemical language models and AI in
general, potentially facilitating the production of
dangerous and illegal chemical compounds, with
significant ethical and societal consequences. To
address these concerns, it is essential to develop
and implement safe ethical guidelines for the de-
velopment and deployment of AI in chemistry.
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A Augmentation examples

Examples of molecules and their augmented ver-
sions are provided in Table 4.

B Augmented-original AMORE

Table 5 presents the Top-1 and Top-5 retrieval ac-
curacy for the inversed version of AMORE: for
retrieval of original non-augmented X SMILES
given augmented ones X ′. Overall, the results are
comparable to the ones in Table 1, which indicates
that these two tasks are of similar complexity for
chemical LMs under consideration.

C Molecule captioning evaluation

For evaluation on molecule captioning, we uti-
lized the luna-nlg framework, which is available
at https://pypi.org/project/luna-nlg/ and
RDKit (https://www.rdkit.org). Trained mod-
els, data, and our source code will be published
upon acceptance.
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TYPE RESULT

original CNCCC(C1=CC=CS1)OC2=CC=CC3=CC=CC=C32.Cl
canon CNCCC(Oc1cccc2ccccc12)c1cccs1.Cl
hydro [CH3][NH][CH2][CH2][CH]([O][c]1[cH][cH][cH][c]2[cH][cH][cH][cH][c]12)[c]1[cH][cH][cH][s]1.[ClH]
kekul CNCCC(OC1=CC=CC2=CC=CC=C12)C1=CC=CS1.Cl
cycle CNCCC(C4=CC=CS4)OC2=CC=CC7=CC=CC=C72.Cl

Table 4: Example of molecular SMILES from a dataset and after our transformations. Here, canon refers to RDKit
canonicalization, hydro to Hydrogen explicit addition, kekul to Kekulization, and cycle to cycle renumbering

Model Canon Hydro Kekul Cycle

@1 @5 @1 @5 @1 @5 @1 @5

Generative models
Text+Chem T5-standard 52.52 69.18 2.88 6.39 71.09 86.97 99.09 99.67
Text+Chem T5-augm 50.58 67.12 3.88 8.97 71.3 86.42 98.94 99.97
MolT5-base 41.55 57.79 1.76 3.48 61.03 79.42 95.39 98.64
MolT5-large 50.18 66.52 1.52 3.03 57.42 72.73 99.73 100
BARTSmiles 25.18 36.55 0.79 1.45 36.36 51.76 73.42 82.15
ZINC-GPT 25.03 34.12 0.7 0.94 36.73 47.94 82.03 89.21
SciFive 33.58 50.18 1.73 3.55 48.33 66.91 99.76 100

Encoder-only models
PubChemDeBERTa 35.12 53.15 1.3 2.36 53.73 72.91 99.76 100
ChemBERT-ChEMBL 25.09 37.61 1.03 2.06 34.42 51.24 85.61 91.21
ChemBERTa 26.61 25.79 40.42 0.88 1.82 43.15 65.33 96.97
ZINC-RoBERTa 24.64 36.36 1.03 1.76 34.33 49.73 95.09 99.18

Graph Neural Network model
GNN 91.96 97.88 91.96 97.88 91.96 97.88 100. 100.

Table 5: Top-1 and Top-5 accuracy (@1/@5) of ChemLMs and GNN for matching of distributed representations of
augmented SMILES strings to the original (non-augmented) ones on CheBI-20 dataset.

D Chemical LM Ranking

To explore how the ranking of ChemLMs on
augmented test sets changes compared to non-
augmented data, we conduct our experiments on
nine datasets MoleculeNet datasets as follows.
Each model is trained on the original train set
provided in MoleculeNet and evaluated on both
the original test set and four augmented test sets.
Next, we rank all models with respect to their per-
formance on a given test set type (either an orig-
inal one or one of four augmented ones) using
the Vote’n’Rank framework (Rofin et al., 2023).
The framework is designed for ranking systems
in multi-task benchmarks under the principles of
the social choice theory (Aizerman and Aleskerov,
1995). We follow recommendations from (Rofin
et al., 2023) and use Copeland rule to select the
system that beats all the others in pairwise compar-
ison. Copeland chooses the system that dominates
the others in more cases and is dominated by the

least.
The results are presented in Table 6. Overall, all

augmentations except for hydrogen addition do not
seem to shuffle the original ranking too much. For
instance, Zinc-RoBERTa and PubChemDeBERTa
achieve rank 1 and 2, respectively, on four of five
test sets. Similarly, MolT5-base placed last on
all augmentations except for hydrogen addition.
It seems that encoder-decoder architectures are
more stable to hydrogen addition on downstream
tasks than encoder-only architectures as 4 of top 5
places are achieved by MolT5-large, MolT5-base,
Text+Chem T5-augm, and SciFive.

E Dataset and Model Details

The MoleculeNet benchmark (Wu et al., 2018b)
consists of 17 different chemical tasks. In this work,
we consider 9 tasks from it: three regression tasks
(Lipophilicity, ESOL, FreeSolv), 3 binary classifi-
cation tasks (HIV, BBBP, BBPA), and 3 multilabel
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Rank Test set

Original Canon Hydro Kekul Cycles
1 ‡ ‡ ♢ ‡ ‡
2 † † ♥ † †
3 2 ♦ ♠ ♦ 2

4 ♠ 2 † 2 ♠
5 ♦ ♠ △ ♠ ♦
6 ♣ ♢ ♣ ♣ ♣
7 △ △ ‡ ♢ △
8 ♢ ♣ 2 △ ♢
9 ♥ ♥ ♦ ♥ ♥

Table 6: ChemLM rankings with respect to Vote’n’Rank
framework’s Copeland score calculated on 9 down-
stream tasks from the MoleculeNet benchmark for
different augmentation types. Here, canon refers to
RDKit canonicalization, hydro to Hydrogen explicit
addition, kekul to Kekulization, and cycles to cycle
renumbering.
Models: ‡=ZINC-RoBERTa, †=PubChemDeBERTa,
2=ChemBerta, ♣=Text+Chem T5-augm,
♦=Text+Chem T5-standard, ♣=Text+Chem T5-
augm, △=SciFive, ♢=MolT5-large, ♥=MolT5-base.

classification tasks (Tox21, ToxCast, SIDER). For
our experiments, we employ the MoleculeNet’s
80/10/10% splits into train, validation, and test
sets. The MoleculeNet benchmark is available at
https://moleculenet.org.

We trained each model on each MoleculeNet
task for 50 epochs with learning rates of 1·10−5 and
1 · 10−3 for encoder-only and encoder-decoder ar-
chitectures, respectively. For prediction, we loaded
model weights from the best epoch in terms of
target metric on the validation set: accuracy for
classification tasks and RMSE for regression tasks.
Encoder-Decoder T5 models are trained for text
generation given prompts listed in Table 7 as input.

BBBP (Martins et al., 2012) is a task to classify if
a molecule penetrates the Blood-Brain barrier. The
corresponding dataset consists of 2053 compounds.

HIV (Wu et al., 2018b) is a task to predict if
a molecule can inhibit HIV replication. The cor-
responding dataset consists of 4000 compounds.
Screening results were evaluated and placed into
three categories: confirmed inactive (CI), con-
firmed active (CA), and confirmed moderately ac-
tive (CM), and further combined, making it a clas-
sification task between inactive (CI) and active (CA
and CM).

BACE (Subramanian et al., 2016) is a task to
predict if a molecule will be an inhibitor of hu-
man beta-secretase (BACE-1). The corresponding

dataset consists of 1513 compounds.
Tox21 (Richard et al., 2020) is the task of predict-

ing qualitative toxicity measurements on 12 biolog-
ical targets, including nuclear receptors and stress
response pathways. The corresponding dataset con-
sists of 7831 compounds.

ClinTox (Wu et al., 2018b) dataset compares
drugs approved by the FDA and drugs that have
failed clinical trials for toxicity reasons. The
dataset includes two classification tasks for 1491
drug compounds with known chemical structures:
(1) clinical trial toxicity (or absence of toxicity)
and (2) FDA approval status.

SIDER (Kuhn et al., 2016) is a task to classify
marketed drugs and adverse drug reactions (ADR)
into 27 system organ classes. The corresponding
dataset consists of 1427 compounds.

ESOL (Delaney, 2004) is a task to predict the
water solubility of a compound. The corresponding
dataset consists of 1128 compounds.

FreeSolv (Mobley and Guthrie, 2014) is a task
to predict the hydration-free energy of small
molecules in water. The calculated values are de-
rived from alchemical free energy calculations us-
ing molecular dynamics simulations. The corre-
sponding dataset consists of 642 compounds.

Lipophilicity (Mannhold et al., 2009) is a task to
predict the octanol/water distribution coefficient
(logD at pH 7.4). The corresponding dataset
consists of 1128 compounds derived from the
ChEMBL database. This property is an impor-
tant feature of drug molecules affecting membrane
permeability and solubility.

The ChEBI-20 dataset used for exper-
iments is available at https://github.
com/blender-nlp/MolT5/tree/main/
ChEBI-20 data. The QM9 dataset is available at
http://quantum-machine.org/datasets/.

The GNN checkpoint is available at https:
//github.com/awslabs/dgl-lifesci/tree/
master/examples/molecule embeddings.

Table 8 lists the Hugging Face checkpoints for
models used in this study. Table 9 summarizes the
parameter count and domain of each utilized LM.

Text+Chem T5 (Christofidellis et al., 2023) is a
multi-task, cross-domain language model that uni-
fies natural language and chemical representations.
It employs a shared T5 (Raffel et al., 2020) encoder-
decoder to learn from aligned text-SMILES pairs.
For our experiments, we adopted two Text+Chem
T5 base-sized models: (i) Text+Chem T5-standard,
which is pre-trained on these 11.5M samples, and
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Task Dataset T5 prompt # Samples

Regression
ESOL What is water solubility of SMILES? 1,128

FreeSolv What is hydration free energy of SMILES in wa-
ter?

642

Lipophilicity How lipophilic is SMILES? 4,200

Binary
classification

BACE Please evaluate the ability of SMILES to inhibit
human beta-secretase.

1,513

BBBP Can SMILES penetrate the BBB? 2,039
HIV Is SMILES an HIV inhibitor? 41,127

Multilabel
classification

ClinTox Given drug compound SMILES predict its toxic-
ity and FDA approval status.

1,478

SIDER Given drug compound SMILES, predict the organ
classes for which it causes adverse reactions.

1,427

Tox21 Given molecule SMILES, predict its toxicity mea-
surements.

7,831

Table 7: Overview of the adopted MoleculeNet datasets. For each dataset, a prompt for fine-tuning a sequence-to-
sequence T5 model and samples count are provided.

(ii) Text+Chem T5-augm which is pre-trained on
an augmented version of this corpus that consists
of 33.5M paired samples.

MolT5 (Edwards et al., 2022b) is a self-
supervised learning framework for jointly training
a model on molecule captioning and text-based
molecule generation tasks. The model employs
a multi-task pre-training pipeline (Raffel et al.,
2020) to learn from 100M SMILES strings from the
ZINC-15 database (Sterling and Irwin, 2015) and
natural language texts from the C4 (Raffel et al.,
2020) corpus.

PubChemDeBERTa (Schuh et al., 2024) adopts
DeBERTa V3 (He et al., 2023) encoder to learn
molecular representations on PubChem (Kim et al.,
2023) via the replaced token detection pre-training
task. The model simultaneously adopts a Siamese
neural network architecture to learn from biological
assays, molecular fingerprints, and textual features
(such as a molecule’s description and title). The
authors released two versions of the pre-trained
model: (i) a base one (ii) and an augmented one,
which was trained on augmented textual descrip-
tions. In our work, we experimented with the aug-
mented version as it achieved higher perplexity on
a test set (Schuh et al., 2024).

ChemBERT-ChEMBL is a BERT-based (Devlin
et al., 2019) model pre-trained on 1.7M molecules
in SMILES format from the ChemBL (Gaulton
et al., 2012) database via the masked-language
modeling (MLM) objective.

ChemBERTa (Chithrananda et al., 2020) is a

RoBERTa-based (Liu et al., 2019) molecular rep-
resentation model which is pre-trained on 100K
SMILES strings from the ZINC (Sterling and Ir-
win, 2015) benchmark via the MLM objective.

BARTSmiles (Chilingaryan et al., 2022) is
a BART-like (Lewis et al., 2020) sequence-to-
sequence molecular representation model pre-
trained on 1.7B SMILES samples from the
Zinc20 (Irwin et al., 2020) chemical database.

ZINC-GPT is a GPT-like (Radford et al., 2019)
autoregressive language model trained on 480K
SMILES strings from the ZINC (Sterling and Irwin,
2015) database.

ZINC-RoBERTa is a RoBERTa-based (Liu et al.,
2019) molecular representation model which is
pre-trained on 480K SMILES strings from the
ZINC (Sterling and Irwin, 2015) database via the
MLM objective.

SciFive is a uni-modal textual T5-based model
pre-trained on the union of general-domain C4 cor-
pus and 32M abstracts from the PubMed database2.
We adopt the model for our experiments to inves-
tigate if special chemical LMs are needed or if
simple training of a universal LM with both textual
and chemical modalities is enough for chemistry-
related tasks.

All the experiments in this paper were conducted
on a single machine with Nvidia V100 GPU and a
8-core CPU (Kostenetskiy et al., 2021).

2https://pubmed.ncbi.nlm.nih.gov
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Model HuggingFace checkpoint

Text+Chem T5-standard (Christofidellis et al.,
2023)

GT4SD/multitask-text-and-chemistry-t5-base-standard

Text+Chem T5-augm (Christofidellis et al.,
2023)

GT4SD/multitask-text-and-chemistry-t5-base-augm

MolT5-base (Edwards et al., 2022b) laituan245/molt5-base-smiles2caption
MolT5-large (Edwards et al., 2022b) laituan245/molt5-large-smiles2caption
SciFive (Phan et al., 2021) razent/SciFive-base-Pubmed
PubChemDeBERTa (Schuh et al., 2024) mschuh/PubChemDeBERTa-augmented
ChemBERT-ChEMBL (Zhang et al., 2022) jonghyunlee/ChemBERT ChEMBL pretrained
ChemBERTa (Chithrananda et al., 2020) seyonec/ChemBERTa-zinc-base-v1
BARTSmiles (Chilingaryan et al., 2022) gayane/BARTSmiles
ZINC-GPT entropy/gpt2 zinc 87m
ZINC-RoBERTa entropy/roberta zinc 480m

Table 8: HuggingFace checkpoints used in our expriments.

Model Domain # Params

Text+Chem T5-standard Cross 220M
Text+Chem T5-augm Cross 220M
MolT5-base Cross 220M
MolT5-large Cross 770M
SciFive Text 220M
PubChemDeBERTa Chem 86M
ChemBERT-ChEMBL Chem 6M
ChemBERTa Chem 125M
BARTSmiles Chem 400M
ZINC-RoBERTa Chem 102M
ZINC-GPT Chem 87M

Table 9: Domain and parameter count for models used in
this study. “Chem” and “Text” are uni-modal chemical
and textual models. “Cross” stands for cross-domain
(bi-modal) language and chemistry LMs.

F Qualitative Analysis

An example of the outputs of the models
(Text+Chem T5-augm predictions for duloxetine
hydrochloride) is shown in Table 10.

All in all, none of the predicted substances
and reactions are correct.

Cycle augmentation: the model has correctly
predicted the role of duloxetine hydrochloride
(as an antidepressant and a serotonin uptake
inhibitor) and a precursor reaction with hydrochlo-
ric acid with a correct molar ratio. However,
the model wrongly suggests Irinotecan as a
precursor, and with this reaction, the presence
of atomic sulfur in the resulting hydrochloride
is not explained. Original test: the model

suggests that duloxetine hydrochloride is a result
of a reaction between 1-[2-(1-benzothiophen-
3-yl)ethoxy]-4-(methylamino)butanal and
hydrochloric acid. The medical role and substance
class (hydrochloride) are correctly predicted.
But 1-[2-(1-benzothiophen-3-yl)ethoxy]-4-
(methylamino)butanal seems non-existent (it is
not described on PubChem and not found in
any chemical paper). However, molecules with
components such as (-4-(methylamino)butanal
and [2-(1-benzothiophen-3-yl)ethoxy]) exist in the
training set. Canonical test: the model has correctly
predicted the role of duloxetine hydrochloride (as
an antidepressant and a serotonin uptake inhibitor)
and a precursor reaction with hydrochloric acid
with a correct molar ratio. However, the model
suggests cis-diltiazem as a precursor, but this
substance is a calcium channel blocker and an
angina treatment drug. If this reaction was correct
and possible, then this antidepressant would be
produced in the stomach from the reaction of
gastric acid and diltiazem. It is a problem because
these predictions are fully incorrect and potentially
dangerous in practice. Hydrogen augmentation:
the model has given the worst predictions on
this augmentation, as all components have been
suggested incorrectly, the role of the substance is
not predicted, and both precursor substances are
also incorrect. Kekule: the model has correctly
predicted the role of duloxetine hydrochloride (as
an antidepressant and a serotonin uptake inhibitor)
and a precursor reaction with hydrochloric acid
with a correct molar ratio. However, the model
suggests N-methyltryptamine as a precursor, which
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Probing
Test

Input Output

original CNCCC(C1=CC=CS1)
OC2=CC=CC3=CC=CC=C32.Cl

The molecule is a hydrochloride salt resulting
from the reaction of 1-[2-(1-benzothiophen-
3-yl)ethoxy]-4-(methylamino)butanal with 1
mol eq. of hydrogen chloride. It has a role as
an antidepressant and a serotonin uptake in-
hibitor. It contains a 1-[2-(1-benzothiophen-
3-yl)ethoxy]-4-(methylamino)butanal.

canonical CNCCC(Oc1cccc2ccccc12)
c1cccs1.Cl

The molecule is a hydrochloride obtained
by combining equimolar amounts of cis-
diltiazem and hydrogen chloride. It has
a role as an antidepressant and a sero-
tonin uptake inhibitor. It contains a cis-
diltiazem(1+).

hydrogen [CH3][NH][CH2][CH2][CH]
([O][c]1[cH][cH][cH]
[c]2[cH][cH][cH][cH]
[c]12)[c]1[cH][cH]
[cH][s]1.[ClH]

The molecule is an ammonium salt resulting
from the reaction of equimolar amounts of
scyllo-inositol and ammonia. It contains a
scyllo-inositol(1+). It derives from a hydride
of a scyllo-inositol.

kekulization CNCCC(OC1=CC
=CC2=CC=CC=C12)C1=CC=CS1.Cl

The molecule is a hydrochloride obtained
by combining N-methyltryptamine with one
molar equivalent of hydrochloric acid. It
has a role as an antidepressant and a sero-
tonin uptake inhibitor. It contains a N-
methyltryptamine(1+).

cycles CNCCC(C4=CC=CS4)
OC2=CC=CC7=CC=CC=C72.Cl

The molecule is a hydrochloride obtained by
combining irinotecan with one molar equiv-
alent of hydrochloric acid. It has a role as
an antidepressant and a serotonin uptake in-
hibitor. It contains an irinotecan(1+).

Pubchem CNCCC(C1=CC=CS1)
OC2=CC=CC3=CC=CC=C32.Cl

The molecule is a duloxetine hydrochloride
in which the duloxetine moiety has S config-
uration. It has a role as an antidepressant. It
contains a (S)-duloxetine.

Table 10: Examples of SMILES and descriptions generated by Chem+Text T5-base. We highlighted in bold the
most important components of the description: precursors, role, and others.

is incorrect. This molecule is not present in train
data, but it does exist and is found in acacia leaves
and human urea as a result of bodily metabolic
reactions. To sum up, the model does not generate
predictions correctly both on augmented and
non-augmented tests. But molecular descriptions
on augmented data are even further from the
target description. The model is able to correctly
predict the role of duloxetine hydrochloride as an
antidepressant and a serotonin uptake inhibitor
and its precursor reaction with hydrochloric acid
with a correct molar ratio on original SMILES for

all augmentations excluding hydrogen addition.
All the model’s predictions seem to be based on
the following high-frequency formula found in
the training data within descriptions of substances
containing “.Cl” : “The molecule is a hydrochlo-
ride obtained by combining ... with one molar
equivalent of hydrochloric acid. It has a role as ...
It contains a ... (1+).”

G Augmentations: chemical view

These models are not trained with augmenta-
tions specially. However, the rules for describing
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Augmentation type
SMILES length
(mean/std)

Levenshtein ratio
with the original string
(mean/std)

Correlation between
Levenshtein ratio
and ROUGE1

Correlation between
Levenshtein ratio
and METEOR

no augmentation 78.96 (80.29) 0 - -
canon 74.71 (78.06) 0.47 (0.22) -0.33 -0.34
hydro 153.36 (134.42) 1.49 (0.54) -0.05 -0.09
cycles 78.97 (80.29) 0.04 (0.04) -0.34 -0.33
kekul 76.98 (78.18) 0.40 (0.20) -0.24 -0.22

Table 11: Levenshtain ratio between different types of augmentations

molecules using this text format do not have a sin-
gle generally accepted standard, and some varia-
tions are allowed in how to write a molecule in this
format. Even though the models were not trained
on the augmented data specifically, the models
trained on very large datasets are expected to under-
stand basic simple rules from chemistry. Our aug-
mentations are more like small changes in the order
of words that do not affect their meaning than a fun-
damentally different format or another language.
We expect that for a model in the inner layers of
which there is an idea of the molecule’s structure,
and not only of its textual representation, then small
changes in the recording of the molecule, and not
in itself, should not pose a difficulty for the model.
The representations of our models about molecules
and augmented ones should be similar to the rep-
resentations of language models (for example, in
the semantic representations task) about sentences
with the same meaning but with different word or-
der: “Language models are used for biomedical and
chemical tasks” and “Language models are used
for chemical and biomedical tasks”. These papers
(models) highlight that models are training on vari-
ous modalities before the main training for the task
of generating descriptions and “overcome chem-
istry domain shortcoming of data scarcity” (Ed-
wards et al., 2022a). However, the main problem is
the difference between overcoming data scarcity in
the chemical domain by training models on large
data and overcoming data scarcity in the chemical
domain by training models on various data. Our ex-
periments suggest that large language models in the
chemistry domain are large and language, but not
chemistry, because these models can not overcome
the problem of generating different descriptions for
the same molecule. Even though the models were
not trained on the augmented data specifically, the
models trained on very large datasets are expected
to understand basic simple rules from chemistry.

We wanted to pay attention to the problem that
good chemical models should recreate the struc-
ture of a molecule from a textual representation
to a greater extent than relying solely on a textual
representation.

SMILES supports the general “hydrogen sup-
pression” approach common in chemoinformatics
(Marino et al., 2001). However, SMILES with
explicitly added hydrogen are also valid and sup-
ported by most chemical tools. Despite the con-
venience of the “hydrogen suppression”, this ap-
proach has several problems. Here are a few ex-
amples: The implementation adopts an implicit hy-
drogens scheme: the number of implicit hydrogens
is calculated as the difference between the “tar-
get valence” of an atom and its bond order. How-
ever, some atoms may have different valence in
different molecules, and if the default valence is
wrong, the user should explicitly define hydrogens.
A similar issue arises when the molecule becomes
charged and the “target valence” differs from the
real. Molecules are 3D objects whose chemical/bi-
ological properties depend on the chirality. In some
cases, the relative position of the hydrogen atom
defines the chirality of the molecule, in which case
it has to be included explicitly in the SMILES. Due
to these reasons (in these cases, added hydrogens
are obligatory), we can expect that chemical LLMs
understand SMILES with added hydrogens.

H Augmentations: linguistic view

Why is the skill of understanding chemistry re-
lated to understanding syntactic rules of SMILES?
We suggest these tests to explore LLMs’ ability to
understand chemistry because we assume that un-
derstanding syntactic rules relates to understanding
chemistry.

In comparsion to natural language, Noam Chom-
sky in ”Syntactic Structures” (Chomsky, 1957) pro-
posed the idea of grammar as a mechanism that
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generates all grammatically correct sentences of a
language and at the same time does not generate
incorrect ones. By giving sentences in the SMILES
language to the LM, we can expect that if it under-
stands their composition and syntactic rules well,
it will easily distinguish the same sentences from
different ones.

If we compare these three sentences:

• green colorless ideas sleep furiously

• colorless green ideas sleep furiously

• red colorless ideas sleep furiously

then we probably agree that the first two of them
are intended to convey the same information and se-
mantics (and do it grammatically), but the last one
it clearly conveys another one, although the first
and last sentence have the character-by-character
sequences of the longest length. We can compare
these semantics even considering that the sentences
have no meaning.

Our augmented tests do the same comparsion
with SMILES: SMILES language has ambiguity,
the same molecule can be represented by different
strings. If we compare these three SMILES strings:

• CC(=O)C1CC2OC2C1

• CC(=O)C1CC2C(C1)O2

• CC(=O)CC1(CC1)C=O

then the first two of them are intended to convey
the same molecule, but the last one it clearly con-
veys another one. It is not about totally different
syntactic systems of SMILES writing rules, it is
mostly about ambiguity in SMILES system. We
define these differences as different types of aug-
mentations, but most of our augmentations based
exactly on SMILES ambiguity.

We agree that hydrogen addition is rare and not
so widely used in the field of chemistry in com-
parsion to the other augmentations, but we include
this augmentation in our framework to represent all
spectrum of SMILES variability from the simplest
(cycles renumbering) to the most difficult.

I Levenshtein: discrepancy between
different types of augmentations

We conjecture that the main source of the discrep-
ancy between augmentations is the difference be-
tween an original SMILES string and its augmen-
tation. As a partial confirmation of the conjecture,

we list the properties of the following distributions
on the ChEBi dataset: augmented and original
SMILES length, the Levenshtein ratio (the ratio
between the Levenshtein distance and the length
of an original string) between original SMILES
and its augmentation; additionally, we include the
Spearman’s correlations between the target metrics
and the Levenshtein ratio for MolT5 model. This
data is shown in the Table 11. For instance, the
Levenshtein ratio between a SMILES string and
its Hydrogens augmentation is approximately three
times larger than for canonicalization or Kekuliza-
tion cases.

J Full results on Chemical Tasks

Model Orig cycle hydro kekul canon

ChemBerta 0.7697 0.7829 0.3750 0.6382 0.6711
PubChemDeBERTa 0.8026 0.7895 0.3816 0.6908 0.6776
ChemBERT-ChEMBL 0.7829 0.7763 0.6184 0.5789 0.5000
ZINC-RoBERTa 0.8158 0.7763 0.4474 0.6250 0.6382
Text+Chem T5-standard 0.7829 0.7500 0.6316 0.6776 0.7303
Text+Chem T5-augm 0.7632 0.7303 0.5263 0.6711 0.6711
MolT5-base 0.6184 0.6184 0.6184 0.6184 0.6184
MolT5-large 0.6184 0.6184 0.6184 0.6184 0.6184
SciFive 0.7105 0.7039 0.6579 0.6645 0.6711
GCN 0.8289 0.8200 0.8026 0.8289 0.8289

Table 12: Accuracy metrics of different models for the
BACE task. Here, canon refers to RDKit canonical-
ization, hydro to Hydrogen explicit addition, kekul to
Kekulization, and cycles to cycle renumbering.

Model Orig cycle hydro kekul canon

ChemBerta 0.9655 0.9638 0.9562 0.9633 0.9655
PubChemDeBERTa 0.9652 0.9640 0.9616 0.9628 0.9655
ChemBERT-ChEMBL 0.9664 0.9667 0.9365 0.9572 0.9662
ZINC-RoBERTa 0.9667 0.9667 0.9616 0.9657 0.9669
Text+Chem T5-standard 0.9628 0.9660 0.9482 0.9640 0.9628
Text+Chem T5-augm 0.9589 0.9635 0.9550 0.9601 0.9589
MolT5-base 0.9616 0.9616 0.9616 0.9616 0.9616
MolT5-large 0.9616 0.9616 0.9589 0.9616 0.9616
SciFive 0.9628 0.9626 0.9582 0.9630 0.9628
GCN 0.9737 0.9711 0.9523 0.9737 0.9737

Table 13: Accuracy metrics of different models for the
HIV task. Here, canon refers to RDKit canonicalization,
hydro to Hydrogen explicit addition, kekul to Kekuliza-
tion, and cycles to cycle renumbering.

13012



Model Orig cycle hydro kekul canon

ChemBerta 0.9072 0.8918 0.5103 0.7990 0.7474
PubChemDeBERTa 0.9072 0.8918 0.4227 0.7680 0.7010
ChemBERT-ChEMBL 0.8918 0.8866 0.6856 0.7990 0.7320
ZINC-RoBERTa 0.9021 0.8918 0.5052 0.7680 0.7062
Text+Chem T5-standard 0.8814 0.8814 0.6649 0.7990 0.7784
Text+Chem T5-augm 0.8918 0.8814 0.6392 0.7577 0.7474
MolT5-base 0.8608 0.8608 0.7010 0.7784 0.7784
MolT5-large 0.9021 0.8918 0.6392 0.7268 0.7784
SciFive 0.9021 0.8814 0.6289 0.7268 0.7680
GCN 0.8542 0.8542 0.7917 0.8281 0.8281

Table 14: Accuracy metrics of different models for the
BBBP task. Here, canon refers to RDKit canonical-
ization, hydro to Hydrogen explicit addition, kekul to
Kekulization, and cycles to cycle renumbering.

Model Orig Cycle Hydro Kekul Canon

ChemBerta 0.9755 0.9755 0.9301 0.4755 0.9301
PubChemDeBERTa 0.9790 0.9790 0.9301 0.2657 0.9231
ChemBERT-ChEMBL 0.9790 0.9790 0.9301 0.4895 0.9301
ZINC-RoBERTa 0.9720 0.9720 0.9301 0.5210 0.9301
Text+Chem T5-standard 0.9755 0.9755 0.9301 0.4580 0.9301
Text+Chem T5-augm 0.9720 0.9720 0.9301 0.4825 0.9231
MolT5-base 0.9790 0.9790 0.9301 0.2727 0.9231
MolT5-large 0.9790 0.9790 0.9301 0.5245 0.9301
SciFive 0.9720 0.9720 0.9301 0.3636 0.9301
GCN 0.9510 0.9510 0.9336 0.9510 0.9510

Table 15: Accuracy metrics of different models for the
Clintox task. Here, canon refers to RDKit canonical-
ization, hydro to Hydrogen explicit addition, kekul to
Kekulization, and cycles to cycle renumbering.

Model Orig Cycle Hydro Kekul Canon

ChemBerta 0.7571 0.7547 0.7029 0.7550 0.7280
PubChemDeBERTa 0.7602 0.7622 0.7630 0.7488 0.7690
ChemBERT-ChEMBL 0.7529 0.7511 0.7356 0.7571 0.7534
ZINC-RoBERTa 0.7591 0.7589 0.7001 0.7646 0.7560
Text+Chem T5-standard 0.5444 0.5429 0.5203 0.5385 0.5361
Text+Chem T5-augm 0.5434 0.5416 0.5382 0.5341 0.5387
MolT5-base 0.5190 0.5190 0.5190 0.5190 0.5190
SciFive 0.5276 0.5250 0.5224 0.5284 0.5333
GCN 0.7609 0.7609 0.7006 0.7609 0.7609

Table 16: Accuracy metrics of different models for the
SIDER task. Here, canon refers to RDKit canonical-
ization, hydro to Hydrogen explicit addition, kekul to
Kekulization, and cycles to cycle renumbering.

Model Orig Cycle Hydro Kekul Canon

ChemBerta 0.9416 0.9417 0.9373 0.9391 0.9417
PubChemDeBERTa 0.9438 0.9431 0.9357 0.9416 0.9438
ChemBERT-ChEMBL 0.9394 0.9387 0.9145 0.9387 0.9394
ZINC-RoBERTa 0.9427 0.9431 0.9374 0.9415 0.9428
Text+Chem T5-standard 0.9246 0.9252 0.9104 0.9213 0.9248
Text+Chem T5-augm 0.9286 0.9282 0.9163 0.9172 0.9277
MolT5-base 0.9251 0.9231 0.9349 0.9387 0.9256
MolT5-large 0.9279 0.9206 0.8770 0.9159 0.9277
SciFive 0.9202 0.9177 0.9190 0.9262 0.9199
GCN 0.9315 0.9315 0.9245 0.9315 0.9315

Table 17: Accuracy metrics of different models for the
Tox21 task. Here, canon refers to RDKit canonical-
ization, hydro to Hydrogen explicit addition, kekul to
Kekulization, and cycles to cycle renumbering.

Model Orig Cycle Hydro Kekul Canon

ChemBerta 0.7863 1.0001 1.5698 1.4433 0.9136
PubChemDeBERTa 0.7562 0.8178 3.1091 0.9378 0.7796
ChemBERT-ChEMBL 1.0063 1.0366 2.5114 1.1427 1.1129
ZINC-RoBERTa 0.7271 0.7581 2.2132 1.1096 0.8164
Text+Chem T5-standard 0.9317 0.9937 7.9364 1.1054 0.8634
Text+Chem T5-augm 0.8786 0.8531 2.1136 1.2328 0.8590
MolT5-base 1.2070 1.6411 1.4053 1.3228 1.1650
MolT5-large 1.3769 1.3078 1.8667 1.4262 1.5748
SciFive 0.7361 1.3016 2.8058 1.3166 0.9016
GCN 0.4633 0.4633 0.4633 0.4633 0.4633

Table 18: RMSE metrics of different models for the
ESOL task. Here, canon refers to RDKit canonical-
ization, hydro to Hydrogen explicit addition, kekul to
Kekulization, and cycles to cycle renumbering.

Model Orig Cycle Hydro Kekul Canon

ChemBerta 1.7810 1.9421 6.0548 2.3067 2.0140
PubChemDeBERTa 1.3328 1.3897 4.8509 2.0143 1.7384
ChemBERT-ChEMBL 2.9604 3.0059 3.5175 3.0166 2.9847
ZINC-RoBERTa 1.2706 1.3769 7.2885 1.4714 1.3303
Text+Chem T5-standard 1.6085 1.7771 4.4505 2.0221 1.6857
Text+Chem T5-augm 1.4807 1.6227 3.3262 2.1552 1.9573
MolT5-base 5.0116 5.0116 5.0116 5.0116 5.0116
MolT5-large 2.2413 2.7826 4.2048 2.2003 1.7910
SciFive 1.9391 2.5557 3.9525 2.0027 2.0032
GCN 1.8461 1.8461 1.8461 1.8461 1.8461

Table 19: RMSE metrics of different models for the
FreeSolv task. Here, canon refers to RDKit canonical-
ization, hydro to Hydrogen explicit addition, kekul to
Kekulization, and cycles to cycle renumbering.

Model Orig Cycle Hydro Kekul Canon

ChemBerta 0.6998 0.7073 1.3735 1.2675 0.8284
PubChemDeBERTa 0.6225 0.6331 0.9981 1.1520 0.7066
ChemBERT-ChEMBL 0.6087 0.6689 1.1322 1.2652 0.7180
ZINC-RoBERTa 0.5812 0.5790 1.6939 1.0694 0.6618
Text+Chem T5-standard 0.6504 0.7083 1.2587 1.2635 0.7318
Text+Chem T5-augm 0.6344 0.6554 1.2035 1.1295 0.7168
MolT5-base 0.6930 0.7929 1.2359 1.2024 0.8922
MolT5-large 0.8071 0.8487 1.0246 1.1913 0.8939
SciFive 0.7299 0.7780 1.0366 1.4406 0.8414
GCN 2.2289 2.2289 2.2289 2.2289 2.2289

Table 20: RMSE metrics of different models for the
Lipophilicity task. Here, canon refers to RDKit canoni-
calization, hydro to Hydrogen explicit addition, kekul
to Kekulization, and cycles to cycle renumbering.

13013


