
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 12806–12816
November 12-16, 2024 ©2024 Association for Computational Linguistics

LoRASC: Expressive and Generalizable Low-rank Adaptation for Large
Models

via Slow Cascaded Learning

Siwei Li1*, Yifan Yang2*†, Yifei Shen2, Fangyun Wei2,
Zongqing Lu1, Lili Qiu2, Yuqing Yang2

1Tsinghua University, 2Microsoft Research Asia
siweili505@outlook.com, yifanyang@microsoft.com

Abstract

Efficient fine-tuning plays a fundamental role
in modern large models, with low-rank adap-
tation emerging as a particularly promising
approach. However, the existing variants of
LoRA are hampered by limited expressiveness,
a tendency to overfit, and sensitivity to hyper-
parameter settings. This paper presents LoRA
Slow Cascade Learning (LoRASC), an inno-
vative technique designed to enhance LoRA’s
expressiveness and generalization capabilities
while preserving its training efficiency. Our ap-
proach augments expressiveness through a cas-
caded learning strategy that enables a mixture-
of-low-rank adaptation, thereby increasing the
model’s ability to capture complex patterns.
Additionally, we introduce a slow-fast update
mechanism and cascading noisy tuning to bol-
ster generalization. The extensive experiments
on various language and vision datasets, as well
as robustness benchmarks, demonstrate that
the proposed method not only significantly out-
performs existing baselines, but also mitigates
overfitting, enhances model stability, and im-
proves OOD robustness. Code will be release
in https://github.com/microsoft/LoRASC
very soon.

1 Introduction

Foundation models, which are large-scale models
pre-trained on extensive datasets and subsequently
adapted for specific downstream tasks, have be-
come integral to contemporary machine learning
frameworks. Fine-tuning these models is essen-
tial, yet full parameter fine-tuning often encoun-
ters significant memory and computational bottle-
necks. As a result, Parameter-Efficient Fine-Tuning
(PEFT) techniques, which aim to minimize the
number of trainable parameters to reduce training
costs and improve training stability, have gained

*Equal contribution. This work was done during Siwei
Li’s internship at Microsoft Research Asia.

†Corresponding author.

increasing prominence. Among these techniques,
Low-Rank Adaptation (LoRA) (Hu et al., 2021)
stands out due to its efficiency in reducing train-
ing costs through low-rank approximation for full-
parameter updates. However, despite LoRA’s ad-
vantages, its limitations in terms of expressiveness
and generalization have been noted. Some studies
suggest that the inherent low-rankness of LoRA
might restrict its expressiveness (Xia et al., 2024;
Meng et al., 2024; Lialin et al., 2023; Huang and
Wei, 2024), with a preference for overparameteriza-
tion, while others indicate a tendency for LoRA to
overfit or exhibit overconfidence (Lin et al., 2024;
Wang et al., 2023).

In this work, we investigate the potential of cas-
cading learning to augment the expressiveness of
LoRA. Our approach involves initializing a new
LoRA module at the start of each epoch and in-
tegrating this module into the backbone network
after the epoch concludes. By employing a mixture-
of-low-rank adaptation, we effectively increase the
rank of the update matrices, while maintaining low
training costs, as each cascading step consumes no
more parameters and memory than a single LoRA
model. Moreover, this method does not add any in-
ference overhead by remerging each LoRA module
into the backbone network.

To improve LoRA’s generalization capabilities, we
draw inspiration from optimization techniques. We
repurpose certain strategies from optimizers for
LoRA, motivated by the observation that initializ-
ing a new LoRA module for each epoch can repre-
sent a descent direction for the dataset. In optimiza-
tion theory, flat minimizers are preferred, as they
are associated with better generalization (Hochre-
iter and Schmidhuber, 1997; Keskar et al., 2016).
Inspired by the fact that the moving average mech-
anism guides models towards flat minimizers (Iz-
mailov et al., 2018), we maintain both fast-updating
and its moving average version, the slow-updating

12806

https://github.com/microsoft/LoRASC


LoRA experts. The fast-updating expert is reini-
tialized regularly to learn from the data over a set
number of steps, while the slow-updating expert
undergoes updates via a proportional exponential
moving average after the fast-updating cycle com-
pletes. Additionally, mirroring techniques in deep
learning optimizers where noise proportional to the
gradient scale is used to find flat minima (Xie et al.,
2020), we introduce noise at the beginning of each
epoch, with the scale tied to the norm of LoRA’s
weights.

To verify the effectiveness of the proposed method,
we conduct extensive experiments on both lan-
guage and vision tasks. For language tasks, we
utilized the Llama2 model (Touvron et al., 2023)
on 12 datasets (e.g., SuperGLUE, SQuAD, DROP,
GSM8K, and InstructEval), Alpaca among other
instruct following benchmarks to demonstrate the
effectiveness of our design. We can directly ap-
ply our approach to LoRA, LoRA+ (Hayou et al.,
2024), Dora (Liu et al., 2024), and other mem-
bers of the LoRA family, significantly improving
their performance in large model transfer learning.
For vision tasks, we also validated our approach
on the CLIP pre-trained Vit-bigG model with the
ImageNet dataset, showing a significant perfor-
mance improvement relative to LoRA on domain
adaptation datasets such as Image-R and Image-C.
The proposed method consistently outperforms the
baselines by a large margin.

2 Related Work

2.1 Low-Rank Adaptation Finetuning

LoRA (Hu et al., 2021) has been widely adopted as
a parameter-efficient fine-tuning method, demon-
strating its effectiveness in various transfer learning
scenarios.LoRA+ (Hayou et al., 2024) improves
performance and fine-tuning speed by setting dif-
ferent learning rates for the LoRA adapter matrices
A and B with a carefully chosen ratio, maintaining
the same computational cost as LoRA. Dora (Liu
et al., 2024) decomposes the pre-trained weight
into two components, magnitude and direction, for
fine-tuning, specifically employing LoRA for direc-
tional updates to efficiently minimize the number of
trainable parameters. Our work introduces a robust
cascading learning schedule for various LoRA vari-
ants, proving through extensive experiments that
it can enhance the training performance of LoRA,
LoRA+, and Dora without additional training costs.

2.2 Combination of LoRA
LoRAhub (Huang et al., 2023) presents a simple
framework designed for the purposeful assembly
of LoRA modules trained on diverse tasks, aim-
ing to achieve adaptable performance on unseen
tasks. MOLE (Huang and Wei, 2024) treats each
layer of trained LoRAs as a distinct expert and
implements hierarchical weight control by integrat-
ing a learnable gating function within each layer.
LoRAFlow (Wang et al., 2024) utilizes dynamic
weights to adjust the impact of different LoRAs.
These methods are not in conflict with LoRASC, as
they focus on learning the combination of LoRA
experts across different domains, while our method
aims to learn more generalizable experts within a
single domain using slow cascade learning.

ReLoRA (Lialin et al., 2023) enhances LoRA’s
fitting ability by incrementally merging learned
LoRA parameters into the main network and
restarting optimizer parameters during training. It
also proposes a jagged cosine scheduler to imple-
ment a learning rate resume strategy at each step.
COLA (Xia et al., 2024) explores a similar ap-
proach but in a simpler manner, merely restarting
optimizer parameters when initializing new LoRAs
without adjusting the learning rate schedule. Our
work employs a simpler cascading learning strat-
egy where each expert learns independently for
each epoch, without additional design for learning
schedules or optimizer parameters. Additionally,
we incorporate noise tuning and slow-fast update
strategy, ensuring robustness in each expert merged
into the pre-trained model. Our method can be
applied to various LoRA variants, demonstrating
effectiveness across multiple tasks in both language
and image domains.

3 Methods

3.1 LoRA
For parameter-efficient fine-tuning, we focus on
the LoRA technique, which has been widely used
due to its lower training cost. Instead of updating
all parameters of the model, LoRA inserts low-
rank matrices into each layer of the pre-trained
model, which are then fine-tuned. This reduces the
computational burden and the risk of overfitting.

Given a pre-trained weight matrix W0 ∈ Rd×k in
a neural network, LoRA approximates the update
∆W using two low-rank matrices A ∈ Rd×r and
B ∈ Rr×k, where r ≪ min(d, k). The update is

12807



defined as:
∆W = BA (1)

During fine-tuning, instead of updating W , we up-
date A and B, which results in:

W = W0 +∆W = W0 +BA (2)

This low-rank adaptation significantly reduces the
number of trainable parameters from d× k to r ×
(d+ k).

3.2 LoRASC

3.2.1 Cascading LoRA Learning
Due to the reparameterization nature of low-rank
adaptation (LoRA) fine-tuning, employing multi-
ple LoRA experts incurs the same inference cost
as using a single LoRA expert. This character-
istic makes LoRA particularly suitable for inte-
gration with cascading learning to enhance perfor-
mance in transfer learning tasks. As analyzed in
ReLoRA (Lialin et al., 2023), reinitializing new
LoRA modules during the learning schedule can
progressively increase the model’s rank, thereby
improving its fitting ability.

In LoRASC, we default to learning one LoRA ex-
pert per epoch. After training one LoRA expert,
it is merged into the main network, and the next
expert learns based on the optimized residuals. The
optimization schedule for each single LoRA expert
is a compressed version of the original full-training
schedule: for instance, if a model was originally
trained for N epochs, each expert in LoRASC com-
pletes training in 1 epoch with fixed starting and
ending learning rates with the same but compressed
scheduler. This makes LoRASC easy to apply to
any large model transfer learning scenario using
LoRA, without requiring changes to hyperparame-
ters. The only necessary adjustment is an increase
in the learning rate. Since the number of training
steps is smaller comparing to full training, each
step must be larger to cover the same distance. Ad-
ditionally, Li et al. (Li et al., 2019) found that
higher learning rates can lead to stronger general-
ization ability, which might also explain the im-
proved out-of-domain performance of our method.

Mathematically, the cascading LoRA learning can
be described as follows:

1. For each epoch t, train a new LoRA expert
(At, Bt) to minimize the residual error, where L is

the fine-tuning loss function:

(At, Bt) = arg min
At,Bt

L (Wt−1 +BtAt) , (3)

2. Merge the trained LoRA expert into the main
network:

Wt = Wt−1 +BtAt (4)

By iteratively merging each new LoRA expert into
the main network, LoRA cascading progressively
enhances the model’s capacity to fit the data with-
out increasing the inference cost.

3.2.2 LoRA Slow-Fast Update
To enhance the generalization of large model trans-
fer learning, we aim to avoid local optima at each
step of cascading. Even with low-rank adaptation,
this issue persists due to the imbalance between
model parameters and training data. Inspired by
SWA (Izmailov et al., 2018), which averages model
parameters over several epochs to find a more gen-
eralized solution, we employ a sliding average
method to ensure the stability and robustness of
each LoRA merged into the main network.

Specifically, during training, we maintain two
LoRA experts at each cascading step t as shown
in Fig. 1: a slow-updating LoRA (Aslow

t , Bslow
t )

and a fast-updating LoRA (Afast
t , Bfast

t ). At step
0, both slow and fast LoRA share the same ini-
tialization. During each cascading iteration, fast
LoRA undergoes fine-tuning, and after completion,
it is averaged with slow LoRA. The slow LoRA
is then merged into the pre-trained model, while
the fast-updating LoRA is reinitialized for the next
iteration. We control the retention proportion of
the slow expert with a hyperparameter α.

The update rules are given by:

Aslow
t+1 = αAslow

t + (1− α)Afast
t (5)

Bslow
t+1 = αBslow

t + (1− α)Bfast
t (6)

By employing this slow-fast update strategy,
LoRASC ensures that each merged LoRA expert
contributes to a more generalized solution, enhanc-
ing the overall stability and performance of the
model in transfer learning scenarios.

12808



Finetune

Task Data

Slow LoRA
𝐵𝐵𝑡𝑡+1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 A𝑡𝑡+1

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Random
Noise �𝑵𝑵𝒕𝒕

New Init Fast LoRA
𝐵𝐵𝑡𝑡
𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡 A𝑡𝑡

𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡
Finetuned Fast LoRA

𝐵𝐵𝑡𝑡
𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡 A𝑡𝑡

𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡

Finetuned Fast LoRA
𝐵𝐵𝑡𝑡
𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡 A𝑡𝑡

𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡
Slow LoRA
𝐵𝐵𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 A𝑡𝑡

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝛼𝛼 (1 − 𝛼𝛼)
Slow LoRA
𝐵𝐵𝑡𝑡+1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 A𝑡𝑡+1

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

1. Fast LoRA Expert Training

2. Slow LoRA Expert Merging 3. Update Pretrained Model

Pretrained 
Model 𝑊𝑊𝑡𝑡

Pretrained 
Model 𝑊𝑊𝑡𝑡

Pretrained 
Model 𝑊𝑊𝑡𝑡+1

Figure 1: Iterative pipeline of LoRASC. Here, t represents the iteration step, and BA denotes the low-rank learnable
vectors in LoRA. The backbone network W always has its gradients turned off, and α is the hyperparameter
controlling the pace of the slow-fast update. Our method follows three stages: 1. Fast LoRA expert training, where
noise is added to the backbone network, followed by training the fast LoRA on the task data. 2. Slow LoRA expert
merging, where a portion of the learned fast LoRA is weighted and merged into the slow LoRA. 3. Update the
pretrained model, merging the updated slow LoRA into the backbone network, and prepare for the next iteration.

3.2.3 Cascading Noisy Tuning
To further enhance generalization, we introduce
random noise to the pre-trained model before
each new LoRA fine-tuning step. Unlike Noisy-
Tune (Wu et al., 2022), which adds uniform noise
to different parameter matrices according to their
standard deviations only once at the beginning of
fine-tuning, we apply noise before training each
new expert. This approach helps the model escape
local optima at every slow LoRA step, thereby re-
ducing the risk of overfitting.

Additionally, the presence of the slow-updating
LoRA module indicates the direction of parameter
changes under the new task. Therefore, we use
the standard deviation of the slow LoRA weights
to determine the noise scale rather than the pre-
trained model’s weights. Incorporating this noise
before every expert ensures that the model continu-
ously explores robust and flatten parameter spaces,
thus improving generalization and reducing the ten-
dency to overfit.

The perturbation is defined as:

Ñt = U

(
−λ

2
,
λ

2

)
· std(Bslow

t Aslow
t ) (7)

where std stands for standard deviation. The func-
tion U(a, b) represents uniform distribution noise
ranged from a to b, and λ is a hyperparameter that
controls the relative noise intensity.

3.3 Overview
With LoRA cascading learning, slow-fast updates
and noisy tuning, the pipeline of our LoRASC is as

follows:
W̃t−1 = Wt−1 + Ñt (8)

(Afast
t , Bfast

t ) = arg min
Afast

t ,Bfast
t

L
(
W̃t−1 +Bfast

t Afast
t

)

(9)

Aslow
t = αAslow

t−1 + (1− α)Afast
t (10)

Bslow
t = αBslow

t−1 + (1− α)Bfast
t (11)

Wt = W̃t−1 +Bslow
t Aslow

t (12)

LoRASC pipeline can be seen in Fig. 1. Although
we use vanilla LoRA to show slow casdade learn-
ing, LoRASC should be able to boost the perfor-
mance of any LoRA variants, such as DoRA (Liu
et al., 2024), LoRA+ (Hayou et al., 2024), LoRA-
FA (Zhang et al., 2023), etc. Moreover, LoRASC
is easy to implement, and we provide pseudocode
with more detailed explanations in Algorithm 1.

4 Experiments

We conducted extensive experiments to demon-
strate the effectiveness and robustness of LoRASC
across both NLP and CV domains.

For language tasks, we conducted our language
experiments using the popular open-source large
language model, Llama21. We evaluated our ap-
proach on several NLU and GLU tasks, selecting

1https://huggingface.co/meta-llama/
Llama-2-7b-hf

12809

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf


Algorithm 1 Pseudo Code for LoRASC

Require: Pre-trained model weights W0, number
of epochs T , loss function L, slow update pa-
rameter α, noise parameter λ

1: Initialize W ←W0

2: Initialize Aslow, Bslow ▷ Initialize slow LoRA
matrices

3: Initialize Afast ← Aslow, Bfast ← Bslow ▷ Fast
LoRA matrices initialized from slow ones

4: for epoch t = 1 to T do
5: if t > 1 then
6: Reinitialize Afast, Bfast ▷ Reinitialize

fast LoRA matrices for subsequent epochs
7: end if
8: W̃ ←W + U

(
−λ

2 ,
λ
2

)
· std(BslowAslow)

9: optimizer ←
InitializeOptimizer(Afast, Bfast)

10: lr_scheduler ←
InitializeLRScheduler(optimizer)

11: for batch in training data do
12: Forward pass: L← L(W̃ +BfastAfast)
13: Backward pass: Compute gradients
14: optimizer.step()
15: lr_scheduler.step()
16: end for
17: Update slow LoRA:
18: Aslow ← αAslow + (1− α)Afast

19: Bslow ← αBslow + (1− α)Bfast

20: Merge slow LoRA into main network:
W ← W̃ +BslowAslow

21: end for
22: return W

both SuperGLUE (Wang et al., 2019a) tasks (in-
cluding classification and multiple-choice ) and
generation tasks. We also tested the model’s per-
formance in mathematical reasoning using the
GSM8K dataset (Cobbe et al., 2021). Addition-
ally, we performed instruction tuning experiments
to verify the transfer learning capability of our
method, achieving significant improvements on key
metrics such as MMLU (Hendrycks et al., 2020),
DROP (Dua et al., 2019), BBH (Srivastava et al.,
2022) and HumanEval (Chen et al., 2021).

For visual tasks, we chose the CLIP ViT-
bigG/14 (Cherti et al., 2022)2 as our pretrained
model, fine-tuning it on the ImageNet-1K (Deng
et al., 2009) training set and testing it on the

2https://huggingface.co/laion/
CLIP-ViT-bigG-14-laion2B-39B-b160k

validation set. Subsequently, we evaluated the
trained model on perturbed datasets such as
ImageNet-A (Hendrycks et al., 2021b), ImageNet-
C (Hendrycks and Dietterich, 2019), ImageNet-
R (Hendrycks et al., 2021a), ImageNet-V2 (Recht
et al., 2019), ImageNet-Sketch (Wang et al., 2019b)
and Stylized-ImageNet (Geirhos et al., 2018)
demonstrating our method’s robustness and gen-
eralization capabilities.

4.1 Implementation Details

For all experiments, we exclusively fine-tuned the
query and value projection matrices in the atten-
tion layers as delineated by Malladi et al. (2023)
and Ren et al. (2024). The fine-tuning process
utilized single NVIDIA H100 GPU. For all tasks,
we explored several learning rates and reported the
optimal performance. For the hyper-parameters of
LoRASC, we explored the factor α of Slow-Fast
Update in {0.5, 0.6, 0.8} to control the updating
ratio. Additionally, we selected the noise intensity
from {0.1, 1, 10}, which is a significantly smaller
set compared to the default 7 in NoistTune (Wu
et al., 2022). All the reported results were averaged
across 3 distinct random seeds.

4.2 Main Results

4.2.1 LoRASC for Large Language Model
Experiment setting. For in-domain language
transfer learning, we consider the SuperGLUE
dataset collection (Wang et al., 2019a), includ-
ing: BoolQ (Clark et al., 2019), CB (De Marn-
effe et al., 2019), COPA (Roemmele et al., 2011),
MultiRC (Khashabi et al., 2018), ReCoRD (Zhang
et al., 2018), RTE (Socher et al., 2013),
WiC (Pilehvar and Camacho-Collados, 2019), and
WSC (Levesque et al., 2012). We also include
SST-2 (Dagan et al., 2005) , GSM8K (Cobbe et al.,
2021) and two question answering(QA) datasets,
SQuAD (Rajpurkar et al., 2016) and DROP (Dua
et al., 2019). And we directly used 8-shot direct
prompting or GSM8K evaluation3. We adhered to
the experimental configuration described by Mal-
ladi et al. (2023), randomly selecting 1000 exam-
ples for training, 500 for validation, and 1000 for
testing across each dataset. The AdamW optimizer
was employed, with training spanning 5 epochs,
consistent with the baseline settings. A linear learn-
ing rate schedule was implemented, with the ini-
tial learning rate selected from {1×10-5, 5×10-5,

3https://github.com/allenai/open-instruct

12810

https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k
https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k
https://github.com/allenai/open-instruct


Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP GSM8K
Task type —————- classification —————- – multiple choice – – generation – - math -

LoRA 95.5 87.4 91.1 85.7 70.2 72.4 85.3 85.0 81.2 90.4 51.6 19.5
w/ COLA 95.9 87.7 91.1 85.7 66.4 72.6 85.3 82.0 81.4 90.6 51.6 21.0
w/ LoRASC

+ Cascade 95.8 87.7 92.9 86.1 71.1 72.3 86.3 88.0 81.6 91.8 52.5 21.5
++ Slow LoRA 96.0 88.0 96.4 86.8 74.0 72.1 86.3 88.0 82.1 92.7 55.3 27.5
+++ Noise Tuning 96.1 88.1 96.5 87.4 75.0 72.7 86.6 88.0 82.2 92.9 56.7 27.5

LoRA+ 95.7 87.0 91.4 85.9 69.2 72.1 85.7 87.0 81.3 90.5 55.8 22.0
w/ LoRASC

+ Cascade 95.7 87.0 92.9 86.2 71.2 72.8 85.3 88.0 81.9 91.2 55.8 19.5
++ Slow LoRA 95.7 88.1 92.9 85.9 67.3 73.5 85.7 88.0 81.9 92.0 56.3 23.0
+++ Noise Tuning 95.8 88.1 92.9 86.3 71.4 74.1 86.1 88.0 81.9 92.0 56.4 24.0

DoRA 95.4 87.4 96.4 85.7 72.1 71.5 84.7 88.0 81.1 91.1 54.8 21.0
w/ LoRASC

+ Cascade 95.8 87.4 96.4 85.8 65.4 72.8 84.1 88.0 81.6 91.7 52.6 22.5
++ Slow LoRA 95.8 88.1 96.4 85.8 65.4 72.8 86.1 88.0 81.9 92.8 54.8 25.0
+++ Noise Tuning 96.0 88.5 96.5 87.6 75.6 72.8 86.8 89.0 82.2 93.3 56.5 25.5

Table 1: Comparative Performance of LoRA, LoRA+, and DoRA enhanced with LoRASC across multiple in-domain
fine-tuning datasets.

Method MMLU DROP HEval BBH GSM8K

LoRA 45.83 32.76 31.26 13.41 11.5
w/ LoRASC

+ Cascade 45.53 32.71 31.61 14.02 11.5
++ Slow LoRA 45.68 33.74 31.38 17.07 12.5
+++ Noise 45.98 33.02 31.61 15.24 16.5

Table 2: Results on instruction-following tasks. The model was trained on Alpaca and evaluated on InstructEval
metrics and GSM8K. LoRASC consistently achieves the best performance compare to vanilla LoRA.

1×10-4, 5×10-4, 1×10-3}. By default the batch size
was set to 4 and the LoRA rank was set to 8. For
LoRA+, we adhered to its setup by fixing the learn-
ing rate of B matrices to be 16 times that of A matri-
ces. DoRA decomposes the pre-trained weight into
magnitude and direction components, with LoRA
efficiently updating the direction component. This
means that each LoRA expert represents DoRA’s
direction component. When applying LoRASC to
DoRA, we maintain continuous training of the mag-
nitude while applying our technique to the direction
component. We follow the standard procedure of
merging and reinitializing LoRA and align it with
the slow-fast update and noisy tuning.

For instruction tuning, we use the Alpaca4 (Taori
et al., 2023) dataset for training. The batch size was
set to 128. We follow the training scripts of Ren
et al. (2024) in our experiment. We finetune our
model for 3 epochs. A linear learning rate schedule

4https://github.com/tatsu-lab/stanford_
alpaca/

was applied, with the initial learning rate selected
from {1×10-4, 3×10-4, 5×10-4, 1×10-3}. For evalua-
tion we use InstructEval5 (Chia et al., 2023), 5-shot
direct prompting for MMLU , 3-shot direct prompt-
ing for BBH and DROP, 0-shot direct prompting
for HEval.

LoRASC exhibits excellent adaptability to LoRA
variants. In the experiments shown in Table 1,
LoRASC outperforms the COLA across various
tasks, demonstrating the effectiveness of our LoRA
cascading technique. Moreover, LoRASC effec-
tively boosted the performance of LoRA, LoRA+,
and DoRA across 12 in-domain training datasets en-
compassing four major tasks: classification, multi-
ple choice, generation, and mathematics. LoRASC
achieved significant improvements across all these
tasks, demonstrating its ability to enhance the learn-
ing capabilities and in-domain generalization of the
LoRA family of models. Moreover, the progressive
addition of cascading learning, slow-fast updates,

5https://github.com/declare-lab/instruct-eval

12811

https://github.com/tatsu-lab/stanford_alpaca/
https://github.com/tatsu-lab/stanford_alpaca/
https://github.com/declare-lab/instruct-eval


Figure 2: Performance of LoRASC compared to LoRA and COLA across various ranks and learning schedules in
a subset of text transfer learning tasks. It can be observed that LoRASC consistently achieves stable performance
improvements across all ranks and learning schedules, particularly at higher ranks and longer epochs, where
LoRASC can mitigate performance degradation caused by overfitting.

and noisy tuning further improved performance,
validating the design of our approach. The robust
slow cascading strategy not only enhanced overall
performance but also provided strong generaliza-
tion capabilities.

LoRASC on Instruction-Following tasks. Ta-
ble 2 presents the performance of our proposed
method, LoRASC, applied to LoRA across sev-
eral instruction-following tasks. These instruction-
following tasks are particularly challenging due
to the weak correlation between the training data
and the benchmarks, making them entirely out-of-
domain tests. Despite this difficulty, our method
achieved notable improvements across various eval-
uation metrics used in InstructEval and GSM8K.
Furthermore, the design of slow-fast updates and
noisy tuning still steadily enhanced the perfor-
mance of cascading learning, further validating the
effectiveness of our approach and motivation.

4.2.2 LoRASC for CLIP ViT-bigG
Experiment setting. For the ImageNet-1K vi-
sual classification task, to validate the transfer per-

formance of our method on larger vision models,
we selected CLIP ViT-bigG/14 as our pre-training
backbone.We utilized the AdamW optimizer and a
cosine scheduler, training for a total of 10 epochs
on the ImageNet-1K training set. The batch size
was fixed at 64, and the learning rate was chosen
from {1×10-4, 5×10-4, 1×10-3}. For evaluation, we
first test our model on the ImageNet-1K valida-
tion set using top-1 accuracy. To demonstrate the
improvement in our method’s transferability and ro-
bustness, we conducted further tests on robustness
benchmarks from Mao et al. (2022) for transfer
learning tasks.

Evaluation of LoRASC on ImageNet and Ro-
bustness Benchmarks. Table 3 showcases the
performance of our proposed method, LoRASC, ap-
plied to LoRA on ImageNet-1K and several robust-
ness benchmarks, including IN-V2, IN-C, IN-R,
IN-A, IN-SK, and IN-ST. These benchmarks test
the model’s robustness and generalization ability
beyond the standard ImageNet dataset. Our method
demonstrates consistent improvements in top-1 ac-

12812



Method ImageNet IN-V2 IN-C IN-R IN-A IN-SK IN-ST

LoRA 87.1 77.7 66.2 87.1 72.6 64.9 24.1
w/ LoRASC

+ Cascade 87.1 77.5 66.7 88.5 73.6 65.4 24.3
++ Slow LoRA 87.7 78.3 66.8 88.1 73.4 65.2 24.1
+++ Noise Tuning 87.8 78.4 66.8 88.7 73.4 65.5 24.4

Table 3: Top-1 accuracy of various methods on ImageNet-1K and 6 robustness benchmarks. The table compares
the baseline LoRA with our three proposed techniques. Our approach demonstrates improved robustness on the
ViT-bigG model across all the evaluated benchmarks.

Experts RTE DROP WIC BoolQ ReCoRD SST-2 SQuAD

2 87.0 53.8 72.4 85.3 81.3 95.5 92.0
5 88.1 56.7 72.6 87.4 82.2 96.1 92.9

25 86.7 51.2 70.5 83.5 81.4 95.5 92.2
125 83.8 50.2 70.5 84.5 81.2 95.1 90.7
1250 83.8 49.4 69.4 85.3 81.1 92.9 88.1

Table 4: Evaluation with varing expert number of LoRASC. The highest average performance for each task is
highlighted in bold.

curacy across all evaluated benchmarks. LoRASC
consistently enhances the robustness and general-
ization of the ViT-bigG model across these chal-
lenging benchmarks, validating the effectiveness
of cascading learning, slow-fast updates, and noisy
tuning in improving model performance in diverse
and robust scenarios.

4.3 Ablation Study and Analysis

Larger Ranks and Longer Epochs. As shown
in Fig. 2, LoRASC consistently achieves more
stable performance on datasets such as SQuAD,
DROP, and GSM8K compared to both LoRA and
COLA, which also employs a cascading strategy.
This validates our motivation: LoRASC is a training
strategy that retains LoRA’s beneficial properties
while seamlessly enhancing its fitting ability and
robust generalization.

Ablation for LoRASC Expert Cascade Fre-
quency. LoRASC defaults to updating once per
epoch, as each expert completes training on the
entire dataset within one epoch. In Table 4, we
experimented with different update frequencies. In
this setting, we trained for a total of 5 epochs, with
each epoch consisting of 250 iterations, resulting
in a total training period of 1250 iterations. The
table shows that having 5 experts, corresponding
to one new expert per epoch, yields the optimal
performance. Interestingly, we observe that even
with 1250 experts, where a new expert is initial-
ized every iteration, the model still achieves highly
competitive performance. In this extreme case, fol-

lowing Algorithm 1, the model cannot iterate the
learning rate as each backpropagation step is im-
mediately followed by the initialization of a new
expert. We speculate that the strong generaliza-
tion capability of slow cascading compensates for
the weak fitting ability in this scenario. With 2
experts(one expert every 2.5 epochs), which aligns
with COLA’s default setting for this scenario, the
performance is lower than LoRASC’s default of one
expert per epoch. This may be due to the model
being more prone to local optima after 2.5 epochs,
which negatively impacts the effectiveness of slow
cascading.

5 Conclusion

In this paper, we address the limitations of fine-
tuning large pre-trained models, particularly the
issue of overfitting and the high computational
costs associated with transferring these models to
niche tasks. We introduce LoRASC, an extension
to the LoRA technique, which incorporates cascad-
ing learning, slow-fast updates, and noisy tuning to
improve model expressiveness and generalization.

We provide a detailed analysis of LoRASC and
demonstrate its effectiveness through extensive ex-
periments in both the natural language processing
(NLP) and computer vision (CV) domains. Our
method consistently outperforms baseline LoRA
models and their variants (LoRA+, Dora) across
multiple datasets and tasks, including SuperGLUE,
SQuAD, DROP, GSM8K, and various instruction-
following benchmarks. Additionally, our method

12813



enhances the robustness and transferability of vi-
sion models on ImageNet and several robustness
benchmarks.

Limitations

While LoRASC attempts to find a better balance
between model convergence and generalization,
it does not fundamentally resolve the issue. Our
proposed mechanisms of slow-fast updating and
noisy tuning can enhance model generalization and
prevent overfitting; however, if the magnitude of
these adjustments is too large, it may still lead
to difficulties in model convergence. Therefore,
it is necessary to adjust the α parameter in the
slow-fast merging process and λ in the intensity of
noise added to each expert according to the specific
task. In our experiments, only a few candidate ad-
justments were needed to significantly outperform
vanilla LoRA, yet this still incurs additional costs.
Adaptive adjustment of these parameters according
to the task is a direction for future work that we
intend to explore.

Additionally, while this study only explores LoRA
cascading learning for single training tasks and
finds it to effectively enhance model performance,
in practice, we could combine LoRA experts from
multiple domains, similar to the MoLE (Huang
and Wei, 2024) approach, to further improve model
capabilities. In such cases, how to better perform
slow cascading would be an interesting issue to
address.

References
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained
on code. arXiv preprint arXiv:2107.03374.

Mehdi Cherti, Romain Beaumont, Ross Wightman,
Mitchell Wortsman, Gabriel Ilharco, Cade Gordon,
Christoph Schuhmann, Ludwig Schmidt, and Jenia
Jitsev. 2022. Reproducible scaling laws for con-
trastive language-image learning. arXiv preprint
arXiv:2212.07143.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Sou-
janya Poria. 2023. Instructeval: Towards holistic evalu-
ation of instruction-tuned large language models. arXiv
preprint arXiv:2306.04757.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom
Kwiatkowski, Michael Collins, and Kristina Toutanova.
2019. BoolQ: Exploring the surprising difficulty of
natural yes/no questions. In Proceedings of the 2019

Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers),
pages 2924–2936.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plap-
pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al.
2021. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine learning challenges workshop, pages
177–190. Springer.

Marie-Catherine De Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Investi-
gating projection in naturally occurring discourse. In
proceedings of Sinn und Bedeutung, volume 23, pages
107–124.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–
255. Ieee.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceedings
of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short
Papers), pages 2368–2378.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A Wichmann, and Wieland Bren-
del. 2018. Imagenet-trained cnns are biased towards
texture; increasing shape bias improves accuracy and
robustness. arXiv preprint arXiv:1811.12231.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024.
Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav
Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
Tyler Zhu, Samyak Parajuli, Mike Guo, et al. 2021a.
The many faces of robustness: A critical analysis of
out-of-distribution generalization. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 8340–8349.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2020. Measuring massive multitask language
understanding. arXiv preprint arXiv:2009.03300.

Dan Hendrycks and Thomas Dietterich. 2019. Bench-
marking neural network robustness to common
corruptions and perturbations. arXiv preprint
arXiv:1903.12261.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Song. 2021b. Natural adversarial ex-
amples. In Proceedings of the IEEE/CVF conference on

12814



computer vision and pattern recognition, pages 15262–
15271.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Flat
minima. Neural computation, 9(1):1–42.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2023. Lorahub: Efficient
cross-task generalization via dynamic lora composition.
Preprint, arXiv:2307.13269.

Shaohan Huang and Furu Wei. 2024. Mixture of lora
experts. In ICLR 2024.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry Vetrov, and Andrew Gordon Wilson. 2018. Av-
eraging weights leads to wider optima and better gener-
alization. In 34th Conference on Uncertainty in Artifi-
cial Intelligence 2018, UAI 2018, 34th Conference on
Uncertainty in Artificial Intelligence 2018, UAI 2018,
pages 876–885. Association For Uncertainty in Arti-
ficial Intelligence (AUAI). Publisher Copyright: ©
34th Conference on Uncertainty in Artificial Intelli-
gence 2018. All rights reserved.; 34th Conference on
Uncertainty in Artificial Intelligence 2018, UAI 2018 ;
Conference date: 06-08-2018 Through 10-08-2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-
cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
2016. On large-batch training for deep learning: Gen-
eralization gap and sharp minima. arXiv preprint
arXiv:1609.04836.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking be-
yond the surface: A challenge set for reading compre-
hension over multiple sentences. In Proceedings of
the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pages
252–262.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thirteenth
international conference on the principles of knowledge
representation and reasoning.

Yuanzhi Li, Colin Wei, and Tengyu Ma. 2019. Towards
explaining the regularization effect of initial large learn-
ing rate in training neural networks. Advances in neural
information processing systems, 32.

Vladislav Lialin, Namrata Shivagunde, Sherin Muck-
atira, and Anna Rumshisky. 2023. Stack more layers
differently: High-rank training through low-rank up-
dates. arXiv preprint arXiv:2307.05695.

Yang Lin, Xinyu Ma, Xu Chu, Yujie Jin, Zhibang Yang,
Yasha Wang, and Hong Mei. 2024. Lora dropout as
a sparsity regularizer for overfitting control. arXiv
preprint arXiv:2404.09610.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-
decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex
Damian, Jason D Lee, Danqi Chen, and Sanjeev Arora.
2023. Fine-tuning language models with just forward
passes. Advances in Neural Information Processing
Systems, 36:53038–53075.

Xiaofeng Mao, Yuefeng Chen, Xiaodan Li, Gege
Qi, Ranjie Duan, Rong Zhang, and Hui Xue. 2022.
Easyrobust: A comprehensive and easy-to-use toolkit
for robust computer vision. https://github.com/
alibaba/easyrobust.

Xiangdi Meng, Damai Dai, Weiyao Luo, Zhe Yang,
Shaoxiang Wu, Xiaochen Wang, Peiyi Wang, Qingxiu
Dong, Liang Chen, and Zhifang Sui. 2024. Periodiclora:
Breaking the low-rank bottleneck in lora optimization.
arXiv preprint arXiv:2402.16141.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. WiC: the word-in-context dataset for evaluating
context-sensitive meaning representations. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 1267–1273.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the
2016 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2383–2392.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt,
and Vaishaal Shankar. 2019. Do imagenet classifiers
generalize to imagenet? In International conference on
machine learning, pages 5389–5400. PMLR.

Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi
Zhang, Zhaochun Ren, Maarten de Rijke, Zhumin
Chen, and Jiahuan Pei. 2024. Mini-ensemble low-
rank adapters for parameter-efficient fine-tuning. arXiv
preprint arXiv:2402.17263.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for se-
mantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical meth-
ods in natural language processing, pages 1631–1642.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, et al. 2022. Beyond the imitation game:
Quantifying and extrapolating the capabilities of lan-
guage models. arXiv preprint arXiv:2206.04615.

12815

https://arxiv.org/abs/2307.13269
https://arxiv.org/abs/2307.13269
https://www.microsoft.com/en-us/research/publication/mixture-of-lora-experts/
https://www.microsoft.com/en-us/research/publication/mixture-of-lora-experts/
https://github.com/alibaba/easyrobust
https://github.com/alibaba/easyrobust


Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. Stanford alpaca: An
instruction-following llama model. https://github.
com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
2023. Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019a. Superglue: A stickier
benchmark for general-purpose language understanding
systems. In Advances in neural information processing
systems, volume 32.

Hanqing Wang, Bowen Ping, Shuo Wang, Xu Han, Yun
Chen, Zhiyuan Liu, and Maosong Sun. 2024. Lora-
flow: Dynamic lora fusion for large language models in
generative tasks. arXiv preprint arXiv:2402.11455.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P
Xing. 2019b. Learning robust global representations by
penalizing local predictive power. Advances in Neural
Information Processing Systems, 32.

Xi Wang, Laurence Aitchison, and Maja Rudolph. 2023.
Lora ensembles for large language model fine-tuning.
arXiv preprint arXiv:2310.00035.

Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang,
and Xing Xie. 2022. Noisytune: A little noise can help
you finetune pretrained language models better. arXiv
preprint arXiv:2202.12024.

Wenhan Xia, Chengwei Qin, and Elad Hazan. 2024.
Chain of lora: Efficient fine-tuning of language models
via residual learning. arXiv preprint arXiv:2401.04151.

Zeke Xie, Issei Sato, and Masashi Sugiyama. 2020. A
diffusion theory for deep learning dynamics: Stochastic
gradient descent exponentially favors flat minima. arXiv
preprint arXiv:2002.03495.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen
Chu, and Bo Li. 2023. Lora-fa: Memory-efficient low-
rank adaptation for large language models fine-tuning.
arXiv preprint arXiv:2308.03303.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, Kevin Duh, and Benjamin Van Durme. 2018.
Record: Bridging the gap between human and machine
commonsense reading comprehension. arXiv preprint
arXiv:1810.12885.

12816

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

