Android in the Zoo: Chain-of-Action-Thought for GUI Agents

Jiwen Zhang'? * , Jihao Wu?, Yihua Teng?, Minghui Liao?,
Nuo Xu?, Xiao Xiao?, Zhongyu Wei'’, Duyu Tang?'

'Fudan University

2Huawei Inc.

jiwenzhang21@m. fudan.edu.cn
{wujihao, tengyihua,liaominghuil, xunuo4,xiaoxiao55}@huawei.com

zywei@fudan.edu.cn

duyutang@huawei.com

https://github.com/IMNearth/CoAT

Abstract

Large language model (LLM) leads to a surge
of autonomous GUI agents for smartphone,
which completes a task triggered by natural
language through predicting a sequence of ac-
tions of API. Even though the task highly relies
on past actions and visual observations, exist-
ing studies typically consider little semantic
information carried out by intermediate screen-
shots and screen operations. To address this,
this work presents Chain-of-A ction-Thought
(dubbed CoAT), which takes the description
of the previous actions, the current screen, and
more importantly the action thinking of what
actions should be performed and the outcomes
led by the chosen action. We demonstrate that,
in a zero-shot setting upon three off-the-shelf
LMMs, CoAT significantly improves the ac-
tion prediction compared to previous proposed
context modeling. To further facilitate the
research in this line, we construct a dataset
Android-In-The-Zoo (AITZ), which contains
18,643 screen-action pairs together with chain-
of-action-thought annotations. Experiments
show that fine-tuning a 1B model (i.e. AUTO-
Ul-base) on our AITZ dataset achieves on-par
performance with CogAgent-Chat-18B.

1 Introduction

Nowadays, smartphones have become an essen-
tial part of daily lives. AUTOnomous operation of
Graphical User Interfaces (GUI) by human instruc-
tions can substantially simplify everyday routines.
Such tasks, formalized as GUI Navigation (Li
et al., 2020b; Sun et al., 2022b), therefore carry
immense social importance, especially for people
with physical disabilities (Nanavati et al., 2023).
Recent works have explored prompt engineer-
ing (Wen et al., 2023; Zhang and Zhang, 2023),

* This work was done during this author’s internship at
Shanghai Research Center of Huawei Inc.
1 Corresponding Author.

finetuning (Hong et al., 2023) and memory aug-
mentation (Lee et al., 2023) to utilize the capability
of large language models (LLM) on interactive mo-
bile environments. However, progress is held back
due to the scarcity of attention paid on the under-
lying semantics of smartphone operations. GUI
navigation usually entails initially observing the
screen, considering the next action to take, and
reflecting on the outcome of that action (Zhang
et al., 2024a). Previous works (Zhang and Zhang,
2023; Cheng et al., 2024) ignore the logic behind
diverse actions on the screen, concentrating solely
on the coordinates of an operation, such as “click
on (0.17, 0.89)”, which is quite insufficient. As
shown in Figure 1, we need explicit explanations
for the intermediate results during GUI navigation:

* Screen Context: In which app or interface did
the action occur? This helps to learn the back-
ground and possible effects of the action.

¢ Action Think: Why the specific action on the
current screen is chosen? Does it facilitate the
completion of user query? Such thinking process
helps the agent to better capture the user intent.

¢ Action Target: Which Ul element is the action
operating on? A button, an icon, or a link?

* Action Result: What change will this action
cause? Understanding this ensures the consis-
tency of the agent decision-making process.

In order to equip existing GUI agents with such
capability, we summarize the series of navigation
steps as Chain-of-Action-Thought (CoAT), in-
cluding the screen description, the thinking process
about the next action, the textual next action de-
scription, and the possible action outcomes. Screen
description, together with the screenshots, pro-
vides the agent with information basis for decision-
making (Wang et al., 2021). Whereas action think,
action description and action result demonstrate
the rationale between operations. Equipped with
CoAT, we achieve significant improvements in the

12016

Findings of the Association for Computational Linguistics: EMNLP 2024, pages 12016-12031
November 12-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/IMNearth/CoAT

Show the shopping cart on walmart. Add "logitech g pro" to the cart on Walmart.

Smart Phone
v >

GUI Agent

o

[Observe]

—— e mm = =

—— = =

v

P
\@ [Action Think]

[Next Action Description]

[Action Result]

[Screen Description] This is a screenshot of a mobile
web browser displaying the Walmart website with a
focus on their clothing section. The page is advertising
a "Fab savings on fashion gifts" section, which can be
accessed by clicking the "Shop now" button".

[Action-Think] To view the items currently in the
shopping cart and to proceed with the addition of a
specific item as requested, the shopping cart icon must
be accessed. Possible actions are clicking on the
shopping cart icon with the number "$3,107.98" to
view and manage the contents of the cart.

[Next Action] click on the shopping cart icon with
content "$3,107.98" located at the top-right corner

By doing so, the shopping cart contents
are revealed, confirming that the cart contains
multiple items with a total value of $3,107.98. ...

Figure 1: The working process of Chain-of-Action-Thought. The agent will observe the screen, think about
actions on current screen to fulfill the user query, describe its next action, act and finally reflect on action results.

‘ ‘ #Unique ‘ ‘ ‘ Annotation
Dataset #Episodes Instructions #Apps | #Steps screen | action | action | action episode
desc | coord | desc | thinking | feasibility
PixelHelp (Li et al., 2020b) 187 187 ~4 v
MOoTIF (Burns et al., 2021) 4707 270 4.5 v v
UGIF (Venkatesh et al., 2022) 523 480 6.3 v v
Meta-GUI (Sun et al., 2022a) 4684 1125 5.3 v
AITW (Rawles et al., 2023) 715142 30378 357+ 6.5 v
AITZ (Ours) | 2504 | 2504 | 70+ | 75 | v | v | v | v | V¥

Table 1: Comparison of AITZ to existing Android GUI datasets. We consider the number of episodes, instructions,
related apps, average steps and granularity of annotations. Specifically, action semantics includes action descriptions
and action thinkings, while episode feasibility refers to the success verification of collected episodes.

action prediction across three off-the-shelf large
multimodal models (LMM) compared to standard
context prompting, including GPT-4V (OpenAl,
2023), Gemini-Pro-Vision (Team et al., 2023) and
Qwen-VL-Max (Bai et al., 2023).

However, complex context modeling of language
models emerges at a large model scale (Zhang et al.,
2023). Without high quality CoAT-driven data,
smaller models can not possess the desired ability
through fine-tuning. To remedy this blank, we pro-
pose a new dataset Android-In-The-Zoo (AITZ).
AITZ is the first dataset that connects the percep-
tion (of screen layouts and Ul elements) and the
cognition (of action decision-making process) to-
gether. Based on the screen episodes from (Rawles
et al., 2023), we leverage the most-capable propri-
etary model, GPT-4V (OpenAl, 2023), and state-
of-the-art icon detection model (Liu et al., 2018)
to generate candidate answers for the screen de-
scriptions, action thinkings and next action descrip-
tions. These candidates are further validated and
refined by human to guarantee alignment with the
screenshots. Finally, AITZ contains about 19,000
screenshots spanning over 70 Android apps, cou-

pled with 4x useful annotations compared with
action coordinate labels only. We verify the ef-
fectiveness of CoAT by additionally finetuning a
small multimodal agent from scratch on our AITZ
dataset. Experiments show that our proposed chain-
of-action-thought improves both the goal progress
and the learning efficiency of GUI agents.

Our contributions are summarized as follows:

* We propose Chain-of-Action-Thought (CoAT),
a novel prompting paradigm to explicitly capture
the underlying semantics during navigation ac-
tions, allowing GUI agents to perceive, think and
decide in an interleaved manner.

¢ We construct Android-In-The-Zoo (AITZ), the
first and largest fine-grained dataset in the An-
droid GUI navigation field. AITZ consisting
of 2504 unique instructions and 18,643 screen-
action pairs together with four types of semantic
annotations, spanning over 70 Android apps.

* We conduct both zero-shot and fine-tuning eval-
uation on the AITZ dataset, validating the ne-
cessity and effectiveness of proposed chain-of-
action-thought prompting.

12017

Query: Show the shopping cart on walmart. Add "logitech g pro" to the cart on Walmart.

Prompt ‘ Metric Model

[Standard][Chain-of-Actions][Chain-of-Thought][Chain-of-Action-Thought]

QwenVL Gemini-PV GPT-4V

[Screen Description] CoA ‘ hit ‘ 94.5 99.8 M
- E [Action History] [Action History] | acc | 444 477 62.8
cor | hit | 956 97.5 97.1
[GUI Navigation Agent] ‘ acc ‘ 49.4 52.0 64.1
[Action Plan] [Think] [Action Think] CoAT ‘ hit ‘ 96.3 9.4 98.2
1 [Next Action Description] ‘ acc ‘ 52.4 & 73.5
f=
3 [Action Decision] action_type: CLICK, action_point: (0.17, 0.89) R . .
Table 2: Quantitative comparison of three

prompting methods on Qwen-VL-Max,

Figure 2: Chain-of-Action-Thought compared with three typical Gemini-1.0-Pro-Vision and GPT-4V. CoA
prompting methods for GUI tasks, including Standard (Rawles and CoT are short for chain-of-action and
et al., 2023) prompting, Chain-of-Action (Zhang and Zhang, 2023) chain-of-thought, respectively. “hit” means

prompting and Chain-of-Thought (Wei et al., 2022) prompting.

2 Chain-of-Action-Thought (CoAT)
2.1 Definition

Consider a general GUI navigation agent with a

user query u € U to solve. At time step ¢, an agent

receives a screenshot observation o; € O from the
environment and takes an action a; € A follow-
ing some policy 7 (a¢|os, hi—1,u) where hy_1 =

(01,a1,...,04—1,a;—1) is the history for the agent.

Directly learning the policy is challenging as the

relations between history, current observations, and

possible actions are highly implicit. For example,
knowing the search bar is already active is neces-
sary for an agent to make the next action decision
to type text. Therefore, we define Chain-of-Action-

Thought (CoAT) as a shortcut to comprehend the

interaction dynamics during navigation.

The basic components of CoAT, marked as grey-
bordered boxes on the right side of Figure 1, are:

* Screen Description (SD) describes the main
content of the given screenshots, including the
screen type and primary apps or widgets pre-
sented. Screen description provides the textual
context for further decision-making.

* Action Think (AT) analyzes the user query and
current screen, and combines the history informa-
tion to infer the possible actions that help to fulfil
the target. Mathematically, action think provides
a conditional probability p(AT|os, u, hy—1). If
the action think summarizes the current state per-
fectly and contains reasonable action plans, the
decision can be made by calculating p(a:|AT).

* Next Action Description (AD) illustrates the UL
element or screen functions being operated, i.e.
“click on the shopping cart icon” or “scroll up to
open the app drawer”. Action description helps
to form a readable action history.

format hit rate, and “acc” means accuracy.

¢ Action Result (AR) connects the current screen
o¢ and next action a; to the future observations
0t11, by synthesizing the action outcomes after
comparing the screenshot before and after the
action. Usually, at time step ¢, we combine last
action result AR;_; with previous action descrip-
tions to form a continuous and consistent history.

Since each CoAT component carries useful seman-
tics, it is free to combine them according to lan-
guage models used. Our further experiments will
validate the effectiveness and flexibility of the ap-
plication of proposed CoAT framework.

2.2 Comparison

Figure 2 compares proposed CoAT with Stan-
dard (Rawles et al.,, 2023), Chain-of-Action
(CoA) (Zhang and Zhang, 2023) and Chain-of-
Thought (CoT) (Wei et al., 2022) prompting meth-
ods. The proposed CoAT carries explicitly more
semantic information about the screen and actions.
To further validate the effectiveness of CoAT, we
conduct a preliminary experiment on 50 episodes
randomly sampled from AITW (Rawles et al.,
2023) dataset. We select three most capable pro-
prietary models, i.e. GPT-4V (OpenAl, 2023),
Gemini-Pro-Vision (Team et al., 2023) and Qwen-
VL-Max (Bai et al., 2023), to be the GUI agent and
apply different prompting methods on them. To en-
sure an accurate measurement of action prediction
accuracy, we use set-of-mark tagging method (Yan
et al., 2023) to annotate Ul elements on screen.
As shown in Table 2, agents with CoAT surpass
CoA and CoT by a large margin. Moreover, GPT-
4V demonstrates optimal performance, making it a
good collaborator for subsequent data collection.

12018

Database

Uniform Sampl

- ==

!
1
1
1
1
|
|
|
I
I
I
I
|
|
|
|
|
|
|
|
\

ing

Balanced Sampling

Clustering (tf-idf)@

Instruction Sampling Semantic Annotation

-_— -

-)

[Screen Description]
1 1

1
1
1
: [Action Think]
1
1
1
1
1
1

GPT4V
[Next Action Description]

=0

[Action Result]

ICON DETECTION

_ J

Figure 3: AITZ data collection pipeline. During sampling process, human annotators first verify the clustering
results, and then check whether the sampled episode successfully complete the query. During annotation process,
human annotators examine and correct the GPT generated semantic descriptions.

(o= B p A
) rMPO e
POLITICO o G >
B2Q0@d-=
eQmMG 9
Qa vy
PO oo @
m g Set episode status Set episode status
as COMPLETE
,/ « . .

as COMPLETE

Case 1: irrelevant screenshots
Figure 4: Three typical cases of wrong episodes in AIT
‘check the settings for the spotify app’ as example. There e

Case 2: false “task complete’

What's your date of

What's your date of
birth?

What's your date of
birth?

What's your date of

birth? birth?

Millions of songs.
Free on Spotify.

el S

Set episode status
as COMPLETE

Case 3: repeating useless actions
W (Rawles et al., 2023) dataset. We take the task to
xists 15 episodes corresponding to this instruction, and

among them 13 do not actually open the spotify app. This highlights the reasonability to perform data validation.

3 Android in the Zoo (AITZ)

There is a lack of data that captures the underly-
ing semantics of the CoAT paradigm, hindering
small models from obtaining this ability. We there-
fore propose to construct a novel, high-quality and
comprehensive dataset to remedy this blank.

3.1 Data Collection

Instruction Sampling We build our dataset upon
the currently most scaled Android GUI navigation
dataset, AITW (Rawles et al., 2023). AITW dataset
has 715k episodes spanning 30k unique instruc-
tions. We observe that (1) the diversity of instruc-
tions mainly comes from the subset WEBSHOP-
PING, and these instructions have clear templates,
as shown in Table 3; (2) the richness of episodes
results from subset GOOGLEAPPS, where each in-
struction corresponds to more than 2000 episodes.
However, within the AITW dataset, there exist
numerous mismatch cases between the observed
screenshots and the instructions (see Figure 4).

Thus, we sample the instructions and episodes to re-
duce redundancy and filter the error cases by using
a subset-specific sampling strategy:

For subset GENERAL, GOOGLEAPPS and IN-
STALL, as there are few unique instructions in
each subset, we uniformly sample x samples for
each instruction (r = 3, 5, 3 respectively).

For subset WEBSHOPPING, we conduct balanced
sampling on the categories of shopping web-
sites/apps and the objects involved.

For subset SINGLE, as the instructions are diverse
and cluttered, we perform clustering and then
conduct balanced sampling on the clustered data.

This results in a total number of 3461 unique in-
structions, corresponding to 7180 episodes. We
recruit ten annotators to manually verify the correct-
ness of the sampled episodes. Finally, for 5147 suc-
cessful episodes, we randomly select one episode
paired with each unique instruction.

Semantic Annotation It is crucial for GUI
agents to understand the screen information and

12019

Shopping web/app Instruction Template #Instructions | #Episodes
add something to the cart on amazon 80 180
clear/empty cart, then add something to the cart on amazon 111 135
amazon clear/empty cart, search for something, select the first entry and add to cart on amazon 105 124
clear cart, search for something, select the first entry, add to cart on amazon, and checkout 110 135
show/view the shopping cart, search for something on amazon and add it to the cart 42 52
show/view the shopping cart, add something to the cart on amazon, then checkout 59 75

Table 3: An example of repeating instructions with the same template on WEBSHOPPING subset of AITW
dataset. We take instructions related to ‘amazon’ for demonstration. Similar templates can be found for samples
related to other shopping websites/apps, including ‘bestbuy’, ‘ebay’, ‘costco’ and ‘walmart’.

Screen Description Action Think

Action Result

Normalized Frequency

0.00

google search
gt CArt *1cC
g60g

60 80 100 120 140 20 40 60 80 100

(a) Distribution of generated semantic annotations

0

20 40 60 80 100

(b) Word Cloud of clicked elements

Figure 5: Distributions of (a) the length of three different types of semantic annotations and (b) the phrase
frequencies of clicked UI elements on the AITZ dataset. The size of each word corresponds to its tf-idf score.

make decisions accordingly. To mitigate the lack
of such detailed data, we leverage GPT-4V through
Azure-API as the navigation expert and prompt it
to do the screen description, action thinking, next
action description and action result summarization
tasks. Note that the amount of information used
to generate semantic annotations varies. For exam-
ple, the screen description is query-independent,
whereas for next action description, both the query
and the coordinate of golden actions are provided
for reference (see Appendix A.2 for more details).
Thanks to the correctness check at instruction sam-
pling stage, the golden actions have all been veri-
fied. We then recruit three experts who have a good
understanding of Ul elements as annotators to ex-
amine whether the generated action description,
action thinking and action result match the golden
actions. Once inconsistency is found, annotators
will manually revise the action descriptions, and
enforce GPT-4V to regenerate the action thoughts
and action results based on the correct descriptions.

3.2 Dataset Analysis

We compare our AITZ dataset with the most re-
lated Android GUI navigation datasets, includ-
ing PixelHelp (Li et al., 2020b), MOTIF (Burns
et al., 2021), UGIF (Venkatesh et al., 2022), Meta-
GUI (Sun et al., 2022b) and AITW (Rawles et al.,
2023). Our dataset contains the same magnitude of
human demonstration as these smaller datasets, but

Subset ‘ Train ‘ Test
‘ #Episodes #Screens ‘ #Episodes #Screens

GENERAL 323 2405 156 1202
INSTALL 286 2519 134 1108
GOOGLEAPPS 166 1268 76 621
SINGLE 844 2594 0 0
WEBSHOPPING 379 5133 140 1793
Total | 1998 13919 | 506 4724

Table 4: Detailed statistics of the training and test
split of AITZ dataset. Since SINGLE subset contains
single-step tasks only, we place all SINGLE data and
related episodes into the training set.

with a significantly greater richness of instructions.
Table 1 demonstrates that our dataset is unique,
converting rich semantic information.

In Figure 5, we provide statistics of the AITZ
dataset, including the distribution of textual lengths
and the word cloud of operated Ul elements.
Specifically, the majority of screen descriptions
consist of 80~120 words, while most action think
have 30~70 words. The action result exhibits a
narrower range, from 20 to 80 words.

4 Experimental Setup

4.1 Baseline Models

CogAgent (Hong et al., 2023) is a LLM-based
multimodal GUI agent built upon CogVLM (Wang
et al., 2023b). It scales the image resolution up to
1120x1120 by fusing high-resolution features to ev-
ery decoder layer with cross-attention. CogAgent

12020

‘ ‘ Atomic ‘ Episodic
Mode Model
| |scrowr | CUICK | TYPE | pppeglgrop | Total | gp
‘ ‘ ‘ type match ‘ type match ‘ ‘ ‘ type match ‘
7S CogAgent 56.41 79.90 51.50 | 67.40 34.00 | 48.30 476 | 65.86 44.52 13.82
+CoAT 70.22 88.23 66.15 | 4580 21.80 | 4595 | 24.60 | 72.59 53.28 17.13
FT AUTO-UI 74.88 4437 1272 | 73.00 67.80 | 49.09 | 60.12 | 73.79 34.46 6.59
+CoAT 61.40 7456 32.20 | 87.80 81.40 | 57.70 | 74.40 | 82.98 47.69 14.51

Table 5: Main results of CogAgent and AUTO-UI on AITZ dataset. ZS and FT are short for zero-shot and
finetuning evaluation, respectively. For CLICK and TYPE actions, which is more complicated than the other three,
we additionally report the action type prediction accuracy, marked as ‘type’ in this table. Total action-matching
score is also included. ‘GP’ is short for goal progress. The best result of each model is marked in bold.

is pre-trained on a handful of tasks aimed to adapt
it for GUI application scenarios, i.e. text recogni-
tion (Schuhmann et al., 2022), visual grounding (Li
etal., 2023a), and GUI imagery (Hong et al., 2023).
It is further finetuned with GUI tasks on web (Deng
et al., 2023) and smartphones (Rawles et al., 2023).
Since the training data for CogAgent is not pub-
licly available, we conduct a zero-shot evaluation
to assess to what extent CoAT supports the task.

AUTO-UI (Zhang and Zhang, 2023) is
a specialized model for GUI navigation on
AITW (Rawles et al., 2023) dataset. Screen fea-
tures are extracted by the encoder from BLIP-2 (Li
et al., 2023a) and fed into FLAN-Alpaca to decode
actions. AUTO-UI is trained on a randomly split
training set, covering 80% of AITW episodes,
and evaluated on 10% randomly selected testing
episodes. As AITW dataset has a large amount
of repeating and problematic data, resulting in
almost identical distributions between its training
and test set. Therefore, we train this model from
scratch on the training split of AITZ to validate
the necessity and helpfulness of the fine-grained
semantic annotations provided by AITZ dataset.

4.2 Evaluation Metrics

Atomic Metrics Following (Zhang and Zhang,
2023; Hong et al., 2023), we compute the screen-
wise action-matching score (“match” for short). An
action is correct if both the action type and the ac-
tion details (i.e. scroll direction, typed text, clicked
position and pressed button) match the gold ones.

Episodic Metrics As the GUI navigation is a
sequential decision-making problem, it is crucial
to evaluate the progress made by the agent towards
the user query. Therefore, we propose to use goal
progress, a metric indicating the relative position
where the first error occurs in the sequence.

4.3 Implementation Details

We randomly split 70% episodes as training data,
and 30% episodes as testing data (1998/506). It
is notable that, as the episodes and instructions
in AITZ are distinct, the training set and test set
ensure no information leakage. The detailed statis-
tics are in Table 4. For AUTO-UI, we adopt the
same weight initialization strategies as (Zhang and
Zhang, 2023) and fine-tune the models up to 10
epochs, with a learning rate of le-4. For CogA-
gent, we utilize the trained model weights from
CogAgent-Chat and prompt it to use different se-
mantic annotations. For both models, we keep the
original output format unchanged but add extra
information to the input or output of these models.

S Experiments

5.1 Zero-Shot Evaluation

We perform a zero-shot evaluation to investigate the
benefit of directly using these screen and action se-
mantics as input. Here, we select CogAgent (Hong
et al., 2023) for illustration as it is trained to per-
form GUI tasks and expected to possess generaliza-
tion abilities since its foundation language model is
CogVLM-7B. We verify the impact of the proposed
chain-of-action thought by adding action think to
the prompt input of CogAgent. As shown in Ta-
ble 5, CoAT contributes significant improvements
to the overall model performance. Moreover, the
first and last line in Table 5 indicate the fact that
fine-tuning a small agent with model size ~1B (i.e.
AUTO-Ul-base (Zhang and Zhang, 2023)) using
CoAT can obtain comparable performance with a
LLM-based agent, demonstrating the strong poten-
tial of CoAT on GUI navigation tasks.

A more detailed comparison between CogAgent
and AUTO-UI on model architecture, training data
and performance can be found in Appendix C.2.

12021

‘ Semantic Annotations ‘ Atomic ‘ Episodic

‘ input ‘ output ‘ SCROLL ‘ CLICK ‘ TYPE ‘ PRESS ‘ STOP ‘ Total ‘ GP

‘ SD PAR ‘ AT AD ‘ ‘ type match ‘ type match ‘ ‘ ‘ type match ‘
M | \ | 7488 | 4437 1272 | 73.00 67.80 | 49.09 | 60.12 | 73.79 3446 | 659
@ | v 87.85 |49.52 2021 | 8140 6420 | 5352 | 49.80 | 80.55 3933 | 10.71
©) v 7854 | 63.23 2939 | 8560 79.40 | 5535 | 79.17 | 8391 48.35 | 14.06
@ | v v 80.53 | 59.10 2595 | 80.60 6240 | 55.09 | 57.14 | 81.77 4238 | 13.64
©) v 80.87 | 43.09 13.16 | 89.80 7860 | 46.74 | 25.00 | 73.45 32.68 | 9.08
(6) v | 5774 5939 1747 | 7280 67.00 | 4987 | 61.71 | 7221 3518 | 837
@) v V| 2762 |7506 2885 |86.60 76.60 | 49.61 | 42.66 | 7542 3691 | 11.96
® | v v v | 3128 |81.29 3321|7940 6140 | 5170 | 3512 | 77.54 37.66 | 1334
© v | v v | 6140 |7456 3220 | 87.80 8140 | 57.70 | 74.40 | 82.98 47.69 | 14.51
1| v v | v v | 3245 |8246 3299 8040 59.20 | 5248 | 34.33 | 7832 3742 | 13.90

Table 6: Ablation study of different semantic annotation components on AUTQO-UI. SD and PAR mean screen
description and previous action result, whereas AT and AD represent action think and next action description,
respectively. For CLICK and TYPE actions, which is more complicated than the other three, we additionally report
the action type prediction accuracy, marked as ‘type’ in this table. Total action-matching score is also included.
‘GP’ is short for goal progress. The best result is marked in bold while the runner-up is underlined.

& AUTO-UI o114
& AUTO-UI o
& AUTO-UI [+CoAT] 2

©~ AUTO-UI [+CoAT] 12

o
v

N
o
X

10

N
o

Total Action-Matching Score (%)
N w w
o o w
\\\\l\ 8
v @
g
Y
B o ©
Goal Progress (%)

=
v

2 4 6 8 10
Epoch

Figure 6: Total action-matching score and goal
progress over training epochs on AUTO-UI model.

5.2 Fine-tuning Evaluation

To evaluate the influence of individual components
of CoAT, we perform an ablation study by incor-
porating them alternately. We split the annotations
into ‘input’ and ‘output’ groups, indicating where
the extra information comes in during the model
training. Specifically, we put screen description
and previous action result as additional input in-
formation, as they do not provide direct help to
the current action decision. Action think and next
action description are added to the output so that
the agent can learn such thinking process.

From Table 6, we observe that previous action
result, especially combined with action think and
action description, significantly improve the overall
action prediction accuracy of AUTO-UI. As the co-
herence of decision-making process is enhanced
by previous action result, there is a notable in-

crease in the STOP action-matching score (from
60.12 to 79.17). Experiment (5)~(7) demonstrate
that learning to engage in action thinking with-
out additional input is challenging. However,
when screen description and/or previous action re-
sult are added to the input, the performance of
AUTO-UI improves immediately, especially in pre-
dicting CLICK actions. This validates the neces-
sity and effectiveness of such semantic annotations.
There is a minor decrease in both action-matching
score and the goal progress when screen description
is added, as seen in line (9) and (10). We attribute
this to the low resolution of the visual encoder used
by AUTO-UI, resulting in an inability to effectively
utilize the information in screen descriptions. Fig-
ure 6 further illustrates the improvement in training
efficiency when trained with our AITZ data.

5.3 Qualitative Analysis

We conduct the thorough analysis on wrong cases,
as shown in Figure 7. AUTO-UI struggles with
correctly judging the task execution progress, as
the action history provided as a series of action
types and coordinates is hard to understand. Pre-
vious action result mitigates this problem by ex-
plicitly describing the result of the previous actions
in words. This highlights the importance of safe-
guarding the coherence of action decision by estab-
lishing connections between two time steps. For
CogAgent, we carefully inspect its output, which
is composed of three parts: action plan, next action
and grounded operation. It seems that CogAgent
does not take historical information into account,

12022

AUTO-UI

IYYT] w2 0 2
/ N\ Query: / \
Bearcnorypenn 4 | search for a new skincare product € yors a ¢
o
[Screen Description] L

9 search for fights fromlondon toparis fra.. K

TYPE “new skincare product”

This screenshot shows a mobile web
browser's search and address input field at
the top ... The queries include searching
for hotels in Mexico City, accessing Reddit,
Iooking up the Canadian Prime Minister of
2021, finding news in the USA, and
searching for flights from London to Paris.

[Previous Action]
click on the search bar located at the
middle and upper part of the screen

[Action Decision] x
STATUS_TASK_COMPLETE

[Previous Action Result]

By doing so, the search bar becomes
add| | active, allowing the input of text.
This enables the user to type in and
search for new skincare products
directly through the browser.

[Action Decision] ‘/

AUTO-UI

Youmight o ke

N

Stop and set episode status
as COMPLETE

Query:
Uninstall “Yahoo Mail”

[Screen Description]
This is a screenshot of a smartphone
displaying the app page for "Yahoo Mail -
Organized Email" by Yahoo in an app store.
The app has received a rating of 4.5 stars
from over 6 million reviews. Near the top,
there's an "Install” button indicating the
app can be downloaded

[Previous Action]

click on the first search suggestion
located just below the search bar

[Action Decision] x
CLICK [0.1219, 0.1945]

[Previous Action Result]

By doing so, the Yahoo Mail app page on

add | | the Google Play Store has been opened.

This allows for the app to be uninstalled
via the "Uninstall” button that s usually
found on the app's store page.

add

Brennan,
o

New tab

New incogrilo

Bookmarks

Recenttabs

Dowinloads

Translate.

Share.

Find in page

‘Add to Home screen

Desktop site
|

Settings

Help & feedback

CoghAgent

Query:
Open a new Chrome private tab

[Previous Action]
click on the three-dot menu icon
located at the top right

[Next Action]
Tap the area near the top right corner
of the screen, which should

correspond to the browser menu ico
This action aims to open the browser
menu where you can proceed with
opening a new incognito tab.

[Action Think]

The screen shows the menu option
add| | New incognito tab which will allow

opening a new private tab in Chrome.

Possible actions are to click on the ‘New

incognito tab' to execute the query.

[Next Action]
Touch the area of the screen that
corresponds to the ‘New incognito
tab' menu option, which is
approximately in the upper quarter

TYPE “new skincare product”

[Action Decision] ‘/

STATUS_TASK_COMPLETE

of the screen towards the right side.

\4 ® l/

Figure 7: Qualitative examples for AUTO-UI and CogAgent. This figure presents qualitative results where
different types of errors are corrected by applying additional semantic annotations (yellow shadowed boxes).

as its predictions at each step only consider the
current information, leading to repetitive and inef-
fective actions. For example, as the corresponding
action plan generated by CogAgent is to “1. Open
Browser Menu, 2. Select ‘New Incognito Tab’ from
the dropdown menu", it repeatedly attempts to open
the menu icon (see the right-side case in Figure 7).
Adding a short-cut action chain-of-thought, i.e. ac-
tion think from AITZ dataset, into the model input
helps to alleviate this issue.

5.4 Generalization Evaluation

Generalization abilities are crucial for GUI agents.
Previous experiments in this paper are actually a re-
flection of the generalization ability over unseen in-
structions, as we put emphasis on separation based
on instructions (see Section 3.1 and Section 4.3).
The generalization over unseen apps is another im-
portant perspective. Hence, we re-partition the
dataset based on the separation of apps, resulting in
a train split (1519 episodes) spanning 63 apps and
a test split (459 episodes) spanning 10 apps. We
follow the implementation details in Section 4.3
and the results are shown in Table 7. By adding
CoAT-driven data during training, the agent could
generalize to unseen apps better (9.4% v.s. 5.1%
on the episodic goal progress). This demonstrates
that CoAT is generalizable and helpful for action
decision-making on unseen apps.

6 Related Works

GUI Navigation AUTOmatic execution of user
instructions on smartphones or websites is an ad-
vanced task, as it requires the agent to not only
perceive but also deduce. Previous works concen-
trate on evaluating the ability of models to iden-

tify different UI elements (Shi et al., 2017; Zhang
et al., 2021; Sunkara et al., 2022), and to fulfil a
user-queried task by either statically operating on a
series of pre-collected GUI screenshots (Li et al.,
2020b; Venkatesh et al., 2022; Zhang and Zhang,
2023; Deng et al., 2023) or dynamically interacting
with an alive Android device (Yang et al., 2023a).
However, these works separate the ability of ele-
ment recognition and action inference, causing a
discrepancy between the user intent and the per-
formed actions (Wei et al., 2022; Baechler et al.,
2024). Our CoAT framework bridges this gap by
allowing GUI agents to recall history actions, per-
ceive the current screen, and decide on the future
actions based on these useful semantics.

Large Multimodal Models (LMM) Recent
years have witnessed the rise of numerous large
multimodal models (Liu et al., 2023a,b; Zhu et al.,
2023; Zeng et al., 2023). Usually, visual sig-
nals are encoded by a vision transformer (Doso-
vitskiy et al., 2020) and further incorporated in
LLMs (Radford et al., 2021) through linear pro-
jection (Tsimpoukelli et al., 2021), Q-former (Li
et al., 2023a) or cross-attention layers (Alayrac
et al., 2022). For general purpose LMMs, the low
resolution of visual encoders (224 x224) captures
only coarse visual information. CogAgent (Hong
et al., 2023) deals with this problem by using the
original ViT-L (Dosovitskiy et al., 2020) to encode
high-resolution visual features up to 1120x 1120,
and fusing them with every decoder layers through
cross-attention. Whereas Monkey (Li et al., 2023b)
equips the visual encoder from QWen-VL (Bai
et al., 2023) with individual LoRA adapter (Hu
et al., 2021) for each patch to scale the image
resolution up to 896x1344 pixels. Consequent

12023

Model ‘

Action-Matching Score

‘ Goal Progress

| TOTAL | CLICK TYPE PRESS STOP SCROLL |
AUTO-UI 28.5 107 592 276 411 69.7 5.1
AUTO-UI + CoAT | 318 197 612 491 552 749 9.4

Table 7: Generalization results over the unseen apps under fine-tuning settings.

works (Yu et al., 2024; Chen et al., 2024; Lu et al.,
2024a) all incorporate high-resolution image en-
coders, indicating a popular trend for the future.

LMM as GUI Agents A number of works have
utilized LMMs’ domain knowledge and emergent
zero-shot embodied abilities to perform complex
task planning and reasoning (Yang et al., 2023b;
Wang et al., 2023c; Ikeuchi et al., 2023). For GUI
navigation, the introduction of LMMs surpasses
previous works that transform the UI layouts and
elements into the text-only HTML format (Li et al.,
2020a; Zhang et al., 2021; Wang et al., 2023a). One
line of work adopts GPT-4V directly as the GUI
agent and prompts it to perform the task (Yan et al.,
2023; Yang et al., 2023a; Zheng et al., 2024), while
other methods focus on tuning a smaller LMM on
GUI-related datasets to acquire the domain-specific
knowledge (Zhang and Zhang, 2023), or train a
LMM from scratch on GUI-specified pre-training
tasks (Hong et al., 2023; Baechler et al., 2024; You
et al., 2024; Cheng et al., 2024). We evaluate two
agents on the proposed AITZ dataset, and prove
that our proposed chain-of-action-thought helps
agents adapt to GUI tasks better and more quickly.

7 Conclusion

In conclusion, our work aims to bolster the nav-
igation ability of LMM-based GUI agents. We
propose Chain-of-Action-Thought (CoAT) by an-
alyzing human orienteering processes. We start
by verifying that CoAT is superior to three typical
context modeling methods. In order to inject CoAT-
like thinking capabilities into existing GUI agents,
we further generated a set of high-quality CoAT-
driven data through cooperation between human
experts and GPT-4V, namely Android-In-The-Zoo
(AITZ) dataset. AITZ enriches this field with a ro-
bust dataset that bridges perception and cognition,
facilitating effective training and reliable evaluation
for GUI navigation agents. Experiments demon-
strate the efficiency and usefulness of proposed
chain-of-action-thought paradigm.

8 Limitations

We developed CoAT and AITZ with the goal
of enabling LLM Agents to mimic the cognitive
processes of humans. Although our experiments
proved that it is possible to stimulate the reasoning
ability of language models (i.e. GPT-4V (OpenAl,
2023), CogAgent (Hong et al., 2023) and AUTO-
UI (Zhang and Zhang, 2023)) in GUI scenarios
through zero-shot prompting or fine-tuning, the dif-
ferent model structure and training data used by
current specified models for GUI tasks make the
comparison less intuitive. To what extent the image
resolution and GUI-related pretraining tasks (i.e.
text recognition, GUI imagery (Hong et al., 2023),
screen question-answering (Baechler et al., 2024;
You et al., 2024) and GUI grounding (Cheng et al.,
2024)) influence the navigation performance re-
mains under-explored. We leave it for future work
to precisely measure the impact of image resolu-
tion, text recognition ability, GUI grounding ability
of LMMs on GUI navigation tasks.

9 Ethics

Android-In-The-Zoo (AITZ) dataset is sourced
from open-source datasets AITW (Rawles et al.,
2023), which is permitted for academic use. Dur-
ing our data collection, specifically, during the
instruction-episode correctness checks, we ensured
that privacy concerns were addressed, and the sam-
pled data does not include any real personal in-
formation (fake or meaningless data are allowed).
Since AITZ dataset contains only semantic annota-
tions on smartphone operations, the use of this data
poses neither ethical risks nor harmful guidance.

10 Acknowledgements

This work is supported by National Natural Science
Foundation of China (No. 62176058) and National
Key R&D Program of China (2023 YFF1204800).
The project’s computational resources are sup-
ported by CFFF platform of Fudan University.

12024

References

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. 2022. Flamingo: a visual language
model for few-shot learning. Advances in Neural
Information Processing Systems, 35:23716-23736.

Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir
Zubach, Hassan Mansoor, Vincent Etter, Victor
Carbune, Jason Lin, Jindong Chen, and Abhanshu
Sharma. 2024. Screenai: A vision-language model
for ui and infographics understanding. arXiv preprint
arXiv:2402.04615.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A frontier large
vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966.

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha
Kumar, Kate Saenko, and Bryan A Plummer. 2021.
Mobile app tasks with iterative feedback (motif): Ad-
dressing task feasibility in interactive visual environ-
ments. arXiv preprint arXiv:2104.08560.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye,
Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
Hu, Jiapeng Luo, Zheng Ma, et al. 2024. How far
are we to gpt-4v? closing the gap to commercial
multimodal models with open-source suites. arXiv
preprint arXiv:2404.16821.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu,
Yantao Li, Jianbing Zhang, and Zhiyong Wu. 2024.
Seeclick: Harnessing gui grounding for advanced
visual gui agents. arXiv preprint arXiv:2401.10935.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,
Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
2023. Mind2web: Towards a generalist agent for the
web. arXiv preprint arXiv:2306.06070.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. In International
Conference on Learning Representations.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, et al. 2023. Cogagent: A
visual language model for gui agents. arXiv preprint
arXiv:2312.08914.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
etal. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Katsushi Ikeuchi, Jun Takamatsu, Kazuhiro Sasabuchi,
Naoki Wake, and Atsushi Kanehiro. 2023. Apply-
ing learning-from-observation to household service
robots: three common-sense formulation. arXiv
preprint arXiv:2304.09966.

Sunjae Lee, Junyoung Choi, Jungjae Lee, Hojun Choi,
Steven Y Ko, Sangeun Oh, and Insik Shin. 2023.
Explore, select, derive, and recall: Augmenting llm
with human-like memory for mobile task automation.
arXiv preprint arXiv:2312.03003.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023a. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. arXiv preprint arXiv:2301.12597.

Toby Jia-Jun Li, Tom Mitchell, and Brad Myers. 2020a.
Interactive task learning from gui-grounded natural
language instructions and demonstrations. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics: System Demon-
strations, pages 215-223.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason
Baldridge. 2020b. Mapping natural language instruc-
tions to mobile ui action sequences. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8198-8210.

Zhang Li, Biao Yang, Qiang Liu, Zhiyin Ma, Shuo
Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu, and
Xiang Bai. 2023b. Monkey: Image resolution and
text label are important things for large multi-modal
models. arXiv preprint arXiv:2311.06607.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023a. Improved baselines with visual instruc-
tion tuning. arXiv preprint arXiv:2310.03744.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023b. Visual instruction tuning. arXiv preprint
arXiv:2304.08485.

Thomas F Liu, Mark Craft, Jason Situ, Ersin Yumer,
Radomir Mech, and Ranjitha Kumar. 2018. Learning
design semantics for mobile apps. In Proceedings of
the 31st Annual ACM Symposium on User Interface
Software and Technology, pages 569-579.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai
Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhu-
oshu Li, Yaofeng Sun, et al. 2024a. Deepseek-vl:
towards real-world vision-language understanding.
arXiv preprint arXiv:2403.05525.

Quanfeng Lu, Wengqi Shao, Zitao Liu, Fanqing Meng,
Boxuan Li, Botong Chen, Siyuan Huang, Kaipeng
Zhang, Yu Qiao, and Ping Luo. 2024b. Gui odyssey:
A comprehensive dataset for cross-app gui navigation
on mobile devices. arXiv preprint arXiv:2406.08451.

Amal Nanavati, Vinitha Ranganeni, and Maya Cakmak.
2023. Physically assistive robots: A systematic re-
view of mobile and manipulator robots that physi-
cally assist people with disabilities. Annual Review
of Control, Robotics, and Autonomous Systems, 7.

12025

OpenAl. 2023.
arXiv:2303.08774.

Gpt-4 technical report.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748-8763. PMLR.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana
Riva, and Timothy Lillicrap. 2023. Android in the
wild: A large-scale dataset for android device control.
arXiv preprint arXiv:2307.10088.

Christoph Schuhmann, Romain Beaumont, Richard
Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis,
Mitchell Wortsman, Patrick Schramowski, Srivatsa
Kundurthy, Katherine Crowson, Ludwig Schmidt,
Robert Kaczmarczyk, and Jenia Jitsev. 2022. Laion-
5b: An open large-scale dataset for training next gen-
eration image-text models. ArXiv, abs/2210.08402.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Her-
nandez, and Percy Liang. 2017. World of bits: An
open-domain platform for web-based agents. In In-

ternational Conference on Machine Learning, pages
3135-3144. PMLR.

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai,
Zichen Zhu, and Kai Yu. 2022a. Meta-gui: Towards
multi-modal conversational agents on mobile gui. In
Conference on Empirical Methods in Natural Lan-
guage Processing.

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai,
Zichen Zhu, and Kai Yu. 2022b. Meta-gui: Towards
multi-modal conversational agents on mobile gui.
In Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing, pages
6699-6712.

Srinivas Sunkara, Maria Wang, Lijuan Liu, Gilles
Baechler, Yu-Chung Hsiao, Abhanshu Sharma,
James Stout, et al. 2022. Towards better semantic
understanding of mobile interfaces. arXiv preprint
arXiv:2210.02663.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi,
SM Eslami, Oriol Vinyals, and Felix Hill. 2021. Mul-
timodal few-shot learning with frozen language mod-

els. Advances in Neural Information Processing Sys-
tems, 34:200-212.

Sagar Gubbi Venkatesh, Partha Talukdar, and Srini
Narayanan. 2022. Ugif: Ui grounded instruction
following. arXiv preprint arXiv:2211.07615.

Bryan Wang, Gang Li, and Yang Li. 2023a. Enabling
conversational interaction with mobile ui using large
language models. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems,

pages 1-17.

Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi
Grossman, and Yang Li. 2021. Screen2words: Au-
tomatic mobile ui summarization with multimodal
learning. In The 34th Annual ACM Symposium on
User Interface Software and Technology, pages 498—
510.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi
Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, Jiazheng Xu, Bin Xu, Juanzi
Li, Yuxiao Dong, Ming Ding, and Jie Tang. 2023b.
Cogvlm: Visual expert for pretrained language mod-
els. ArXiv, abs/2311.03079.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu,
Xiaojian Ma, and Yitao Liang. 2023c. Describe,
explain, plan and select: Interactive planning with
large language models enables open-world multi-task
agents. arXiv preprint arXiv:2302.01560.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao,
Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu,
Yaqin Zhang, and Yunxin Liu. 2023. Empowering
Ilm to use smartphone for intelligent task automation.
arXiv preprint arXiv:2308.15272.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin,
Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong,
Julian McAuley, Jianfeng Gao, et al. 2023. Gpt-
4v in wonderland: Large multimodal models for
zero-shot smartphone gui navigation. arXiv preprint
arXiv:2311.07562.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Ze-
biao Huang, Bin Fu, and Gang Yu. 2023a. Appa-
gent: Multimodal agents as smartphone users. arXiv
preprint arXiv:2312.13771.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin
Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu,
Ce Liu, Michael Zeng, and Lijuan Wang. 2023b.
Mm-react: Prompting chatgpt for multimodal rea-
soning and action. arXiv preprint arXiv:2303.11381.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers,
Amanda Swearngin, Jeffrey Nichols, Yinfei Yang,
and Zhe Gan. 2024. Ferret-ui: Grounded mobile ui
understanding with multimodal 1lms. arXiv preprint
arXiv:2404.05719.

Ya-Qi Yu, Minghui Liao, Jihao Wu, Yongxin Liao,
Xiaoyu Zheng, and Wei Zeng. 2024. Texthawk:
Exploring efficient fine-grained perception of mul-
timodal large language models. arXiv preprint
arXiv:2404.09204.

12026

https://api.semanticscholar.org/CorpusID:252917726
https://api.semanticscholar.org/CorpusID:252917726
https://api.semanticscholar.org/CorpusID:252917726
https://api.semanticscholar.org/CorpusID:248986378
https://api.semanticscholar.org/CorpusID:248986378
https://api.semanticscholar.org/CorpusID:265034288
https://api.semanticscholar.org/CorpusID:265034288

Yan Zeng, Hanbo Zhang, Jiani Zheng, Jiangnan Xia,
Guogiang Wei, Yang Wei, Yuchen Zhang, and Tao
Kong. 2023. What matters in training a gpt4-style
language model with multimodal inputs? arXiv
preprint arXiv:2307.02469.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang,
Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, et al. 2024a. Ufo: A ui-
focused agent for windows os interaction. arXiv
preprint arXiv:2402.07939.

Jiwen Zhang, Yaqi Yu, Minghui Liao, Wentao Li, Jihao
Wu, and Zhongyu Wei. 2024b. Ui-hawk: Unleash-
ing the screen stream understanding for gui agents.
Preprints.

Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin,
Samuel White, Kyle Murray, Lisa Yu, Qi Shan, Jef-
frey Nichols, Jason Wu, Chris Fleizach, et al. 2021.
Screen recognition: Creating accessibility metadata
for mobile applications from pixels. association for
computing machinery, new york, ny, usa.

Zhuosheng Zhang and Aston Zhang. 2023. You only
look at screens: Multimodal chain-of-action agents.
arXiv preprint arXiv:2309.11436.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao,
George Karypis, and Alex Smola. 2023. Multi-
modal chain-of-thought reasoning in language mod-
els. arXiv preprint arXiv:2302.00923.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. 2024. Gpt-4v (ision) is a generalist web agent,
if grounded. arXiv preprint arXiv:2401.01614.

Deyao Zhu, Jun Chen, Xiaogian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. arXiv preprint arXiv:2304.10592.

A Data Collection

Our data construction pipeline is shown in Fig-
ure 3. We leverage the strong world knowledge
and generation ability of GPT-4V, combined with
critical human verification, to ensure high-quality
data. We ask our annotators to detect only factual
errors, which could hardly introduce human bias.

A.1 Instruction Sampling Process

We first checked the instruction distribution in the
original AITW dataset based on the split from
(Zhang and Zhang, 2023). We find that the in-
struction distribution in the training, validation and
test sets are almost the same, which means there
is a serious problem of data leakage. To avoid
such problem exists in our constructed datasets, we
perform instruction sampling.

» SINGLE: Given the complexity and variety of in-
structions in this dataset, we first clustered them
and then performed balanced sampling based on
the categories. The clustering process is as fol-
lows: (1) Identify the main verb in each instruc-
tion, typically the first word, and group the in-
structions by this verb. (2) For each group of in-
structions, we manually classify those with fewer
than 50 samples that show clear patterns. Then
for groups with more than 50 samples, use tf-idf
for clustering. Finally, we manually verify the
clustering results.

* WEB_SHOPPING: We performed balanced sam-
pling based on the types of shopping websites
and the objects involved.

* GENERAL, INSTALL, GOOGLE_APPS: Since
these three datasets have a limited number of in-
structions, we did not perform extensive filtering
during sampling. Instead, we uniformly sampled
x instructions per user. For INSTALL and GEN-
ERAL, z=3; for GOOGLE_APPS, x=5.

During the instruction sampling stage, we recruited

10 annotators to verify whether the episodes have

successfully completed the tasks required by the

instructions. Our data quality inspection team con-
ducted a secondary validation of sampled results.

A.2 Semantic Annotation Process

We leverage GPT-4V through Amazon Azure-API
as the navigation expert and prompt it to do the
following generation tasks:

1. Screen Description: describe the main content
of the given screenshots, including the screen
type, and primary apps or widgets presented.

2. Action Grounding: given the coordinates
of the correct next actions, generate ac-
tion descriptions. Specifically, we simplify
the action spaces into 5 action categories,
including SCROLL(direction), TYPE(text),
PRESS(button), CLICK(point) and STOP(task
state). We ask GPT-4V to describe the Ul ele-
ment the click action is operating on, by drawing
the bounding box of the clicked area through
icon detection model from (Liu et al., 2018).
The descriptions for other types of actions are
generated using templates.

3. Action Thinking: think about what actions
need to be performed on the current screen to
complete the user query, and describe the results
of the correct next action based on screenshots
before and after the action.

12027

Screen Description

| will give you a screenshot of a mobile phone.
SCREEN: __screen_img__

¥TASK: Your task is to summarize this screen about its main content and its functionality, i.e. the type of the screen, together with primary icons or apps
on the screen. You should describe the screen with necessary details, but not too long. Your output must be less than five sentences.

Action Think

QUERY: The query you need to complete isto __query__

SCREEN: __screen_img__
SCREEN DESCRIPTION: __screen_desc__

are ..

ACTION HISTORY: To proceed with the query, your past actions include: __action_history__

TASK: Given the screen and above information, you have two tasks to do. Firstly, based on the history and the current screen, you should estimate the
execution progress of query in one sentence. Answer with format: 'Reflection: ..."' Secondly, you should analyze the screen for relevant details that might
pertain to the given query. This includes checking for specific applications, icons, or buttons that are visible, and any information or results that are currently
displayed on the screen. Then, describe possible actions you may conduct. You must answer by two sentences with the format: 'Think: ... Possible actions

Action Description

To fulfill the following query, an expert have clicked on the screen.
QUERY: __query__

“—-v=<0=v

¥EXPERT ACTION: *__expert_action__

SCREEN: __ screen_img__ The screen labeled with expert action is also given to you.
SCREEN WITH ACTION: __labelled_screen__ The expert action *__expert_action__" is labelled as a blue cross marker "+ on this screen.

SCREEN COORDINATE SYSTEM: A coordinate (x, y) represents a point on the screen. The first value, labeled as x’, horizontal, i.e. x ranges from O to 1,
meaning the position of point ranges from the left to right, where x<0.4 means left, 0.4<=x<=0.6 means middle and x>0.6 means right. The second value,
labeled as ‘y’, is vertical, i.e. y ranges from 0 to 1, meaning the position of point ranges from the bottom to top. where y<0.2 means bottom, 0.2<=y<0.4
means lower, + 0.4<=y<0.5 means lower middle, 0.5<=y<=0.6 means upper middle, 0.6<y<=0.8 means upper, and y>0.8 means top.

TASK: Based on above information, your task is to answer: Which Ul element (icon, app, search bar, results, etc) is this expert action clicking on and

where is it located? You should think step by step as follows: The coordinate in expert actionis ___ . As stated, the first value "x" is ___, which means the click
point locates at ___. The second value 'y"is ___, which means the click point locates at ___. Overall, the click point locates at the ___and ___ part of the
screen. Combined with the blue cross marker “+°, answer with format: the expert action is to click on the locatedat ____.

Action Result

To fulfill the following query, you have performed an action on screen.
QUERY: __query__

ACTION: _ correct_next_action__

The screenshots before and after the action are:

SCREEN BEFORE ACTION: __screen_before__

SCREEN AFTER ACTION: __screen_after__

TASK: Your task is to explain why this action can facilitate the completion of query. Answer with format: By doing so, ..." Your output must be within two
sentences, one sentence about the consequences and one sentence about the reason. Keep your answer as concise and brief as possible.

Figure 8: Prompt to generate candidate answers for four types of semantic annotations.

Three experts who have a good understanding of
UI elements are recruited as annotators to verify
whether the generated action description matches
the labelled golden actions and the generated ac-
tion thinkings. Once inconsistency is found, an-
notators will manually revise the action descrip-
tions, and enforce GPT-4V to regenerate the action
thoughts based on the correct action descriptions.
The prompt we use are shown in Figure 8.

A.3 Action Space

As stated before in Appendix A.2, we simplify the
action spaces into 5 action categories. The reason
behind this is, we observe that within the AITW
dataset, ‘DUAL_POINT’ action type seamlessly
covers both ‘CLICK’ and ‘SCROLL’ actions. In
most cases, the action point of ‘SCROLL’ action
conveys little information, but the scroll direction
matters. There are also few operations that require
dragging apps, such as editing the main screen.
Therefore, we manually split the ‘DUAL_POINT’
action type into ‘CLICK’ and ‘SCROLL’, where
‘CLICK’ action involves coordinate prediction and

‘SCROLL’ action is purely textual. The action
space is summarized as follows:

* CLICK(coord_y: float, coord_x: float):
This action clicks a specific point on the screen.
It is necessary to combine the annotation of UI
elements to identify the icon and/or area clicked.
Note that we use the relative pixel coordinate
system, where (0, 0) means the top-left and (1,1)
means the bottom right corner of the screen. For
example, click (0.11, 0.92) taps a point lo-
cated at the top-right corner of the screen.

e SCROLL(direction: str): This actions means
the finger movements like a real human user. For
example, scroll up means the action gesture is
from bottom to top, leading either the app drawer
to be opened, or the current screen to go down
and reveal more contents. There are four options
for direction: up, down, left and right.

* TYPE(text: str): This action allow the agent
to directly type texts into an input field, skipping
the inefficient keyboard operations. For example,
type “what is CoAT” inputs the string “what
is CoAT”™ to the text input field at one time.

12028

? —
ey o N\
o, P\ % ~ é RS 1 &
. 1 . 2 N o PN s
i é ¢
Train Validation Test Sampled

Figure 9: The instruction distribution (grouped by verbs and nouns) for SINGLE subset in original AITW dataset.

‘ Model Architecture ‘ Training Data
Visual Language Image
Encoder Backbone Resolution Pre-training Fine-tuning
AUTO-UI | Single Encoder (985M) FLAN-alphaca
(12B) BLIP2-0pt-2.7b base(200M) 224X 2% / AITW / AITZ
" T
(g18]§) Low-Res: EVA2-CLIP-E =~ CogVLM-7B 1120 x 1120 visual oro r%din > Mind2Web, AITW,
High-Res: EVA2-CLIP-L ual BIoundie o blic VQA data .
and gui imagery tasks

Table 8: Comparison between AUTO-UI (Zhang and Zhang, 2023) and CogAgent (Hong et al., 2023). Note
that, for low-resolution images, following CogVLM (Wang et al., 2023b), CogAgent adopts a visual encoder with
5B parameters and a visual expert module with 6B parameters.

* PRESS(button: str): The Android system pro-
vides several system level shortcut buttons, such
as back button that enables the user back to the
previous interface, and home button that allows
a direct return to the home screen. Moreover,
enter button is another virtual button that sub-
mits the typed query. This action means to press
on one of the system level virtual buttons.

STOP(task_state: str): This action allows
the agent to stop and end the query execution in
time, either when it considers the task is com-
pleted or the task is impossible. For example,
stop and set the query as completed means

stall/Open the xxx app”). Therefore, this subset
has 24 apps in total, within which are google
chrome(72%), google maps (9%), google play
store (5%), clock (4%), settings (2%) and others
(8%). The training split has 19 apps and the test-
ing split has 17 apps, where 12 apps are shared
across the training and testing split.

INSTALL: High-level tasks related to installing,
uninstalling and logging into apps. This subset in-
vloves 79 apps in total via the entrance of google
play store. The training split has 77 apps and
the testing split has 71 apps, where 69 apps are
shared across the training and testing split.

the user query has been successfully completed.
We map the actions predicted by AUTO-UI and
CogAgent to this space to ensure the reliability and
consistency in comparison.

* WEBSHOPPING: Tasks related to shopping on
e-commerce websites, including ebay (17%),
amazon (17%), bestbuy (15%), walmart (13%),
newegg (10%), target (10%), costco (9%), lowes
(2%) and others (7%). As we have stated in
Section 3.1, the apps involved in webshopping
are relatively fixed, so different instructions are
more crucial for distinguishing different scenar-
ios. This is the reason why we have done instruc-
tion sampling to separate different instructions.

* GOOGLEAPPS: Tasks that involve the use of 14
Google applications, including settings (25%),
google chrome (22%), google play store (15%),
gmail (14%), google maps (6%), calendar (6%),

B Dataset Details

Since AITZ is built upon AITW, it inherits

the dataset structure that contains five subsets,

4 of which are multi-step tasks (GENERAL,

GOOGLEAPPs, INSTALL, WEBSHOPPING) and

1 is single-step tasks (SINGLE).

* GENERAL: Tasks including question-and-
answering (i.e. “What is the capital of ...?”") and
interacting with 3rd party apps/websites (i.e. “In-

12029

Model | Prompt | UIReps. | HitRate | Total | CLICK SCROLL PRESS TYPE STOP
CoA txt 8253 | 3586 | 4496 34.21 0 3404 408
tag 94.48 | 4437 | 60.07 7.89 0 4894 0
QWen-VL | 1 txt 8437 | 4161 | 5683 2.63 435 4043 4.08
tag 9563 | 4943 | 69.42 2.63 435 4043 2.04
CoAT txt 94.02 | 5241 | 723 7.89 13.04 3404 102
© tag 96.32 | 51.95 | 70.5 2.63 87 4681 102
CoA txt 89.43 | 4299 | 60.79 13.16 435 2128 4.08
© tag 99.77 | 5448 | 79.86 1053 13.04 10.64 6.12
Gemini-PV | txt 9586 | 49.2 | 6727 2632 2174 1915 6.2
tag 9747 |51.95| 7446 2105 13.04 1277 408
CoAT txt 97.01 | 5241 | 69.42 2368 3043 3404 6.12
tag 954 | 5333 | 7266 2368 2174 2979 408
CoA txt 9241 | 5517 | 74.1 4211 3913 851 102
tag 9931 | 6276 | 86.69 4474 2609 1489 4.08
GPT4V | or txt 98.16 | 66.21 | 89.57 3947 39.13 1277 1837
tag 97.01 | 64.14 | 8633 3947 3913 2128 102
CoAT txt 9839 | 71.72 | 8633 4737 4348 4894 42.86
tag 98.16 | 7149 | 86.69 4211 4348 5745 34.69

Table 9: Complete comparison results of three prompting methods on Qwen-VL-Max, Gemini-1.0-Pro-Vision
and GPT-4V. “Prompt” means different prompting methods. “UI Reps.” denotes the representation methods of
screen elements, including set-of-mark tagging (tag) and textual representation (txt). “Hit Rate” means the format

hit rate. The evaluation metric is the action prediction accuracy(%).

clock (5%), google photos (3%) and others (4%).
The training split spans 14 apps and the testing
split spans 10 apps.

* SINGLE: Single-step tasks that mainly come
from WebShopping, spanning about 10 apps.
Only used for training.

C Experiment Details

C.1 Comparison between Prompting Methods

In Section 2.2 we conducted a preliminary exper-
iment to demonstrate that CoAT is more effective
than previous context modeling methods. Specifi-
cally, for CoA prompting, the input to GUI agents
includes system prompt, current screenshot, his-
tory actions and user request. For CoT prompting,
the input to GUI agents includes system prompt,
current screenshot and user request. For CoAT
promprting, we firstly require the agent to observe
current screenshot and generate screen descriptions.
Then, the input contains system prompt, current
screenshot, screen description, history actions, pre-
vious action results and user request.

For all threee prompting methods, the system

prompt contains information about the valid action
space and corresponding desired output format. If
the representation of Ul elements is set-of-mark
tagging, another screenshot with annotated UI ele-
ments will be additionally added to the input, oth-
erwise a textual representation of Ul elements is
appended. Figure 10 show a visualization example
of these two Ul representations.

The complete experiment results are shown in
Table 9. From Table 9, GPT-4V prompted by CoAT
takes the lead position in the overall performance
and in the prediction of each type of actions. Com-
pared with plain textual representations, agents
equipped with set-of-mark tagging generally per-
forms better. This encourages future work to put
more emphasis on the visual perception of Ul el-
ements, improve the image resolution and multi-
image processing ability of GUI agents.

C.2 Comparison between Baselines

As shown in Table 5, we conclude that “AUTO-UI
+ CoAT is on par with CogAgent-Chat-18B” based
on the fact that the model architecture and training
data of AUTO-UI is inferior to CogAgent, but after

12030

Screenshot
1221 @ @ voedn

© X O

vion, 1ue, wea, Inu, Fri

1221 @ @

9:00.. '9:00.,

Sun, Sat Sun, 5

15
Repeat Repeat

17
' Default (Cesiu.

Default (Cesiu..

19
Label Lahel

Delete

Screenshot + Set-Of-Mark Tagging
(CHCA]

2

Screenshot Textual Representation
ICON_TIME [33, 52, 51, 83]
ICON_TIME [123, 52, 142, 86]
ICON_TIME [301, 50, 319, 81]
ICON_THREE_DOTS [376, 54, 385, 84]

TEXT IVION, [39, 109, 80, 120]
TEXT i ue, [87, 106, 123, 121]
TEXT vvea, [129, 109, 167, 120]
TEXT inu, [179, 109, 211, 120]

TEXT rrI [218, 109, 236, 118]
ICON_V_DOWNWARD [344, 104, 356, 121]
TEXT 9:00. [24, 170, 135, 208]

TEXT Sun, [39, 244, 73, 261]

TEXT Sat [82, 244, 108, 258]
ICON_V_DOWNWARD [343, 242, 356, 259]
TEXT 11:41m [39, 312, 184, 344]

TEXT Repeat [94, 383, 151, 401]
TCON_NOTIFICATIONS [45, 436, 64, 471]
TEXT Default (Cesiu.. [82, 443, 222, 466]
TEXT D [43, 511, 69, 530]

TEXT Label [94, 514, 137, 528]
ICON_DELETE [44, 593, 62, 624]

TEXT Delete [94, 602, 142, 616]
ICON_V_UPWARD [343, 599, 356, 618]
ICON_PLUS [198, 672, 214, 701]

Figure 10: Visualization of Set-Of-Mark tagging and corresponding textual representations.

fine-tuning on AITZ dataset, they achieve similar

performance on goal process (AUTO-UI is even

slightly higher.) We summarize the differences
between two models in Table 8 for a quick look.

Following is the detailed explanation:

1. The lesser volume of training data used by
AUTO-UI compared with CogAgent. Specif-
ically, AUTO-UI underwent fine-tuning solely
on the AITZ dataset, in contrast to CogAgent’s
extensive fine-tuning across the entire AITW
dataset. Moreover, CogAgent introduced GUI
imagery tasks during the pre-training phase.
Hence, it is highly optimized for GUI scenarios.

2. The different resolution of visual encoders.
Specifically, AUTO-UI employs the visual en-
coder from BLIP2 with a 224 x 224 resolution,
whereas CogAgent combines ViT-L with the
visual encoder from CogVLM to scale the reso-
lution up to 1120 x 1120.

3. Despite AUTO-UI + CoAT being trained with
significantly less data and without any addi-
tional pre-training efforts, it managed to out-
perform CogAgent in terms of action prediction
accuracy and goal progress, underscoring the
effectiveness and value of our proposed method
and dataset, as shown in Table 5.

D Discussions About Screen Description

As we have stated in Section 5.2, the image reso-
lution that LMMs can handle is crucial for under-
standing the screen description. Our statement is
supported by two experiments:

(1) An exploration experiment on Monkey (Li
et al., 2023b), with screen description as addi-
tional input: Monkey is a large multimodal model
that could process images with resolutions up to
1344x896. We ablate the usage of screen descrip-
tion, and train the model to output the action think
together with the action decision for 2 epochs.
The total action matching score rises from 22.7%
to 26.3%. (2) A validation experiment on Ul-
Hawk (Zhang et al., 2024b), with screen descrip-
tion as learning target. UI-Hawk is a specialized
version of TextHawk (Yu et al., 2024) for UI un-
derstanding and we have observed similar improve-
ments. For UI-Hawk, we integrate the learning of
screen description by separating the training pro-
cess into two stages. During stage one, the model
learns to describe the screen. During stage two,
the model learns to decide on its next-step action
on a more complicated navigation dataset, GUI-
Odyssey (Lu et al., 2024b). The total action match-
ing score rises from 69% towards 72% by adding
the stage one training process.

We leave it for future work to conduct a thor-
ough analysis on the influencing factors of screen
description, such as image resolution, model archi-
tecture, Ul related pre-training, etc.

12031

