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Abstract

Knowledge graphs (KGs) can provide ex-
plainable reasoning for large language models
(LLMs), alleviating their hallucination problem.
Knowledge graph question answering (KGQA)
is a typical benchmark to evaluate the methods
enhancing LLMs with KG. Previous methods
on KG-enhanced LLM for KGQA either en-
hance LLMs with KG retrieval in a single round
or perform multi-hop KG reasoning in multi-
ple rounds with LLMs. Both of them conduct
retrieving and reasoning based solely on the
whole original question, without any process-
ing to the question. To tackle this limitation,
we propose a framework of KG-enhanced LLM
based on question decomposition and atomic re-
trieval, called KELDaR. We introduce question
decomposition tree as the framework for LLM
reasoning. This approach extracts the implicit
information of reasoning steps within complex
questions, serving as a guide to facilitate atomic
retrieval on KG targeting the atomic-level sim-
ple questions at leaves of the tree. Additionally,
we design strategies for atomic retrieval, which
extract and retrieve question-relevant KG sub-
graphs to assist the few-shot LLM in answering
atomic-level questions. Experiments on KGQA
datasets demonstrate that our framework out-
performs existing reasoning-based baselines.
And in a low-cost setting without additional
training or fine-tuning, our framework achieves
competitive or superior results compared to
most existing training-based baselines.

1 Introduction

To tackle challenges such as interpretability and
hallucinations (Ji et al., 2023) in large language
models (LLMs), some studies (Zhang et al., 2022b;
Wang et al., 2023d) have sought to enhance LLM
reasoning using knowledge graphs (KGs). These
approaches offer domain-specific and real-time
knowledge, aiding LLMs in performing inter-
pretable reasoning and reducing hallucinations. In
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the evaluation of KG-enhanced LLM methods,
knowledge graph question answering (KGQA) is
an important task aiming to answer given questions
based on factual knowledge in KG.

Previous works on KG-enhanced LLM for
KGQA proposed retrieve-then-answer methods aid-
ing LLM with KG retrieval in a single round inter-
action between LLM and KG , as shown in Figure 1
(top left). They retrieve question-relevant KG facts,
which are then fed into the LLM all at once as ref-
erences for answer generating (Baek et al., 2023a;
Sen et al., 2023; Wu et al., 2023). However, these
methods rely heavily on the KG retrieval results,
using the LLM only as a tool for reasoning based
on the logic in retrieval results and extracting the fi-
nal answer from them. This limits the flexibility of
LLM in reasoning (Yang et al., 2023) and doesn’t
fully leverage its strengths in question reasoning.

To enable the LLLM to play a more active role
in reasoning, existing methods enable multi-round
LLM-KG interaction for LLMs to perform multi-
hop reasoning on KG, as shown in Figure 1 (bottom
left). Starting from the topic entities of the question,
they prompt the LLM to select the most relevant
next-hop relations or entities on KG. And iterate
this process until LLM determines that the chain
of entities and relations it traversed is sufficient to
answer the question (Jiang et al., 2023a; Sun et al.,
2024). However, these methods perform only one-
hop retrieval of relations and entities on KG during
each round of LLM-KG interaction, resulting in
low efficiency. Additionally, each hop’s retrieval is
based solely on the whole original question, with-
out making LL.M aware of the specific sub-question
that needs to be addressed at the current step for
more targeted selection.

The methods above on KG-enhanced LLM for
KGQA are all based on original questions without
analyzing their logic explicitly during reasoning
and KG retrieval. To tackle this limitation, we draw
inspiration from a work training small language
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models on explainable question answering (Zhang
et al., 2023), which integrate heterogeneous knowl-
edge sources and analyze the semantics of complex
questions with question decomposition tree. Our
idea is to introduce this structure into a framework
of KG-enhanced LLM. To realize our idea, we need
to tackle two key problems. First, we need to de-
sign a framework capable of performing question
decomposition and enabling atomic retrieval for
atomic-level questions. Second, considering the
shortcoming on efficiency in previous KG retrieval,
it’s also important to design the KG extracting and
retrieving strategy for atomic retrieval.

To this end, we propose a Framework of KG-
Enhanced LLM Based on Question Decomposition
and Atomic Retrieval (KELDaR). To excavate
the information of reasoning logic in questions,
we introduce the question decomposition tree as a
framework for LLM reasoning, which classifies the
questions according to their complexity and allows
complex questions to be decomposed into a tree for
multi-step reasoning, enabling atomic retrieval on
KG for corresponding sub-question of each reason-
ing step. To improve the efficiency of the atomic
retrieval, we further design efficient strategies for
extracting and retrieving question-relevant KG sub-
graph of facts, expanding the candidate subgraph
to a pruned two-hop range.

To evaluate the effectiveness of our framework,
we conducted experiments on two commonly used
KGQA datasets (Yih et al., 2016; Talmor and Be-
rant, 2018). Experimental results demonstrate that
our proposed framework significantly enhances the
reasoning performance of the LLM. Our framework
outperforms reasoning-based baselines without ad-
ditional training or fine-tuning like us, and even
achieves competitive or superior results compared
to most training-based baselines.

Our main contributions are as follows:

* We introduce the question decomposition tree
as a framework for LLM reasoning, enabling
atomic fact retrieval on KG for each reasoning
step.

* We design efficient strategies for atomic re-
trieval to extract and retrieve question-relevant
KG subgraph of facts, expanding the candi-
date subgraph to a pruned two-hop range.

* Experimental results demonstrate that our
framework effectively enhances the reason-
ing performance of LLMs in a low-cost set-
ting without additional training or fine-tuning.
Moreover, it outperforms existing state-of-the-

art reasoning-based baselines.

2 Related Work
2.1 LLM Prompting

To stimulate the reasoning capability of LLMs, var-
ious prompting strategies have been proposed. The
chain-of-thought (CoT) (Wei et al., 2022) is de-
signed to enable LLMs to reason more reliably and
interpretably. After this, some works (Yao et al.,
2023a; Besta et al., 2024) further introduced other
prompting structures to support LLM reasoning.
Others (Wang et al., 2023b; Zhou et al., 2023; Khot
et al., 2023) guide LLMs to generate plans to de-
compose tasks and solve them step-by-step. Addi-
tionally, some work (Wang et al., 2023c) improves
the greedy decoding strategy in CoT by sampling a
set of reasoning paths from the LLM and selecting
the most consistent answer. In order to tackle the
problem that LLMs often lack external knowledge
and exhibit hallucinations, some works (Yao et al.,
2023b; Wang et al., 2023a) combine LLM reason-
ing with external knowledge sources, gathering
additional information to mitigate the hallucination
and error propagation in CoT, thereby producing
accurate and reliable reasoning.

2.2 Knowledge Graph Question Answering
(KGQA)

Existing works on KGQA can be broadly cate-
gorized into two types: Semantic Parsing (SP)-
based methods and Information Retrieval (IR)-
based methods. SP-based methods (Sun et al.,
2020; Chen et al., 2021; Ye et al., 2022) first parse
the semantics of the input question to transform
it into a logical form (LF) such as SPARQL or S-
expression. Then execute LF on the KG to query
for the answer. To avoid the inability to obtain an
answer due to LFs that are not executable, DecAF
(Yu et al., 2023) combines the direct answer from
LLM to generate the final answer. IR-based meth-
ods retrieve question-relevant facts from the KG,
and then reason to answer the question according to
the retrieved facts. Early works (Miller et al., 2016;
Sun et al., 2018, 2019; He et al., 2021) utilize struc-
tures like key-value memory network and graph
neural network (GNN) to encode the knowledge
in KG and perform KG reasoning and retrieval.
Some works (Shi et al., 2021; Zhang et al., 2022a;
Jiang et al., 2023c,b) leverage pretrained language
models (PLMs) for tasks such as question encod-
ing, KG relation retrieval, and semantic matching
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Retrieve-then-Answer

Question: From which college did the writer of "She's Everything" graduate?

< Unnamed > < education.education.institution > < Belmont University >
< Brad Paisley > < music.composer.compositions > < She's Everything >

< Brad Paisley > < people.person.education > < Unnamed >

Question Answer: Unnamed ><

’Multi-Round LLM-KG Interaction ‘

Question: From which college did the writer of "She's Everything" graduate?

prompt 1 KG _ < She's Everything > < music.composition.composer >
Question KG _ < She's Everything > < music.composition.composer >
prompt 2 < Brad Paisley >
Question

Need more information.
prompt 3 ¢

< She's Everything > < music.composition.composer

Question KG _ > < Brad Paisley >
prompt 1

< Unnamed > < education.education.degree>
< She's Everything > < music.composition.composer
Question @ kG > <Brad Paisley >
—>
prompt 2

< Unnamed > < education.education.degree > <

Bachelor's degree >
Question Can't determine the college's name. It's only
@ I—> mentioned that someone holds a Bachelor's ><
LIRS degree.

Question Complexity Classifier

few-shot prompt 1

Sub-question 1: Who is the writer of

Simple Question Processor

Relevant Fact Searcher KG

< Brad Paisley >
< music.composer.compositions >
< She's Everything >

KELDaR

Question: From which college did the writer of "She's Everything" graduate?

Question Complex Question Processor

Complex > @ -«— few-shot prompt 2

Sub-question 2: From which college did [#1]

"She's Everything"? graduate? i T
Question Complexity Classifier Question Complexity Classffier
few-shot prompt 1 @ Simple few-shot prompt 1 @ Simple

v

Simple Question Processor

Relevant Fact Searcher ~ KG

Sub-question 1 —» Sub-question 2 —>|

< Brad Paisley > < people.person.education >
< education.education.institution >

< Belmont University >

Sub-question 1 @ <« few-shot Sub-question 2 47 few-shot prompt 3
prompt 3 +
Brad Paisley ———— Belmont L‘vaerslty
Sub-question 1 @ | <— Sub-question 2
Question «— few-shot prompt 4

Answer: Belmont University‘ '\/

Figure 1: Overview of previous methods and our proposed framework KELDaR.

between questions and relations, aiding in infor-
mation retrieval and question reasoning. With the
advancement of LLMs, recent works utilize LLMs
for KG retrieval and subsequent reasoning. Struct-
GPT (Jiang et al., 2023a) and ToG (Sun et al., 2024)
design LLM-based methods for entity and relation
retrieval on KG, and continue to invoke LLLM for
reasoning based on retrieval results. Answers to
the questions are obtained through the retrieving
and reasoning process iteratively. RoG (LUO et al.,
2024) employs the LLM to generate KG relation
chains as reasoning plans, which are then used for
KG retrieval, followed by LLM-based reasoning to
generate answers based on retrieval results.

3 Preliminary

Knowledge Graph (KG) can be formalized as a
collection of factual triples composed of entities
and relations, represented as G = {(ep, 7, e;)} C
E x R x &, where e;,, r, and e; denote the head
entity, relation, and tail entity respectively; £ and
‘R denote the sets of all entities and relations in KG
respectively.

Knowledge Graph Question Answering
(KGQA) is a task that involves answering specific
questions based on factual information from a
KG. Given a question ¢ and a KG G, topic entity
t? € T17 can be extracted from the question g,

[Task description and requirements]

Question: [question of sample 1]
(Other items)
Answer: [answer of sample 1]

Question: [question to be processed]
(Other items)
Answer:

Figure 2: Illustration of the few-shot prompts for LLM
in our proposed framework. The part enclosed by “()”
is optional.

and golden answers to the question is A? = {a?}.
Both topic entities and golden answers correspond
to entities in KG, i.e., T, A? C £. The goal of
KGQA is to design a model f that predicts the an-
swer a? to the question ¢ based on the knowledge
in the KG G, formulated as a? = f(q,G).

4 Method

4.1 Overview

Our framework first employs the Question Com-
plexity Classifier (see Section 4.2) to classify the
complexity of input questions. For complex ques-
tions, the framework uses Complex Question Pro-
cessor (see Section 4.3) to decompose them and
solve the sub-questions with our framework itera-
tively, then integrate them to answer the original
question. For simple questions, it directly infers
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the answer using the Simple Question Processor
(see Section 4.4) with the assistance of the Rel-
evant Fact Searcher (see Section 4.5) retrieving
relevant KG facts. The detailed framework work-
flow is presented in Algorithm 1. Figure 1 (right)
illustrates an example of how our framework pro-
cesses a complex question. The structure of the
few-shot prompts for LLM in our framework is
shown in Figure 2, where the content at “Other
items” is determined according to the needs of dif-
ferent modules.

4.2 Question Complexity Classifier

The Question Complexity Classifier determines the
complexity of the input question g and categorizes
it into a question type c?, formalized as:

¢! = Classifier(q), (D

where ¢? € {Simple, Complex}. The backbone of
Classifier is a few-shot prompted LLM. It gener-
ates a determination of either Simple or Complex,
which directs the question to different subsequent
modules for further processing. See Appendix
A.2 for why we choose to implement Classifier
by prompting LLM.

The “Answer” of each sample question in the
prompt is its class annotated manually, which is
guided by the SPARQL provided in the dataset and
our own understanding of the question’s semantics.
The specific classification criteria are: if the ques-
tion involves the logic of composition thus requires
multi-step reasoning, it’s complex. Otherwise, if
it doesn’t involve composition structures and only
needs single-step reasoning, it’s simple.

4.3 Complex Question Processor

We formalize the Complex Question Processor as:
a? = CompQProcessor(q, G), 2)

where ¢ is the input complex question, G is the KG,
and the derived answer is a?. This module is de-
signed to process questions classified as Complex
by the Question Complexity Classifier and involves
three steps: decomposition, handling, and integra-
tion.

Complex Question Decomposition In this part,
the input problem ¢ is decomposed into a series
of sub-questions Sq? using multi-step reasoning,
which can be formalized as:

Sq? = Decomposer(q). 3)

Sq? = [sq], ..., sq}], where sq] denotes the sub-
question of the i-th reasoning step and [ is the
length of Sq?. The backbone of Decomposer is
a few-shot prompted LLLM, which develops a multi-
step reasoning plan for the given complex question
in the form of sub-questions.

The “Answer” of each sample in the prompt
is a sequence of sub-questions crafted manu-
ally. Each sub-question i conforms to sq! =<
W1 ey Wgqt| > in which w, € W U L;. Here, W
represents the set of English words and punctua-
tions; £; = {[#j1|1 < j <i,j € Z}, where [#j]
refers to the answer tag of previous sub-question j.
Sub-questions Handling Obtaining a series of
sub-questions, they should be answered sequen-
tially since the reasoning steps are ordered, which
is formalized as:

sq(f - Sq({a
asq{ll — KELDaR(S/;(f; g>7
5?% = replace(sql, Sal,),

a*® = KELDaR(s¢%, G), @

sq] = replace(sq}, Sal,),

a*ll = KELDaR (sq!, G),
where Sa? = [a*1, ..., a%%], representing the list
of answers to sub-questions. [ is the length of sub-
question list.

Since the sub-question might depend on an-
swers to previous sub-questions, it needs to be pre-
processed with the function replace. It replaces
each tag [#k] in sub-question sg with correspond-
ing answer a®dk in answers Sa‘ii to previous sub-
questions, yielding a comprehensible natural lan-
guage question sq;. It is then fed to our framework
KELDaR as a new question to infer its answer asdi
Sub-questions Integration In this part, we inte-
grate all sub-questions and their answers to infer

the answer a? to the original complex question q.
This process can be formalized as:

a? = Integrator(q, 55‘/1, Sa?), 5)
where the list of sub-questions is 556 =

[sqf, ..., sq}] and a corresponding list of answers

is Sa? = [a*,..,a®]. [ is the length of
sub-question list. Integrator adopts a few-shot
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prompted LLM as its backbone, whose prompt
contains samples of “question - sub-questions and
answers - reasoning process and results”. Given
the sub-QAs for a new question, LLM constructs
the reasoning chain and generates the answer a? to
the original complex question.

We find that there are inevitably some problems
with the results generated by the Decomposer and
sub-question handling. To avoid the bad effects
to our framework caused by the error propagation
through two previous steps, we design several ex-
amples in the LLM prompt of this part to handle
these errors, guiding LLM to select useful refer-
ences and combine its own knowledge when neces-
sary to complete the reasoning.

4.4 Simple Question Processor

This module is designed to handle questions classi-
fied as Simple by the Question Complexity Classi-
fier. It can be formalized as:

a? = SimpQProcessor(q, G), 6)

where ¢ is the input simple question, G is the KG,
and a? is the derived answer. For input questions,
this module first invokes the Relevant Fact Searcher
(see Section 4.5) to retrieve a set of relevant facts
Ref? from the KG. These facts serve as references
to aid reasoning, formalized as:

a? = Answerer(q, Ref?). @)

The backbone of Answerer is a few-shot prompted
LLM whose prompt contains samples of “question
- relevant KG facts - reasoning process and answer”.
For new questions, LLM generates a single-step
reasoning process and the answer a? based on the
provided relevant facts.

To deal with cases that facts retrieved by the
Searcher are insufficient to infer the answer, we in-
clude several examples in the LLM prompt with im-
perfect results of Searcher. These examples guide
the LLM to assess the usability of the reference
facts and, when necessary, draw on LLM’s own
knowledge to complete reasoning.

4.5 Relevant Fact Searcher

The Relevant Fact Searcher queries the KG G for
facts relevant to the input question ¢ to provide
reference knowledge for the Simple Question Pro-
cessor. It can be formalized as:

Ref? = Searcher(q, G), (8)

1%-hop entity 15t-hop relation

prune .
top-n 15thop relation | 1°-op entity
—

prune . -
top-m 15thop relation 1°-NOP entity  ond_hop relation
/]

prune

m :
top-p 2"%-hop relation 2™-hop entity
e —

Candidates:
topic entity [SEP] 15Lhop relation [SEP] 15t-hop entity
15Lhop entity [SEP] 15thop relation [SEP] topic entity

topic entity [SEP] 15Lhop relation [SEP] 2"%-hop relation [SEP] 2"%-hop entity
2"d_hop entity [SEP] 2"9-hop relation [SEP] 1t-hop relation [SEP] topic entity

Figure 3: Illustration of two strategies of extracting can-
didate subgraph of facts. The triple/quadruple-based
strategy can be represented by all parts of the figure, re-
sulting in candidates of triples and quadruples with first
and second-hop entities. The relation-based strategy
can be represented by the remaining parts of the figure
excluding the | greyed-out areas , leading to candidates
that don’t include first and second-hop entities.

where Ref? represents the set of retrieved facts.
Searcher operates in three steps: topic entity extrac-
tion, candidate subgraph extraction, and relevant
fact retrieval.

Topic Entity Extraction To a single question, the
majority of the data in KG is irrelevant. They intro-
duce noise into KG retrieval and increase its time
and space cost, interfering with the retrieval and
subsequent reasoning (Ding et al., 2024). There-
fore, we first extract topic entities of question g as
the source of candidate subgraph extraction from
the extensive KG, which is formalized as:

T = TopicExtractor(q), )

where 77 = {t?} C & is the extracted topic entity
set, with each entity corresponds to one of KG
entities £.

We implement two methods for topic entity ex-
traction depending on whether golden topics are
used. For method not using golden topics, we
employ existing entity linker for extraction. For
method using golden topics, we extract all entity
IDs from the SPARQL annotated in the dataset as
the golden topic set. Considering that this golden
set doesn’t cover intermediate entities in multi-step
reasoning for complex questions, the topics of sub-
questions may not be included. So we further com-
bine results of entity linker with the golden set.
Candidate Subgraph Extraction  Based on
the topic entities, this part focuses on extracting
a subgraph from the KG, which contains question-
relevant facts and should be as small as possible,
serving as the set of candidate facts. This part can

11476



be formalized as:

Cand? = CandExtractor(q, T, G), (10)

where C'and? is the set of candidate facts extracted
from the KG neighborhoods of topic entities 79.

We designed two fact extraction strategies for
different retrieval objects: triple/quadruple-based
and relation-based. Both strategies extract relations
and entities within a two-hop range of the topic
entities, for reasons discussed in Appendix A.3.

The triple/quadruple-based extraction strategy
is illustrated in Figure 3. From the topic entity
t4, we prune first and second-hop relations in KG
according to their relevance to question q. Note
that only for the first-hop entities without natural
language names, we further extract the second-hop.
With the format of triple/quadruple in Figure 3, we
construct the two-hop pruned relations and entities
to form the candidates Candy,. By merging the
candidates extracted for each topic entity, we obtain
the candidate subgraph in the form of a fact list,
denoted as Cand? = UCand},,Vt? € T1.

The relation-based extraction strategy focuses
more on relations, illustrated by parts excluding the
greyed-out areas in Figure 3, which doesn’t include
first and second-hop entities in the extracted facts.
The rest of the extraction process follows similar
steps as the triple/quadruple-based strategy.
Relevant Fact Retrieval From the candidate
facts Cand?, we further retrieve a few facts that
are most relevant to the input question ¢, providing
precise references for LLM’s reasoning. We follow
the method of “retrieval-then-reranking” proposed
by Baek et al. (2023b). With a retriever and a
reranker, we retain the top K,; and K, relevant
facts to question ¢ respectively, as represented in
equations (11).

Res? = Retriever(q, Cand?, K,4),

11
Ref9 = Reranker(q, Res?, K;). (1)

The retrieval results Ref? = {ref{,...,ref} }
are used as references for further reasoning.

For the relation-based retrieval, it’s necessary
to complement each retrieved fact with the corre-
sponding first or second-hop entities to construct a
complete reference fact.

5 Experiments

5.1 Datasets and KG

To evaluate the performance of KELDaR, we em-
ployed two commonly used KGQA datasets: We-

Dataset Train  Test
WebQSP 3098 1639
CWQ 27639 3531

Table 1: Statistics of example distribution in the experi-
mental datasets.

bQuestionsSP (WebQSP) (Yih et al., 2016) and
ComplexWebQuestions (CWQ) (Talmor and Be-
rant, 2018). In WebQSP and CWQ, each question
is annotated with a SPARQL, which can be exe-
cuted on KG to query for its golden answers. We-
bQSP contains 4,737 QA pairs. CWQ is built on
top of WebQSP by making the original questions
more complex through methods such as expanding
the entities in original questions into sub-questions
and adding constraints to the answers of original
questions. This results in 34,689 QA pairs of four
combination types: composition, conjunction, com-
parative, and superlative. The statistics of the num-
ber of examples in the training and test sets of both
datasets are shown in Table 1.

Both datasets are based on Freebase KG (Bol-
lacker et al., 2008). We use the Freebase pre-
processed with the method in Lan and Jiang (2020)
for all experiments. This method only extracts
triples with entities in Freebase ID, English text, or
numeric format from the complete Freebase.

5.2 Baselines and Our Frameworks

For baselines, training-based methods optimize
the proposed models on specific downstream train-
ing data by fine-tuning or training PLMs, LLMs,
or retrievers. We select KV-Mem (Miller et al.,
2016), GraftNet (Sun et al., 2018), PullNet (Sun
et al., 2019), EmbedKGQA (Saxena et al., 2020),
TransferNet (Shi et al., 2021), NSM (He et al.,
2021), KGT5 (Saxena et al., 2022), SR+NSM+E2E
(Zhang et al., 2022a), TIARA (Shu et al., 2022),
KD-CoT (Wang et al., 2023a), UniKGQA (Jiang
et al., 2023c), ReasoninglLM (Jiang et al., 2023b),
DecAF (Yu et al., 2023) and RoG (LUO et al.,
2024). Reasoning-based methods directly uti-
lize existing models including LLMs without any
additional training or fine-tuning. We select 10
(Brown et al., 2020), CoT (Wei et al., 2022),
CoT+SC (Wang et al., 2023c), StructGPT (Jiang
et al., 2023a), KB-BINDER (Li et al., 2023) and
ToG (Sun et al., 2024).

According to our two proposed fact extraction
and retrieval strategies, and whether to use golden
topics, our framework is evaluated under four
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settings. KELDaR and KELDaR* employ the
triple/quadruple-based strategy, while KELDaR-
rel and KELDaR-rel* utilize the relation-based
strategy. * indicates the usage of golden topics.

5.3 Evaluation Metric

Following previous work (Wang et al., 2023a; Jiang
et al., 2023a; Li et al., 2023; Sun et al., 2024),
we employs Exact Match (EM) as the evaluation
metric in our experiments.

Considering that it’s challenging to locate the
answer entities precisely in LLM’s outputs when it
isn’t marked explicitly with “{}” as expected, we
adopt the evaluation method in Sun et al. (2024). If
LLM’s output contains complete answer markers,
we extract the answer directly and match it with the
golden answer. Otherwise, the entire LLM output
is considered as the searching scope. We regard the
result as correct if it contains the golden answer.

5.4 Implementation Details

In the main experiments, we utilize gpt-3.5-turbo
API (OpenAl, 2022) as the LLM in our proposed
framework, with the temperature set to the default
value of 1.0, and the maximum token length for
generation set to 100. The numbers of samples in
few-shot prompts is as follows: 20 samples each
for simple and complex questions in Question Com-
plexity Classifier, 6 for Decomposer and 10 for In-
tegrator in Complex Question Processor, and 4 for
Simple Question Processor. Additionally, to keep
consistency with our framework’s settings, the im-
plementation of 10, CoT, and CoT+SC prompting
strategies in main experiments all utilize the gpt-
3.5-turbo API as the LLM and employ 4 shots.

In Relevant Fact Searcher, we employed ELQ
(Li et al., 2020) as the entity linker, distilbert! as
the retriever, and MiniLM? as the reranker. The
number of facts K, retained by the retriever is set
to 20, while the number of facts K., retained by
the reranker is set to 5 by default.

For the maximum question decomposition depth
in our framework, we set it to 1. For further imple-
mentation details, please refer to Appendix B.

5.5 Main Results

The main results of our experiments are shown in
Table 2. Compared to other reasoning-based meth-

'https://huggingface.co/sentence-transformers/msmarco-
distilbert-base-v3

Zhttps://huggingface.co/cross-encoder/ms-marco-
MiniLM-L-12-v2

Types Methods WebQSP CWQ
KV-Mem 46.7 18.4
GraftNet 66.4 36.8
PullNet 68.1 459
EmbedKGQA* 66.6 -
TransferNet 71.4 48.6
NSM* 74.3 48.8
Training-  KGT5* 56.1 36.5
based SR+NSM+E2E* 69.5 49.3
TIARA* 75.2 -
KD-CoT 68.6 55.7
UniKGQA* 77.2 51.2
ReasoningLM* 78.5 69.0
DecAF 82.1 70.4
RoG* 85.7 62.6
StructGPT* 72.6 -
KB-BINDER 74.4 -
ToG* § 63.2 29.2
10§ 64.8 344
Reasoning- CoT f 70.3 40.2
based CoT+SC t 71.4 41.6
KELDaR 75.5 41.9
KELDaR* 76.0 50.7
KELDaR-rel 76.7 442
KELDaR-rel* 79.4 53.6

Table 2: Main results (EM in percent) of our frame-
works and baselines on KGQA. * indicates the usage of
the golden topics. | indicates the results obtained by re-
producing the methods. § indicates the results obtained
by running the source code provided by the work on the
LLM used in our study. The best results in each type
are in bold and second-best results are underlined.

ods, our proposed frameworks in all four settings
show significant improvements over both the 10
prompting method, representing the original few-
shot performance of GPT-3.5, and the previous
state-of-the-art reasoning-based methods. Specif-
ically, on WebQSP and CWQ, KELDaR-rel* im-
proves accuracy by 14.6% and 19.2% respectively
compared to the 10 method, and by 5.0% and
12.0% compared to previous best reasoning-based
methods. These results demonstrate that our pro-
posed framework can effectively leverage the KG
to enhance LLM’s reasoning significantly, outper-
forming the state-of-the-art reasoning-based results.
Particularly for the more challenging complex QA
in CWQ, our framework mitigates the limitations
of existing reasoning-based methods effectively.

Compared to most training-based methods, our
framework achieves similar or superior perfor-
mance without requiring additional training or fine-
tuning. We directly invokes frozen models of LLM,
entity linker, retriever and reranker for reasoning.
This indicates that our framework is practical and
competitive on KGQA, saving additional costs as-
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Figure 4: Experimental results on strategies of fact extraction and retrieval on KG. 1-hop and 2-hop indicate the
triple/quadruple-based fact extraction and retrieval strategies with candidate extraction ranges of 1 hop and 2 hops
respectively on KG. 1-hop-rel and 2-hop-rel indicate the relation-based strategies. EM-R represents the accuracy
of the fact retrieval in the framework. LLM-Input-Len is the average length of LLM input tokens for all questions.

Methods WebQSP CWQ
KELDaR 75.5 41.9
w/o CQP 75.0 40.9
KELDaR* 76.0 50.7
w/o CQP 72.3 46.8
KELDaR-rel 76.6 44.2
w/o CQP 77.9 39.0
KELDaR-rel* 79.4 53.6
w/o CQP 79.1 47.2

Table 3: Ablation study results (EM in percent) on the
strategy for complex question processing (CQP). The
better results in each setting of our methods are in bold.

sociated with training and fine-tuning while still
providing robust performance.

In order to see how our method works on differ-
ent LLMs, we further conduct experiments with
GPT-4 (see Appendix C).

5.6 Further Analysis

5.6.1 Analysis on the strategy of complex
question processing

To analyze the impact of our complex question
processing (CQP) strategy, we conduct an ablation
study by removing the Complex Question Proces-
sor and fixing the output of Question Complexity
Classifier to Simple. The performance of this mod-
ified framework is compared to our original frame-
work. Results are presented in Table 3. Our CQP
strategy improves the framework’s performance
generally, demonstrating its positive impact.
Considering that most questions are complex in
CWQ while are simple in WebQSP, our strategy
is naturally more suited for CWQ, confirmed by
the results on CWQ in Table 3. For questions in
WebQSP, they could sometimes be misclassified
as complex by the Question Complexity Classifier,
leading to redundant subsequent steps and addi-

tional errors. That’s why the KELDaR-rel without
CQP performs better on WebQSP. But in other
three cases on WebQSP, the strategy has a positive
effect. This shows the robustness of our frame-
work in reducing the impact of Classifier’s error,
ensuring that our CQP strategy enhances the perfor-
mance on complex questions while having minimal
negative impact on simple QA.

5.6.2 Analysis on strategies of fact extraction
and retrieval on KG

To reduce the impact of accuracy in topic entity
extraction, we conducted experiments using the
golden topics, in order to analyze the influence of
our fact extraction and retrieval strategies.

As shown in Figures 4 (left and center), our
proposed two-hop fact extraction strategies signif-
icantly outperforms the one-hop settings in both
triple/quadruple-based and relation-based settings.
This leads to a great increase in the accuracy of
retrieving relevant facts, providing more valuable
references for subsequent reasoning and enhancing
the overall performance effectively. These findings
manifest the critical importance of the extraction
strategies in our frameworks.

Comparing two fact extraction and retrieval
strategies we designed, the results in Figure 4 illus-
trate that the relation-based strategy, compared to
the triple/quadruple-based strategy, requires longer
LLM prompts but achieves better retrieval and over-
all performance. The relation-based strategy can
contain more entities in references, resulting in
longer LLM prompts to provide richer contextual
information for the reasoning.

5.6.3 Analysis on effects of varying number
K, of references

When answering simple questions, the number
of references provided in the LLM prompt corre-
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Figure 5: Experimental results under different number
of references. EM-R represents the accuracy of the fact
retrieval in the framework.

sponds to the number of facts retained after rerank-
ing in Relevant Fact Searcher. The results for dif-
ferent values of this parameter are shown in Figure
5. As the number of references increases, there is
a steady rise in the accuracy of fact retrieval nat-
urally. However, this does not necessarily lead to
an improvement in overall accuracy, indicating that
the additional correct references are not utilized by
the LLM effectively and may even cause a decline
in overall performance in some cases.

We suspect that this phenomenon can be at-
tributed to the generative nature of the gpt-3.5-
turbo used in the experiments. As the length of
references for new question in the prompt increases,
the distance between previous QA examples and
the end of prompt also increases, which may cause
LLM to forget patterns learned from examples on
how to infer the answers to the questions based
on references. Consequently, this leads to a nega-
tive impact on LLM’s ability to answer the given
question effectively.

5.6.4 Analysis on the Reasoning Time of Our
Method

The reasoning time of our framework primarily de-
pends on the time cost of the KG Relevant Fact
Searcher and the number of LLM calls. Assuming
that on average each complex question is decom-
posed into k sub-questions. In our experiments, ap-
proximately 20.5% and 96.3% of the questions in
WebQSP and CWQ, respectively, are classified to
be complex. The average number of sub-questions
k for these complex questions was approximately
2.03 and 2.37 in WebQSP and CWQ), respectively.
And we set the maximum depth D of the decom-
position to 1 in our experiments, meaning each
question is decomposed at most once, consider-

ing the limited complexity of questions in the two
datasets.

Time Cost of Relevant Fact Searcher We found
that in our experiments, each call to the Relevant
Fact Searcher costs 27.3s on average. However,
about 80% of the calls took less than 20s, with
the remaining calls taking longer due to the larger
number of relations and entities within two hops of
the topic entity in the KG. For a complex question,
each sub-question resulting from decomposition
requires one call to the Searcher to retrieve KG
facts, resulting in & calls in total. And a simple
question requires only one call to the searcher.
Number of LLM Calls For complex questions,
the LLM is first called once in the Question Com-
plexity Classifier. Then, for solving each sub-
question, the LLLM is called once in both the Classi-
fier and the Simple Question Processor, requiring a
total of 2k LLM calls for all sub-questions. Finally,
integrating the sub-questions and their answers to
derive the original question’s answer requires one
more LLM call. Thus, complex questions require
2k 42 LLM calls in total. Simple questions require
only two LLM calls, one in the Classifier and one
in the Simple Question Processor.

Our method does not require training and em-
ploys multithreading to reduce reasoning time. To
complete the reasoning for 1639 questions in We-
bQSP and 3531 questions in CWQ, our framework
took 2.83h and 14.82h, respectively. The longer
time on CWQ is mainly due to the larger number
of questions and their higher complexity compared
to WebQSP.

6 Conclusion

This study introduces a framework of KG-
enhanced LLM based on question decomposition
and atomic retrieval, called KELDaR. We introduce
the question decomposition tree as a framework for
LLM reasoning, which allows atomic KG retrieval
targeting each reasoning step. Additionally, we
designed strategies of atomic retrieval to extract
and retrieve question-relevant KG facts, expanding
the range of candidate subgraph to two hops. Ex-
perimental results demonstrate that our proposed
framework significantly outperforms the state-of-
the-art reasoning-based methods.

Limitations

Although our proposed framework KELDaR
demonstrates excellent performance in KGQA
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datasets, it still has some limitations. First, the per-
formance of our framework varies across different
composition types of complex questions, particu-
larly struggling with superlative questions. Future
work could explore new question decomposition
strategies to improve the decomposition paradigms
for these challenging types. Second, it’s also re-
quired to investigate more controllable methods
on complex question decomposition than that in
our framework, aiming to make the sub-questions
generated by the Decomposer more reliable. Ad-
ditionally, due to the high cost of the GPT-4 API,
we hasn’t conduct complete experiments on GPT-4.
Thus, broader experiments are required to evaluate
the applicability of our framework with GPT-4 and
other LLMs.

Ethics Statement

Our proposed framework KELDaR perform ques-
tion answering with LLM reasoning and KG re-
trieval, achieving excellent performance. However,
its question answering and reasoning capabilities
are still not perfect, and it may make mistakes in
KG retrieving by retrievers and answer generat-
ing by the LLM. Consequently, as for domains
with high precision requirements, the results of our
framework should be used carefully, in order to
avoid the risk of adverse consequences. It is re-
quired to further verify the results generated by the
framework to correct the errors for application in
areas that need high precision.
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A Additional Details and Discussions of
Our Method

A.1 Algorithm of Our Proposed Framework
KELDaR

The algorithm of our proposed framework KEL-
DaR is shown in Algorithm 1.

Algorithm 1 KELDaR

Input: question ¢, KG G, maximum depth D of
question decomposition
Output: answer entity a?
1: depth < 0
2: a? <~ KELDAR(q, G, D, depth)

4: function KELDAR(q, G, D, depth)

5 c? <~ CLASSIFIER(q)

6: if ¢? = “Simple” OR depth = D then
7 Ref? + SEARCHER(q, G)

8 a? < ANSWERER(q, Ref9)

9

: else
10: Sq? + DECOMPOSER(q)
11: if len(Sq?) = 0 then
12: Ref? +— SEARCHER(q, G)
13: a? < ANSWERER(q, Ref?)
14: else
15: Sq? + []
16: Sa? + H
17: fori =0 — len(Sq¢?) — 1 do
18: sql <+ Sq?[i]
19: sq} < replace(sq}, Sal,)
20: @.append(sqg)
21 . ast! — KEL-
DAR(sq}, G, D, depth + 1)
22: Saq.append(asq?)
23: end for -
24: a? < INTEGRATOR(q, 5S¢, Sa?)
25: end if
26: end if
27: return o

28: end function

A.2 Selection of the Implementation Method
for the Question Complexity Classifier

We choose to implement the Question Complexity
Classifier by prompting LLM, because the classi-
fication task in our Classifier is not suitable to be
completed through training a simple classifier. It
is difficult to obtain labeled training data for this
task. This task is used to determine the complexity
of a question, with the criterion being whether the
input question can be resolved through single-step
or multi-step reasoning. This task requires classi-
fication based on the understanding and analyzing
of the question’s semantics, and does not exactly
correspond to the single/multi-hop question classifi-
cation standard and results. This is because “single-
step” reasoning can correspond to either single-hop
or multi-hop in a KG. For example, the questions
“What do Jamaican people speak?” and “Who was
Richard Nixon married to?” are both semantically
understood as simple questions that can be resolved
through single-step reasoning. However, the former
corresponds to a single-hop fact in the KG, while
the latter corresponds to a two-hop fact. There-
fore, it is not feasible to label the complexity we
need based on the single/multi-hop attribute of each
question. Consequently, it is difficult to provide
accurate “complexity” labels for each question as
training data for the first step classification task.
Hence, this classification step cannot be effectively
completed by training a simple classifier, and we
opted to use a prompted LLLM instead.

A.3 Selection of the Fact Extraction Range in
KG

In the Relevant Fact Searcher, we designed two
strategies for extracting subgraphs of facts, with
the extraction range set within two hops from the
topic entity. This is because the questions to whom
the Searcher provides reference facts are those clas-
sified as simple questions, which can be solved
through one-step reasoning. The facts within two
hops from the topic entity in the KG typically suf-
fice to provide the necessary reference knowledge
for such one-step reasoning questions.
Additionally, the reason for not extracting just
one-hop facts lies in the presence of compound
value type (CVT) entities in the KG used in
this study. CVTs are used to represent n-ary re-
lations in KG and don’t have natural language
names. Some one-step reasoning questions re-
quire traversing a CVT to reach the answer, ne-
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cessitating an additional hop. For instance, as il-
lustrated in Figure 6, the KG doesn’t directly con-
nect “Richard Nixon” and “Pat Nixon” through
a spouse relation. Instead, it requires traversing
two relations, “people.person.spouse_s” and “peo-
ple.marriage.spouse”, via a CVT to arrive at the
answer. Therefore, to ensure that the reference
facts necessary for simple questions are included in
the candidate subgraph, we need to extract at least
two-hop facts from the topic entity.

Question: Who was Richard Nixon married to?
Answer: Pat Nixon

Figure 6: An example of the Compound Value Type
(CVT) in KG.

B Additional Implementation Details of
Experiments

For the entity linker ELQ (Li et al., 2020) used in
our experiments, we set its threshold to -5 follow-
ing the settings in Ye et al. (2022). In the candidate
extraction step of the Searcher, we utilize distilbert
as the retriever for the relation pruning based on its
similarity with the question. During the pruning
process, we retain n = 10 first-hop relations for
candidate extraction, where m =5 of them are used
to continue the search for second-hop. The max-
imum number of entities linked to each first-hop
relation for second-hop search was limited to 200.
If it exceeds 200, we randomly select 200 entities.
When pruning second-hop relations, we retained
p = 5 relations. For the relation-based extraction
and retrieval strategy, after reranking, when query-
ing first-hop or second-hop entities based on the
topic entities and relations in obtained facts, we
set the maximum entity count to 20. If the length
of the query result exceeded 20, we randomly se-
lect 20 entities while prioritizing those with natural
language names, to control the length of the subse-
quent prompts provided to the LLM.

For the maximum question decomposition depth
in our framework, we set it to 1. This decision was
made based on the complexity of the questions in
the two KGQA datasets used in our experiments.
The questions in these datasets may involve up to

Methods WebQSP CWQ
10 w/ GPT-3.5 64.8 344
10 w/ GPT-4 67.0 43.7
KELDaR-rel w/ GPT-3.5 76.7 44.2
KELDaR-rel* w/ GPT-3.5 79.4 53.6
KELDaR-rel w/ GPT-4 82.0 51.3
KELDaR-rel* w/ GPT-4 84.7 63.0

Table 4: Performance (EM in percent) of 10 prompting
method and our framework KELDaR-rel on different
LLMs. * indicates the usage of the golden topics.

4-hops reasoning on KG, but there are compound
value types (CVTs) in Freebase, and each reason-
ing step in our framework can go through CVTs
and reference two hops in the KG. According to the
decomposition trees corresponding to the SPARQL
annotations in the datasets, complex questions in
the datasets are all able to be decomposed into a
series of simple questions through one decompo-
sition step. Therefore, to avoid wasting resources,
we set the maximum question decomposition depth
D to 1, indicating that complex questions can be
decomposed at most once.

C Additional Experimental Results on
GPT-4

In order to examine the effectiveness of our method
on different LLMs, we conduct additional experi-
ments using GPT-4 (gpt-4-turbo) (OpenAl, 2023).
Due to the high cost of the GPT-4 API, we ran-
domly selected 300 examples from each of the two
datasets. And the experiments are conducted us-
ing both the IO prompt, representing the original
few-shot performance of GPT-4, and our KELDaR-
rel with the relation-based strategy. The results
are shown in Table 4, which demonstrate that our
framework achieves better performance on the su-
perior GPT-4 model.

Moreover, by comparing with the performance
of KELDaR-rel on GPT-3.5, we observe that even
with the less powerful GPT-3.5, our KELDaR-rel
outperforms the IO prompting method with the
more powerful GPT-4. This further highlights the
effectiveness of our framework in enhancing the
performance of LLMs.
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