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Abstract

In visual speech processing, context modeling
capability is one of the most important require-
ments due to the ambiguous nature of lip move-
ments. For example, homophenes, words that
share identical lip movements but produce dif-
ferent sounds, can be distinguished by consid-
ering the context. In this paper, we propose a
novel framework, namely Visual Speech Pro-
cessing incorporated with LLMs (VSP-LLM),
to maximize the context modeling ability by
bringing the overwhelming power of LLMs.
Specifically, VSP-LLM is designed to perform
multi-tasks of visual speech recognition and
translation, where the given instructions con-
trol the type of task. The input video is mapped
to the input latent space of an LLM by em-
ploying a self-supervised visual speech model.
Focused on the fact that there is redundant in-
formation in input frames, we propose a novel
deduplication method that reduces the embed-
ded visual features by employing visual speech
units. Through the proposed deduplication and
low rank adaptation, VSP-LLM can be trained
in a computationally efficient manner. In the
translation dataset, the MuAViC benchmark,
we demonstrate that VSP-LLM trained on just
30 hours of labeled data can more effectively
translate compared to the recent model trained
with 433 hours of data. Code is available in
https://github.com/Sally-SH/VSP-LLM

1 Introduction

Along with audio, visual speech (e.g., lip move-
ments) plays a critical role in human communica-
tion. With the increasing acknowledgment of the
importance of visual speech, a diverse range of
visual-based speech processing technologies (As-
sael et al., 2016; Petridis and Pantic, 2016; Chung
and Zisserman, 2017a; Ma et al., 2021a, 2022b;
Yemini et al., 2024) is emerging. For instance, Vi-
sual Speech Recognition (VSR) (Kim et al., 2021;
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Ma et al., 2022a; Yeo et al., 2023a) allows for the
identification of spoken words through the observa-
tion of lip movements alone, without the need for
audio access. Most recently, the exploration has be-
gun into Visual Speech Translation (VST) (Cheng
et al., 2023), which directly generates translated
text in the target language from the input lip move-
ments of the source language.

One key challenge in visual speech process-
ing is to distinguish homophenes (Kim et al.,
2022). Homophenes refer to the words having
different sounds but showing the same lip move-
ments. Therefore, a crucial aspect of developing
visual speech processing systems is in the mod-
eling of context so that the same lip movements
can be mapped into correct different pronuncia-
tions (that is distinguishing homophenes). Re-
cently, Large Language Models (LLMs) (Zhang
et al., 2022a; Brown et al., 2020; Workshop et al.,
2022) are attracting significant attention across var-
ious fields (Han et al., 2023; Wu et al., 2023b;
Fathullah et al., 2023), thanks to their versatility
and strong ability to model context. Motivated by
the recent success of LLMs, we try to investigate
whether the rich context modeling ability of LLMs
can be employed in visual speech processing and
can mitigate the ambiguity of homophenes, espe-
cially focusing on two tasks, VSR and VST.

To this end, in this paper, we propose a new
framework named Visual Speech Processing in-
corporated with LLM (VSP-LLM) that learns the
seamless embedding of visual speech into the
learned text space of LLMs. VSP-LLM employs a
self-supervised visual speech model to embed the
input visual speech into phoneme-level representa-
tions, where the derived phonetic information can
be effectively associated with text (Zhang et al.,
2022b). Moreover, to reduce the computational
burden in training along with LLMs, we propose
a novel deduplication method inspired by previ-
ous works (Lee et al., 2022; Popuri et al., 2022;
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Lee et al., 2021). These studies have proven that
speech unit-based deduplication lowers computa-
tional costs in audio-based tasks such as speech-
to-speech translation. Building on this foundation,
we expand the concept of unit-based deduplication
to the visual modality. Concretely, we employ vi-
sual speech units, the discretized representations
of the features from a self-supervised model, as
indicators for overlapped information between se-
quences. As the visual speech units can be regarded
as pseudo-text (Lakhotia et al., 2021), the visual
speech features assigned to the same visual speech
units are averaged to reduce the processing of re-
dundant information and improve computational
efficiency. Through our analysis, we show that the
sequence length can be reduced by approximately
50% using the proposed deduplication, with min-
imal performance degradation. Finally, the pro-
posed VSP-LLM is jointly trained to perform VSR
and VST with a single model which is the first
explored in this paper. We show that by bringing
the powerful context modeling ability into visual
speech processing, we achieve state-of-the-art per-
formances in both VSR and VST when using the
LRS3 (Afouras et al., 2018) and MuAViC (Anwar
et al., 2023) datasets as training data. Additionally,
our VSP-LLM trained with just 30 hours of data
outperforms the recent translation model used 433
hours of training data.

The key contributions of this paper can be sum-
marized as follows: 1) To the best of our knowl-
edge, this is the first work to incorporate visual
speech modeling with LL.Ms and achieve state-of-
the-art performances in VSR and VST. 2) This is
the first to work to develop a unified visual speech
processing model that can perform both VSR and
VST with a single trained model. 3) We propose a
novel visual speech deduplication that significantly
improves computational efficiency. 4) We show
that the proposed VSP-LLM can perform multi-
tasks with superior performances even in limited
training resource situations, just with 30 hours of la-
beled data by outperforming the recent translation
model.

2 Related Work

2.1 Visual Speech Processing

Visual speech processing technologies are mainly
comprised of two parts, VSR and VST. VSR is a
task to recognize the language content by watch-
ing lip movements, without any sound. The VSR

technologies have greatly progressed with the de-
velopment of deep learning. Early works (Chung
and Zisserman, 2017b; Stafylakis and Tzimiropou-
los, 2017; Petridis et al., 2017, 2018) utilize the
CNN (He et al., 2016) and the RNN (Chung et al.,
2014; Hochreiter and Schmidhuber, 1997) to de-
vise a word-level VSR system. To expand the VSR
systems into sentence-level, (Chung et al., 2017;
Afouras et al., 2018) have utilized a multi-stage
pipeline to automatically collect large-scale VSR
data. Based on the large-scale VSR datasets, re-
searchers (Serdyuk et al., 2022; Ma et al., 2021b)
have developed the VSR systems from the per-
spective of architecture, especially the Transformer
(Vaswani et al., 2017) have greatly improved the
performance of VSR by enabling to capture of the
context between any two positions of lip sequences.
Moreover, the multimodal learning strategies (Zhao
et al., 2020; Afouras et al., 2020; Ren et al., 2021;
Ma et al., 2021a; Kim et al., 2021, 2022; Yeo et al.,
2023b) have attempted to complement the insuf-
ficient visual speech representations by utilizing
audio information. A recent self-supervised model
known as AV-HuBERT (Shi et al., 2022), has signif-
icantly improved the visual speech representations
by predicting the pseudo-label assigned from clus-
tering audio-visual features, with a mask-prediction
task like BERT (Devlin et al., 2019). According to
the advancement of the VSR system, we can now
recognize lip movements quite accurately through
state-of-the-art VSR models such as AV-HuBERT.
Building upon this, the exploration for VST has
begun by introducing a Multilingual Audio-Visual
Corpus (MuAViC) (Anwar et al., 2023) dataset and
constructing a VST (Cheng et al., 2023).

Despite these research efforts, the development
of visual speech processing systems enabling multi-
task via a unified model, such as VSR and VST, has
never been explored in the previous visual speech
processing literature. Hence, the objective of this
paper is to develop a unified model to perform
multi-tasks, including VSR and VST, by utilizing
a rich context modeling ability of LLMs.

2.2 Integration of Speech Models and LLMs

LLMs have shown remarkable success in various
tasks due to their extensive linguistic knowledge
and contextual understanding. While leveraging
such inherent advantages of LLMs, several stud-
ies have tried to seamlessly integrate text-based
knowledge with other modalities (Jin et al., 2024),
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Figure 1: Illustration of our VSP-LLM framework. Visual speech representations encoded from the visual encoder
are mapped to visual speech units. Then the visual speech representations are reduced through averaging based on
the mapped visual speech units. These reduced representations are fed into the LLM along with text instructions.

particularly in the audio speech domain. For ex-
ample, AudioPalLM (Rubenstein et al., 2023) has
been proposed to build a unified model interacting
between text language and audio speech. To nat-
urally bridge the gap between the two modalities,
AudioPalLM has developed a multimodal vocabu-
lary composed of discrete tokens representing both
text and speech. Fathullah et al. (Fathullah et al.,
2023) have employed LLaMA as a speech recogni-
tion decoder so that the speech sequence features
obtained from a conformer encoder were designed
to be directly mapped into text tokens, the domain
of LLaMA. Moreover, Wu et al. (Wu et al., 2023a)
have tried to address the inherent problem of mis-
matched sequence lengths between speech signals
and text, while taking LLLaMA as a speech transla-
tion decoder. So, they have compressed the speech
sequence feature and matched its sequence length
with that of the text.

However, while the existing studies have primar-
ily focused on incorporating LLMs with the audio
speech modality, the exploration of such integra-
tion for visual speech processing remains unex-
plored. In this paper, we propose a novel frame-
work that integrates visual speech processing with
LLM. Specifically, we attempt to mitigate the ho-
mophenes problem, one of the key challenges in the
field of visual speech processing, by leveraging the
rich context modeling capabilities of LLM. Addi-
tionally, to address the training load issues arising
from the integration of the visual speech model
and LLM, we introduce the concept of a visual
speech unit. Through the implementation of vi-
sual speech units, we propose a novel visual speech

deduplication method that compresses redundant
representations while preserving contextual infor-
mation.

3 Method

Figure 1 shows the overall framework of the pro-
posed Visual Speech Processing incorporated with
LLM (VSP-LLM). It includes a visual encoder that
embeds the input video into the input space of a pre-
trained LLLM, a visual speech unit based deduplica-
tion module that discards redundant information in
contiguous frames, and an instruction embedding
component that serves as a task specifier. In the
following, we describe each component in detail.

3.1 Visual-to-Text Space Mapping

Our primary objective is to employ the rich con-
text modeling capability of LLM in our visual
speech modeling. To accomplish this, we need
to represent the input video in a manner that aligns
closely with linguistic information, thereby facili-
tating the association between visual inputs and the
text space of the pre-trained LLM. Motivated by the
recent success of the self-supervised speech mod-
els (Hsu et al., 2021; Shi et al., 2022) that showed
the learned representations are highly correlated
with phonetic information (e.g., phoneme) (Pasad
et al., 2023), we employ AV-HuBERT (Shi et al.,
2022) for our base visual encoder. Then, a learn-
able visual-to-text embedding layer is introduced to
map the visual representations into the input space
of LLM. We name this process as visual-to-text
space mapping.

To investigate how well the visual representa-
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tion aligns with the text embedding space of the
LLM, we compute the cosine similarity between
the visual speech representation and the token em-
beddings of the LLM, mapping it to the text to-
ken with the highest similarity. Figure 2a shows
an example of a textualized visual speech repre-
sentation. An intriguing observation is that, with
well-structured visual-text space mapping, textu-
alized visual speech representations can exhibit
pronunciation resembling real words. However, we
observe redundant information when mapping en-
tire video frames to text due to the similarity of
adjacent frames. For instance, words like ’is’ and
’a’ are repeated multiple times, and the word ’so-
cial’ is mapped as a long stretch. This redundancy
increases computational load when visual speech
representations are fed into LLM. To address this,
we propose a novel method called "Visual Speech
Unit-based Deduplication" to remove redundancy
while retaining semantic content.

3.2 Visual Speech Unit based Deduplication

Compared to the length of the input video, the
length of the text is much shorter. This is simi-
lar to the relationships between speech and text
in Automatic Speech Recognition (ASR) (Graves
and Graves, 2012), where the input speech is al-
most always longer than the output text. There-
fore, when we map visual speech representations
into text space through visual-to-text space map-
ping, the resulting embedded output matches the
length of the input video frames. If we directly
provide it to the LLM, a large computational bur-
den is inevitable. Here, we note that the video is
smooth in temporal and the contiguous frames con-
tain overlapped information, and propose to reduce
the length of the embedded representation before
feeding it to the LLM.

To this end, we first extract the pronunciation
cue from the visual representations through dis-
cretization. Recent literature (Lakhotia et al., 2021)
shows that discretized self-supervised speech fea-
tures, termed speech units, contain phonetic infor-
mation while suppressing non-linguistic variations.
Motivated by this, we propose to extract a visual
version of speech units, namely visual speech units,
which can be obtained by performing K-means
clustering on the self-supervised visual speech rep-
resentations. By doing this, we can access the pro-
nunciation information for each video frame with-
out requiring any text input (Lee et al., 2022). Then,
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Figure 2: Textulaization results of the visual speech rep-
resentations. GT, (a), and (b) indicate the ground truth,
textualization without deduplication, and textualization
with deduplication, respectively.

by employing the visual speech units as pseudo text,
we investigate the overlapped contiguous frames.
Finally, the corresponding visual features are aver-
aged out. For instance, if the obtained visual speech
units are {7,7,7,16,9,9} as illustrated in Figure
1, then the visual features at positions 1, 2, and 3
are averaged together, and those at positions 5 and
6 are averaged, resulting in 3 frames. We find that
the proposed visual speech unit based deduplica-
tion reduces the sequence lengths by about 46.62%
compared to the input video lengths. Most impor-
tantly, we observed that the deduplication process
does not result in any drop in performance. The
reduced visual features, when converted into text
(Figure 2b), maintain the meaning of each word
while the duplication of each word has been re-
moved. For instance, the recurrence of ’is’ and ’a’,
which appeared multiple times in the original fea-
ture, is reduced, and the length of ’social’, which
has a long stretch, is also drastically reduced.

3.3 Multi-task Learning with Instruction

One advantage of bridging LLMs into visual
speech processing is that we can leverage the ver-
satility of LLMs as well. To investigate this, we
train the proposed VSP-LLM with two tasks, VSR
and VST. VSR aims to recognize the input silent
speech while VST aims not only to predict the
recognized speech but also to translate it into the
target language. We design the system so that tasks
can be controlled by inputting instructions directly
into the LLM. When performing the VSR task the
instruction is set to as below,
Recognize this speech in English.
Input: ${Dedupped_Visual_Feature}

where the deduplicated visual features are in-
serted after the instruction. Otherwise, to perform
VST, the following instruction is employed.
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Translate this English speech to ${TGT LANG}.
Input: ${Dedupped_Visual_Feature}

where the target language is used for the position
of TGT LANG. The objective function for each task
can be written as follows,

L
L==) logp(y|X, I,y<), (1)
=1

where X is input video, I is instruction used, 3!
is the [-th text token of the ground truth sentence,
y<! is the previous predictions, and L is the length
of ground truth. Please note that this is the first
work exploring a unified framework of VSR and
VST. For training, we employ the recently proposed
QLoRA (Dettmers et al., 2023) to further relieve
the computational load in training LLM.

4 Experiment

4.1 Dataset

Lip Reading Sentences 3 (LRS3) (Afouras et al.,
2018) is the most widely-used dataset for VSR,
which comprises 433 hours of English audio-visual
speech corpus with transcription data. These cor-
pora are collected from the TED and TEDx talks.
We utilize the LRS3 dataset to measure the VSR
performance of the proposed unified model.
Multilingual Audio-Visual Corpus (MuAViC)
(Anwar et al., 2023) is a multilingual audio-visual
dataset designed for speech recognition and speech-
to-text translation. It includes 1200 hours of audio-
visual corpus in 9 languages, providing full tran-
scriptions and covering 6 English-to-X translations,
as well as 6 X-to-English translation directions. To
evaluate the VST performance of our model, we
utilize English-to-X translation data from MuAViC
dataset, where X can be among four languages,
Spanish (Es), French (Fr), Portuguese (Pt), and Ital-
ian (It). For training our model, we combine the
LRS3 dataset and English-to-X translation data of
MuAViC.

4.2 Implementation Details

Preprocessing. The video is resampled at 25 fps,
and facial landmarks are detected using RetinaFace
(Deng et al., 2020). Mouth regions are cropped
using bounding boxes of size 96 x 96 and con-
verted to grayscale. During training, we apply data
augmentation by randomly cropping the video to
88 x 88 and horizontally flipping it.

Architecture. We use the AV-HuBERT large (Shi
et al., 2022) pre-trained on LRS3 (Afouras et al.,
2018) and VoxCeleb2 English (Chung et al., 2018)
as our visual encoder. In all experiments, except
the ablation part, we utilize 200 clustered visual
speech units. For the LLM, we adopt LLaMA2-7B
(Touvron et al., 2023) and fine-tune it using QLoRA
(Dettmers et al., 2023) with the rank value of 16
and a dropout rate of 5%. To align the dimensions
of the visual representation from the visual encoder
to the LLaMA input embedding, we use a single
linear layer as our visual-to-text embedding layer.
Training and evaluation. We follow AV-HuBERT
(Ren et al., 2021) except for the number of updates
and learning rate. We conduct training with a learn-
ing rate of 5e % and the number of updates is 15K
updates for LRS3 1h, 5h, 10h, and 30K updates
for LRS3 30h and 433h. For VSP-LLM (FT), the
visual encoder is frozen for the first 18K steps and
then unfrozen afterward. Adam optimizer is em-
ployed for training with 8; = 0.9 and B = 0.98,
utilizing a tri-stage learning rate scheduler. The
training process is executed on 8 3090 RTX GPUs.
For decoding, we use a beam search with a beam
width of 20 and a length penalty of 0. We assess
the performance of our model using Word Error
Rate (WER) for the VSR task and BLEU score
(Papineni et al., 2002) for the VST task. We use
total FLOPs per epoch as a metric to measure the
model operation count during training.

4.3 Experimental Results
4.3.1 Comparison with State-of-the-arts

In this subsection, we compare the proposed unified
model with state-of-the-art VSR and VST methods.
Please note that the proposed model can perform
multi-tasks VSR and VST with a single trained
model while the other models need a single model
per specific task.

Table 1 presents the performance comparisons
of the proposed method with state-of-the-art VSR
methods on the LRS3 dataset. The top section
of Table 1 outlines the performance of current su-
pervised approaches that depend on extensive la-
beled training data, while the lower section presents
a comparison with other self-supervised methods.
Table 1 demonstrates that our approach achieves
performance on par with others by employing just
30 hours of labeled data, despite the proposed uni-
fied model’s ability to handle multiple tasks—VSR
and VST—simultaneously. When employing 433
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et ey ™ oon T
Afouras et al. (2018) - 1,519 v 58.9
Shillingford et al. (2019) - 3,886 v 55.1
Makino et al. (2019) - 31,000 v 33.6
Supervised Prajwal et al. (2022) - 2,676 v 30.7
Ma et al. (2021b) - 595 v 30.4
Ma et al. (2023) - 3,448 v 19.1
Serdyuk et al. (2022) - 90,000 v 17.0
Chang et al. (2023) - 100,000 v 12.8
AV-HuBERT (Shi et al., 2022) 1,759 30 4 325
VATLM (Zhu et al., 2023) 1,759 30 v 31.6
RAVen (Haliassos et al., 2022) 1,759 30 v 32.5
AKVSR (Yeo et al., 2023a) 1,759 30 v 29.1

o vSP-LLM 179 S o v 08
Self-supervised  AV-HuBERT (Shi et al., 2022) 1,759 433 v 28.6
VATLM (Zhu et al., 2023) 1,759 433 v 28.4
RAVen (Haliassos et al., 2022) 1,759 433 v 27.8
AKVSR (Yeo et al., 2023a) 1,759 433 v 27.6
o vseLLM 1750 43 v v 67

VSP-LLM(FT) 1,759 433 v v 254

Table 1: The performance comparisons with state-of-the-art VSR methods. Compared to the self-supervised
methods, the proposed VSP-LLM, which can perform both VSR and VST, achieves state-of-the-art recognition
performances. We also evaluate the performance of a fine-tuned VSP-LLM(FT) with an unfrozen visual encoder.

Method ;;::(e}"i:) BLEUT

En-It En-Fr En-Pt En-Es Avg

Anwar et al. (2023) 433 15.1 16.8 15.1 192 16.6

AV-HuBERT 433 16.6 19.4 17.4 21.7 188

Cascaded (AV-HuBERT + MT) 433 17.6 19.5 17.4 224 192
7777777 VSBLLM 30 161 193 166 207 182

VSP-LLM 433 179 223 187 227 204

VSP-LLM(FT) 433 17.7 222 194 224 204

Table 2: Experimental results for English to target lan-
guage (En-X) translation on the MuAViC benchmark.

hours of training data, our method achieves a WER
of 26.7%. By fine-tuning the VSP-LLM(FT) with
an unfrozen visual encoder, we further enhance our
performance, achieving a WER of 25.4%, surpass-
ing other self-supervised approaches. Moreover,
Table 1’s upper part shows that the existing su-
pervised methods record exceptional performance
using (tens of) thousands of labeled data. However,
it is important to highlight that the proposed uni-
fied model can obtain comparable performances to
several supervised methods.

Table 2 presents the comparison results of VST
performance. We construct two baseline models
for comparison. The first, AV-HuBERT, is trained
similarly to our approach, utilizing both VSR and

VST datasets. The second model is a cascaded sys-
tem that incorporates a pre-trained AV-HuBERT
for VSR with a neural machine translation model
(Fan et al., 2021). Through this comparison, our
proposed VSP-LLM demonstrates superior VST
performance across four English-to-X translation
tasks, achieving BLEU scores of 17.9, 22.3, 18.7,
and 22.7 for English to Italian, French, Portuguese,
and Spanish, respectively. The VSP-LLM(FT)
shows a better performance 19.4 BLUE score on
translation from English to Portuguese and com-
parable performances in other languages. More-
over, it is worth noting that the proposed method
achieves an 18.2 BLEU score on average with only
30 hours of labeled data, outperforming the bilin-
gual speech translation model (Anwar et al., 2023)
trained with 433 hours of labeled data.

4.3.2 Effectiveness of Rich Context Modeling

We have developed a unified model incorporating
LLMs to leverage their advanced context modeling
capabilities. Therefore, in this section, we conduct
a qualitative experiment to demonstrate the effec-
tiveness of the proposed VSP-LLM in handling ho-
mophenes, a challenging problem that requires sub-
stantial context understanding to accurately iden-
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Homophene Cases Other Cases
Ground Truth : | i am fascinated by those times when people do not see eye to eye Ground Truth : | it's a composite view that's constantly changing and being updated
AV-HuBERT : | i am fascinated by their times when people who do not see i and i AV-HuBERT : | it's a compositive view that's constantly changing and being updated
VSP-LLM : | i am fascinated by those times when people you do not see eye to eye VSP-LLM : | it's a composite view that's constantly changing and being updated
Ground Truth : | it's not like teaching them how to ride a bike Ground Truth : a.nd when i talk to judges around the united states which i do all the
time now they all say the same
AV-HUBERT : | it's not like teaching them how to writc a bike AV-HuBERT : and when i talk to just around the united states which i do all the time
now they all say the same
VSP-LLM : | it's not like teaching them how to ride a bike VSP-LLM : alnd when i talk to judges around the united states which i do all the
time now they all say the same
Ground Truth : | it's like a piece of junk mail to be thrown away Ground Truth : if you want this experience to live on as something historic then at the
reception
AV-HuBERT : | it's like a piece of chunk bear is being thrown away AV-HuBERT : ifyou w.ant this experience to live on and something is a story that has
a reception
VSP-LLM : | it's like a picce of junk mail being thrown away VSP-LLM : if you want this experience to live on as something historic that's what
happened to
Ground Truth : | but it's not about fire and brimstone either Ground Truth : { so when you're born you can make feelings like calmness and
AV-HuBERT : | but it's not about fire and brip stone either AV-HuBERT : | so when you're born you can make feelings like copness and
VSP-LLM : | but it's not about fire and brimstone VSP-LLM : | so when you're born you can make feelings like calmness and

Figure 3: The qualitative results showing that the contextual modeling ability of LLM, which is adopted in our
method, can improve the homophene problem and other confusing cases. The red and blue words indicate the wrong
predictions from AV-HuBERT. However, as shown in the examples, the proposed method can generate correct

words by considering the entire context (e.g., ‘i’ to ‘eye’).

45
40 38.0
3% B 316311
30 28.627.3
25 25 24.5
20
15 : 12.9
10
5
0

Word Error Rate (%)

0~2 2~4 4~6 6~
Video length of test sample (sec)

Maetal. Prajwaletal. = AV-HUBERT = Proposed Method

Figure 4: VSR performance analysis on LRS3 with vary-
ing video length of test samples. Due to the strength of
contextual understanding ability of LLM, the proposed
method shows superior performance with longer videos.

tify homophenes. Figure 3 shows several transcrip-
tion examples obtained from AV-HuBERT and our
model, illustrating how our proposed method ac-
curately generates words by considering the en-
tire context of a sentence. For instance, in a ho-
mophene case, AV-HuBERT incorrectly transcribes
"i", a word which visually resembles "eye" on the
lips, but differs in meaning. On the other hand,
our method correctly generates "eye", successfully
completing the idiom "eye to eye" to describe mu-
tual understanding between individuals. Similarly,
AV-HuBERT’s transcription of "write" is contextu-
ally inappropriate for a sentence discussing teach-
ing the physical skill of riding a bike. Our method,
however, accurately outputs "ride" resulting in the
correct phrase "ride a bike". Also, we can ob-

serve similar results in the other cases, not the ho-
mophene problem only. For example, the proposed
method can generate the word “composite” accord-
ing to standard English usage, unlike AV-HuBERT,
which erroneously outputs "compositive". These
results corroborate that our approach can more ef-
fectively comprehend contextual clues and gener-
ate more precise and natural answers, due to the
integration of LLM.

Additionally, we evaluate the VSR performance
across various video length segments to explore
the effectiveness of LLM in handling long speech.
Figure 4 shows that WER decreases as video length
increases. Notably, our proposed method exhibits
outstanding recognition performance, with a WER
of 12.9% on videos longer than 6 seconds. Fur-
thermore, our method demonstrates consistent per-
formance improvements as the length of the video
increases, compared to other methods. It indicates
the effectiveness of LLM’s context modeling in
longer video utterances, which demand a more
comprehensive understanding of context.

4.3.3 Effectiveness of Deduplication

We conduct experiments to assess the effectiveness
of our deduplication strategy. For the deduplication
process, the number of clusters for visual speech
units is required to be determined, and we show
the effectiveness according to the number of clus-
ters. Table 3 presents these results, and the first
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st L seanenee FLOPS ®) Metod = WER(%) |
En-It En-Fr En-Pt En-Es Avg En-It En-Fr En-Pt En-Es Avg
12.3 15.8 13.7 16.7 14.6 1.00 62.4 AV-HuBERT 1 0.0 0.0 0.1 0.1 0.5 100.2
C 2000 112 159 138 165 144 070 538(138%) VSP-LLM i 10 28 20 17 18 8484
200 12.1 15.4 13.6 16.8 14.5 0.53 45.6 (26.9%) AV-HuBERT 5 14 3.8 2.0 1.7 2.2 71.9
50 12.1 14.9 13.3 16.9 14.3 0.45 41.0 (34.3%) VSP-LLM 5 10.6 14.0 11.5 15.1 12.8 36.2
AVHWBERT 10 30 51 39 45 41 567
Table 3: Analysis on computational efficiency with vary- VSP-LLM 10 121 154 136 168 128 343
ing number of visual speech unit clusters. When the CAV.HWBERT 15 34 71 55 87 62  s24
deduplication strategy is adopted, the proposed method VSP-LLM 15 135 169 142 170 154 328

obtains comparable performances with greatly reduced
sequence length and training FLOPs.

“What do you”

|
43 79 164

124

“So did”
—n — =
4 S e
(b) - :
141 138 103

know?”

EEEEEEEEEEE

171

Figure 5: Visualization results showing how video frame
features are deduplicated and mapped into visual speech
units. By doing so, the redundant frame features can be
reduced efficiently.

row shows the performance of the baseline which
does not utilize the deduplication. The baseline
obtains an average BLEU score of 14.6 with 62.4
peta FLOPs per training epoch. By applying the
proposed deduplication, our method acquires com-
parable performance, while significantly reducing
the sequence length and computational resources
(FLOPs). Specifically, with 200 clusters for vi-
sual speech units, our method not only maintains
a similar performance level with a 14.5 average
BLEU score but also cuts the sequence length by
53%. Consequently, the FLOPs are greatly reduced
to 45.6, marking a 26.9% decrease. These experi-
ments confirm that deduplication, applied to visual
speech units, effectively eliminates redundant in-
formation.

Moreover, we delve into the deduplication pro-
cess by examining it at the video frame level to
check whether consecutive visual features, char-
acterized by similar lip movements, are grouped
into the same visual speech unit. Figure 5 provides
several visual examples alongside their correspond-
ing phrases and video frames. In Figure 5 (a), as a
speaker articulates “What do you”, it’s noted that 11
video frames can be expressed by 5 visual speech
units. For instance, the visual sequences for the
sound “wha” belong to the same 43rd unit. Sim-

Table 4: Impact of the amount of labeled data. It shows
that a small amount of labeled data is sufficient to con-
struct a unified VSR and VST model by leveraging
contextual understanding capabilities of LLM.

ilarly, Figure 5 (c) illustrates that the four frames
corresponding to “I” can be efficiently represented
by the 46th and 171st visual speech units. Through
this analysis, we confirm that visual features with
similar lip shapes can be effectively deduplicated,
significantly reducing the visual sequence’s length.

4.3.4 VSP-LLM in Data-limited Situation

Leveraging the contextual understanding capabil-
ities of LLM, which are pre-trained on vast text
corpora, we suppose that a small amount of labeled
data is sufficient for constructing a unified VSR
and VST model. This is because the proposed VSP-
LLM endeavors to establish visual-to-text mapping
while entrusting the task of language modeling
to the LLM. To validate it, we train VSP-LLM
on the MuAViC dataset with different amounts
of labeled data; 1 hour, S hours, 10 hours, and
15 hours. For comparison, we also develop AV-
HuBERT on the same data. Table 4 displays the
VSR and VST performances. In all experimental
conditions, regardless of the amount of data used,
our proposed method significantly outperforms AV-
HuBERT. Moreover, when using only 15 hours of
labeled data, our unified method achieves a WER of
32.8%. This is a noteworthy achievement, particu-
larly when compared to the previous VSR (Makino
et al., 2019) model achieving a WER of 33.6%, by
using 31k hours of labeled data for training.

5 Conclusion

In this paper, we proposed a novel framework, Vi-
sual Speech Processing with LLMs (VSP-LLM),
designed to leverage the context modeling ability
of LLMs. Through this framework, we built a uni-
fied model that can perform multi-tasks, VSR, and
VST, with a single model. Moreover, the proposed
deduplication strategy reduces the redundant in-
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formation of visual speech representations based
on pronunciation information modeled from visual
speech units. Through extensive experiments, we
verified that the proposed deduplication method
can reduce the visual sequence length by about
50% with minimal performance degradation. In
addition, we validated the effectiveness of the VSP-
LLM by achieving a superior performance in the
MuAViC benchmark with only 30 hours of labeled
data.

6 Limitations

We have proposed a powerful visual speech pro-
cessing method that incorporates LLMs to recog-
nize and translate lip movements into other lan-
guages, leveraging the rich context modeling abil-
ity of LLMs. Despite the impressive improvement
in the performance of this proposed method, the
utilization of LLMs has been limited to VSR and
VST tasks. We expect that the proposed VSP-
LLM framework can be expanded to in real-world
communication scenarios by utilizing additional
non-verbal cues such as facial expressions and ges-
tures. Especially, the VSP-LLM combined with
non-verbal cues is expected to perform various
tasks such as emotional recognition and dialog gen-
eration, starting with this paper as a foundation.

7 Broader Impact and Ethics

The integration of Large Language Models (LLMs)
within our framework plays a pivotal role in its
ability to handle the complexities of visual speech
across different languages. LLM brings a deep
understanding of contextual and linguistic informa-
tion, which is critical for accurately interpreting
and translating visual speech cues. This capac-
ity for nuanced language processing underpins our
confidence in the framework’s potential for broader
linguistic applicability. Moreover, our experiments
have demonstrated exceptional data efficiency and
significant performance gains with relatively small
amounts of labeled data for each language. This ef-
ficiency is crucial for scalability to other languages
and dialects, particularly those for which extensive
labeled datasets may not be readily available. The
ability to achieve robust performance with limited
data is indicative of the framework’s adaptability
and its potential for expansion to a wider linguistic
range.
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Figure 6: Visualization of video frames corresponding
to visual speech units. Each number indicates an index
of visual speech unit.

Number of Clusters FLOPs (P)
w/o deduplication 19.2
2000 16.2 (15.6%)
200 14.0 (27.1%)
50 12.6 (34.4%)

Table 5: Analysis on computational efficiency with vary-
ing number of visual speech unit clusters in inference
time.

A Visualization of Visual Speech Units

The visualization results of the visual speech units
are shown in Figure 6. In this paper, we use 200
clusters in order to generate visual speech units.
Through analyzing the results, we verify that the
video frames assigned the same visual speech unit
have similar lip movement.

B FLOPs During Inference with
Deduplication

Table 5 shows the FLOPs during inference time.
Similar to during training, applying deduplica-
tion techniques also significantly reduced inference
FLOPs.

C Statistical Significance Testing

we have conducted the statistical significance test
to provide clarity on the legitimacy of the proposed
deduplication techniques. To validate the claimed
enhancements, such as the marginal degradation in
performance, we perform a z-test at a significance
level alpha=0.05 in English to French translation
experiments. In our experiments, the null hypoth-
esis is that there is no degradation in performance
with the proposed deduplication method (i.e., hav-
ing the same performance). We obtain a z-score of
-0.001 and a p-value of 0.9992 according to the z-
score to p-value calculator. The two-tailed p-value
is not less than the significance level. Therefore, we

conclude that the proposed method can effectively
reduce the sequence length without degrading per-
formance.

D Exposure to Transcriptions in the
Pre-Training of LLM

There might be concerns regarding LLaMA2’s po-
tential exposure to the LRS3 dataset during the
pre-training phase. Since the details of LLaMA2’s
training data aren’t publicly available, we can’t
be absolutely sure whether LRS3 was included or
not. However, it’s important to emphasize that the
core challenge and focus of visual speech recog-
nition (VSR) and translation (VST) lie in the abil-
ity to accurately match mouth shapes to unseen
speakers, rather than merely replicating text from
specific sentences. In particular, the mouth shape
of the same sentence can vary significantly when
expressed by different speakers, emphasizing the
visual rather than textual nature of the work. Our
analysis of the LRS3 dataset (Table 6) highlights
this point, showing cases where sentences in the
test set also appear in the training set, but are spo-
ken by distinct individuals. This case serves to
highlight the importance of the model’s ability to
recognize speaker-specific mouth shapes over mem-
orizing textual content. Given this context, we
believe that the potential exposure of LLaMA2
to certain sentences from the LRS3 dataset dur-
ing training is unlikely to significantly impact the
model’s performance in our study.

E Additional Examples of Homophene
Case

In Section 4.3.2, we discussed the VSP-LLM
model’s exceptional ability to correctly distinguish
homophenes by leveraging its advanced context
modeling capabilities. This section further extends
our analysis by comparing the performance of the
VSP-LLM with other baseline models in handling
homophenes. The results of these comparisons are
presented in Table 7. In one notable example, Ma
et al. incorrectly transcribed "junk" as "chunk." In
contrast, the VSP-LLM accurately recognized the
phrase "junk mail," a commonly used and contextu-
ally appropriate phrase in English. This illustrates
the VSP-LLM’s superior performance, particularly
its proficiency in integrating contextual understand-
ing with linguistic patterns to enhance transcription
accuracy in cases involving homophenes.
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Sample ID Label
test/VIgzTLDyObo/00004 and then what happens
trainval/jpeSLKnS4gM/50020 and then what happens

test/vXPJVwwEmiM/00004 you probably won’t

pretrain/omGbKQIzoWY/00009_00 you probably won’t do well on that problem on the other hand relaxed daydreaming is a way to

Table 6: Examples of cases where sentences in the test set also appear in the training set, but are spoken by distinct

individuals.

Homophene Cases

Ground Truth
Prajwal et al. (2022)
VSP-LLM

it’s not like teaching them how to ride a bike
it’s all i teach them how to write a bike

it’s not like teaching them how to ride a bike

Ground Truth
Prajwal et al. (2022)
VSP-LLM

is it about earning as much as you possibly can
it’s about learning as much as possibly can

it’s about earning as much as you possibly can

Ground Truth
Ma et al. (2021b)
VSP-LLM

it’s like a piece of junk mail to be thrown away
it’s like a piece of chunk made to be thrown away

it’s like a piece of junk mail being thrown away

Ground Truth
Ma et al. (2021b)
VSP-LLM

and imagine what might happen because every region has something to offer
and imagine what might happen because every reason has something to offer

and imagine what might happen because every region has something to offer

Table 7: Additional baseline examples for the homophene case. The Red words indicate homophene words.

Visual BLEU T

Method Encoder WER(%) |
En-It En-Fr En-Pt En-Es Avg
AV-HuBERT 16.6 19.4 17.4 21.7 188 28.6
VSP-LLM  AV-HuBERT 179 223 18.7 227 204 26.7
VSP-LLM VATLM 177 20.0 16.6 221 19.0 30.6

Table 8: Performance comparison of VSP-LLM with
different self-supervised visual encoders.

F Other Self-supervised Encoders with
Proposed Approach

We conducted experiments employing a VATLM
(Zhu et al., 2023) as a visual encoder of VSP-LLM.
The results are shown in Table 8. In the VSR
task, the VATLM integrated with LLM achieves
a WER of 30.6% which is worse than the other
method. In contrast to the VSR task, the VSP-LLM
with VATLM encoder is slightly better than the AV-
HuBERT model in the VST task. However, it is
much lower than the VSP-LLM with AV-HuBERT,
achieving an average 20.4 BLEU score.

G Comparative Analysis of Decoding
Strategies and VSR Methods

In order to evaluate the inference time and perfor-
mance according to the decoding strategies and
VSR methods, we have conducted additional ex-
periments on the LRS3 test dataset. The models
compared include Auto-AVSR and AV-HuBERT,
trained in supervised and self-supervised manners,
respectively. For all beam-search decoding strate-
gies, we employed a beam width of 20. As shown
in Table 9, a common trend is observed where beam
search decoding typically improves WER by 1-2%
but increases inference times. Specifically, with the
greedy decoding strategy, VSP-LLM (FT) achieves
a WER of 27.1% and an inference time of 0.85 sec-
onds per sample. With beam search, the inference
time increases to 1.51 seconds per sample, but the
WER improves to 25.4%. Our proposed method
performs better with limited training data than oth-
ers, but it has longer inference times. Addressing
this limitation could be a valuable direction for
future exploration.
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Inference

i BLEU 1
Method Decoding Time WER(%) Method ! Model WER(%) |
Strategy (secjsample) En-It En-Fr En-Pt En-Es Avg
VSP-LLM(FT) Greedy 0.85 27.1 AV-HuBERT - 166 194 174 217 188 28.6
VSP-LLM(FT) AV- Beam search 1.51 25.4 VSP-LLM  LLaMA2-7B 179 223 187 227 204 26.7
AV-HuBERT Greedy 0.13 29.9 VSP-LLM  Mistral-7B. 169 203 178 225 194 26.6
AV-HuBERT Beam search 0.15 28.8 .
Table 11: Comparison of VSR and VST performance
Auto-AVSR Greedy 0.21 223 using AV-HuBERT, VSP-LLM with LLaMA2-7B, and
Auto-AVSR Beam search 0.54 20.4 VSP-LLM with Mistral-7B

Table 9: Comparison of inference time and WER across
different VSR methods and decoding strategies.

Labeled Data(h
Method Language abeled Data(hrs)
5 10 15
mAV-HuBERT Spanish 91.5 88.0 84.9
VSP-LLM Spanish 85.4 719 77.1

Table 10: WER comparison on the Spanish language
using varying amounts of labeled data when training the
model.

H Effectiveness of the VSP-LLM on
Other Languages

In order to verify effectiveness of the VSP-LLM
on other languages, we have conducted additional
experiments on Spanish VSR by applying the pro-
posed approach with a small amount of data. We
set the mAV-HuBERT (Kim et al., 2024) as a base-
line and visual encoder of VSP-LLM in Spanish.
Moreover, the multilingual TEDx (mTEDx) dataset
(Salesky et al., 2021) is used to train and evaluate
these models. Table 1-3 compares the WERs for
the mAV-HuBERT and VSP-LLM models when
trained on a small amount of data, specifically mT-
EDx data for 5, 10, and 15 hours. Both models
exhibit a common trend where the WER decreases
as the amount of training data increases. The mAV-
HuBERT achieves WERs of 91.5% with 5 hours
of data, 88.0% with 10 hours, and 84.9% with 15
hours. The proposed model demonstrates superior
results to mAV-HuBERT in all settings. Specifi-
cally, the VSP-LLM achieves a WER of 77.9%,
which is an improvement of approximately 10 per-
centage points over mAV-HuBERT when using 10
hours of training data.

I Comparative Analysis According to the
Types of LLMs

In order to verify the effectiveness of the VSP-
LLM according to the types of LLMs, we have
conducted additional experiments using the Mistral

7B model. The VSR and VST results are presented
in Table 11. The VSP-LLM equipped with the Mis-
tral 7B (Jiang et al., 2023) model achieves a WER
of 26.6%, which is the best performance compared
to AV-HuBERT and VSP-LLM with LLaMA?2 7B,
on the LRS3 test dataset. For the En-X translation
task, the VSP-LLM with LLaMA?2 shows the best
BLEU scores across all languages on the MuAViC
test set. Although the Mistral 7B (Jiang et al., 2023)
performs worse than LLaMA?2 in the VST task, it
is noteworthy that its performance is still better
compared to the AV-HUBERT model across all lan-
guages. Therefore, we conclude that the effective-
ness of the proposed method holds true for other
LLMs as well.

J Examples of Predicted Sentences

The examples of recognized and translated tran-
scription by the proposed unified model are shown
in Figure 7. For generating transcription, we use a
single-trained model that performs both VSR and
VST tasks.
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VSR

Ground Truth: it was faulty and most of the time I had to restart it over and over before it worked
English Prediction: it was failing most of the time I had to restart it over and over before it worked
(En) Ground Truth: like we evolved on this planet in the context of all the other animals with which we share
Prediction: can we evolve on this planet in the context of all the other animals with which we share
VST
Ground Truth:  tenemos las herramientas pero perdemos la voluntad y el momento colectivo
Spanish Prediction: tenemos las herramientas pero falta la voluntad colectiva y el momento
(En-Es) Ground Truth:  hay amor y hay amistad y hay proteccion
Prediction: hay amor y amistad y proteccion
Ground Truth:  utilizza esperienza basata su situazioni simili per imparare a gestire
Italian Prediction: utilizza I'esperienza passata basata su situazioni simili per imparare a fare
(En-Tt) Ground Truth: il testo si ¢ sviluppato da questo slash
Prediction: testando si ¢ sviluppato uno da questo slush
Ground Truth:  comment estce que tu es juste maintenant
French Prediction: comment tu es juste maintenant
(En-Fr) Ground Truth:  ce changement devient plus rapide
Prediction: ce changement se fait plus rapidement
Ground Truth: e eu quero fazer o ponto que como membros da sociedade que precisamos
Portuguese Prediction: e eu quero fazer o ponto de que como membros da sociedade podemos fazer
(En-Pt) Ground Truth: mas a magnitude do problema é quando precisamos aceitar
Prediction: mas a magnitude do problema é uma vez que precisamos aceitar

Figure 7: Examples of VSR and VST predictions produced by our proposed model on LRS3 and En-to-X test set.
Deletions from the ground-truth text are highlighted in Red, while substitutions or addition are shown in Blue.
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