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Abstract

Event Factuality Detection (EFD) task deter-
mines the factuality of textual events, i.e., clas-
sifying whether an event is a fact, possibil-
ity, or impossibility, which is essential for
faithfully understanding and utilizing event
knowledge. However, due to the lack of high-
quality large-scale data, event factuality detec-
tion is under-explored in event understanding
research, which limits the development of EFD
community. To address these issues and pro-
vide faithful event understanding, we introduce
MAVEN-FACT, a large-scale and high-quality
EFD dataset based on the MAVEN dataset.
MAVEN-FACT includes factuality annotations
of 112,276 events, making it the largest EFD
dataset. Extensive experiments demonstrate
that MAVEN-FACT is challenging for both con-
ventional fine-tuned models and large language
models (LLMs). Thanks to the comprehen-
sive annotations of event arguments and rela-
tions in MAVEN, MAVEN-FACT also supports
some further analyses and we find that adopt-
ing event arguments and relations helps in event
factuality detection for fine-tuned models but
does not benefit LLMs. Furthermore, we pre-
liminarily study an application case of event
factuality detection and find it helps in mitigat-
ing event-related hallucination in LLMs. Our
dataset and codes can be obtained from https:
//github.com/THU-KEG/MAVEN-FACT

1 Introduction

Event Factuality Detection (EFD) aims to deter-
mine the factuality of textual events, i.e., classify-
ing whether an event is a fact, possibility, or impos-
sibility (Sauri and Pustejovsky, 2009, 2012; Lee
et al., 2015; Veyseh et al., 2019; Murzaku et al.,
2023). As shown in Figure 1, the event “play” is a
fact while the event “celebrate” is just a possibility
considering the word “might”.
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After the play, Alice might celebrate with audience at
the hall, provided that she win the medal.

Patient

Agent

BEFORE Agent CAUSES

Figure 1: An example of event understanding. The event

“play” is factual while the events “win” and “celebrate”

are just possibilities considering the word “might”.

Event factuality detection is a subfield of event
understanding, which aims to extract structured
event knowledge from plain texts (Wang et al.,
2023a,b; Peng et al., 2023b; Huang et al., 2023a;
Choudhary and Du, 2024), as shown in Figure 1.
Event understanding is fundamental to broad down-
stream applications (Ding et al., 2015; Goldfarb-
Tarrant et al., 2019; Wang et al., 2021). Previous
event understanding work focuses on three primary
tasks: event detection (Wang et al., 2020), event
argument extraction (Wang et al., 2023a), and event
relation extraction (Wang et al., 2022). However,
event factuality detection is under-explored.

The primary reason for the under-exploration of
EFD may be the lack of a large-scale, high-quality
EFD dataset. Previous EFD datasets are usually
small-scale. For example, the most widely-used
dataset FactBank (Sauri and Pustejovsky, 2009)
only includes 9, 761 events, which may not pro-
vide sufficient data for model training and evalu-
ation. Furthermore, these datasets also lack anno-
tations for event arguments and relations, prevent-
ing a comprehensive understanding of events. In
fact, considering factuality is crucial in event under-
standing. For example, if a downstream application
mistakenly takes the “celebrate” event in Figure 1
as a fact rather than a possibility, it is likely to lead
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to erroneous judgments or even broader impacts.
To alleviate these issues, we introduce MAVEN-
FACT, a large-scale and high-quality event factu-
ality detection dataset based on MAVEN (Wang
et al., 2020, 2022, 2023a). MAVEN provides a
unified and comprehensive annotation, including
event types (Wang et al., 2020), arguments (Wang
et al., 2023a), and relations (Wang et al., 2022),
for the same set of documents. Building on the
solid foundation of the MAVEN series, this work
extends the annotation to include event factuality.
Therefore, MAVEN-FACT includes comprehensive
annotations including event types, arguments, re-
lations, and factuality, which can support faithful
all-in-one event understanding. MAVEN-FACT also
offers three main advantages: (1) Large data scale.
MAVEN-FACT includes factuality annotations for
112,276 events, making it the largest EFD dataset.
(2) Supporting evidence annotation. MAVEN-
FACT also provides supporting evidence annota-
tions, i.e., the words that directly convey factuality,
e.g., may, for non-factual events. This enables
a detailed analysis of factuality understanding of
models and enhances models’ interpretability by
outputting supporting evidence of their factuality
predictions (Zhao et al., 2024). (3) Enabling task
interaction. Intuitively, some event information
may help in factuality detection. For example, if an
event has the start-time argument, then the event
should be a fact. Thanks to MAVEN’s event an-
notations, MAVEN-FACT enables analyzing how
the event elements, including type, arguments, and
relations, affect factuality detection, and vice versa.
To reduce cost and ensure data quality, we design
an LLM-then-human annotation approach. Specif-
ically, due to most events (exceeds 80%) being
factual, we can endeavor to pre-annotate them au-
tomatically. We employ GPT-3.5 (OpenAl, 2022)
for pre-annotation and formalize the task as a bi-
nary classification task (factual or non-factual)
and develop a chain-of-thought prompt (Wei et al.,
2022) method incorporating heuristic rules to en-
sure the high recall rate of the non-factual class.
Subsequently, we manually annotate events pre-
annotated as non-factual. To ensure data qual-
ity, the LLM pre-annotation is only used for the
training set, while the events in validation and test
sets are all human-annotated. This approach saves
about 15% annotation costs (about 2, 500 USD).
In the experiments, we evaluate several strong
and representative models, including fine-tuned
EFD models (Kenton and Toutanova, 2019; Liu

et al., 2019; Wang et al., 2019; Murzaku et al.,
2023), and LL.Ms with in-context learning (Brown
et al., 2020), including Mistral 7B (Jiang et al.,
2023), LLAMA 3 (Meta, 2024), GPT-3.5 (OpenAl,
2022), and GPT-4 (OpenAl, 2023). Experimental
results demonstrate that the best-performing model
only achieves a 47.6% macro F1 score and an even
lower F1 score for non-factual events. It suggests
that MAVEN-FACT is quite challenging for existing
EFD models and LLMs. We conduct further exper-
iments by requiring the models to provide support-
ing words for their predictions and find that this F1
score is much lower than that of EFD. It indicates
that even if the model can correctly detect factuality,
it may not provide accurate explanations. We also
observe that adding arguments and relations en-
hances the performance of fine-tuned EFD models,
whereas it does not benefit LLMs with in-context
learning. Furthermore, we preliminarily study a po-
tential application case of event factuality detection
in mitigating event-related hallucination (Huang
et al., 2023b), and find that incorporating event
factuality can help mitigate hallucination in LLMs.
We hope MAVEN-FACT and our empirical findings
could facilitate future research on event factuality
detection and faithful event understanding.

2 Dataset Construction

This section introduces the definition of event fac-
tuality detection (§ 2.1), the LLM-then-human an-
notation approach (§§ 2.2 to 2.4), and data analysis
of MAVEN-FACT (§ 2.5).

2.1 Task Formulation

Event factuality detection is the task of assessing
whether an event is a fact. Typically, this task is for-
malized as a multi-class classification problem. We
adopt the widely-used 5 classes (Sauri and Puste-
jovsky, 2009; Qian et al., 2018a), CT+, PS+, PS-,
CT-, and Uu, as the label set of MAVEN-FACT.
These classes are based on the polarity and modal-
ity of event factuality, as illustrated in Figure 2.
Modality indicates the certainty degree of events,
where CT stands for certain and PS for possible.
Polarity shows whether the event occurs or will
occur, with + representing occurrence and - repre-
senting not occurring. To reduce annotation cost
and bias, we do not adopt finer-grained class defini-
tions like in Lee et al. (2015) and. These 5 classes
are sufficient to express the polarity and modality
for factuality detection and support its applications.
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Polarity

A Happen
PS+ | CT+
Possible Certain
»  Modality
PS- CT-
Not happen

Figure 2: An illustration of four factuality classes. Uu
denotes factuality can not be determined by the given
context and is not shown in the figure.

The factuality source of events in MAVEN-FACT is
the author because the author’s belief in MAVEN
objectively presents the event factuality. MAVEN-
FACT also supports the supporting evidence pre-
diction task (Alvarez Melis and Jaakkola, 2018),
which predicts the words conveying the factuality.
In this paper, we formalize this task as a pipeline:
the models first perform EFD and then predict sup-
porting words based on their factuality predictions.

2.2 LLM-then-Human Annotation Approach

In this paper, we aim to annotate the factuality
of the overall 112,276 events from the MAVEN
dataset to construct MAVEN-FACT. Due to the
large scale of the data, manual annotation for all
events is costly and not conveniently transferable to
other domains or scenarios. Given the proven effi-
cacy of LLMs as effective annotators (Mirzakhme-
dova et al., 2024; Chen et al., 2024), we develop an
LLM-then-human annotation workflow to reduce
costs while ensuring the annotation quality. We first
adopt GPT-3.5 (OpenAl, 2022) to pre-annotate the
data, filtering out events requiring human annota-
tion, followed by a meticulous human annotation.
This annotation approach reduces annotation costs
by approximately 15%, saving about 2, 500 USD.
We only annotate the supporting words for PS+,
PS-, and CT- events, as CT+ and Uu events usu-
ally do not involve obvious supporting evidence.
We employ this annotation workflow for the train-
ing set events only, while the validation and test
sets are fully human-annotated. We finally sample
50 documents from the training set and find less
than 2% noise, which demonstrates the efficacy
of our annotation approach and the high quality
of MAVEN-FACT. We will describe the details
of LLM annotation (§ 2.3) and human annotation
(§ 2.4) in the following sections.

Task Definition

You are required to annotate the factuality of
events within the document. ...

Label Definition

CT+: The event is definitely certain to happen
or have happened.
OT: Other factuality, including ...

Annotation Rules with CoT

First step: find the narrative source ...
(Modality)
Second step: look for contextual cues like
words that suggest attempts... (Modality)
Third step: find negative contextual cues...

(Polarity)
If at this stage, you still cannot determine the
factuality... (Priority)

Document with Example

Figure 3: Prompt used in LLM pre-annotation.

2.3 LLM Annotation

Due to the majority of events being CT+, i.e., al-
ready occurred, we aim to employ LLMs to auto-
matically distinguish between C7+ and non-CT+
events, and only events pre-annotated as non-
CT+ require further human annotation, thereby
reducing the need for human annotation. Con-
sequently, the recall of pre-annotating non-CT+
events is crucial for reducing pre-annotation noise.
We improve the recall of non-CT+ events in two
main aspects: (1) We simplify the event factuality
detection task into a binary classification problem,
only distinguishing between C7T+ and non-CT+
factuality, as binary classification is generally sim-
pler than multi-classification (Rifkin and Klautau,
2004). Our objective is to obtain a high recall score
for non-CT+ to avoid filtering events that require
further human annotation. (2) We adopt the chain-
of-thought prompting method (CoT) (Wei et al.,
2022) to better promote LLMs. Specifically, we
first construct a comprehensive collection of an-
notation rules for the EFD task, integrated from
multiple authors. Based on these rules, we design a
step-by-step prompt that mirrors the human process
for this task: (1) Determine the narrative perspec-
tive of the event. (2) Identify words conveying
modalities, such as “may”. (3) Check whether the
text contains negations. (4) Default classification to
non-CT+ if factuality cannot be determined. Fig-
ure 3 illustrates the details of the prompt, and the
full prompt can be found at appendix A.

To validate the efficacy of our annotation method,
we conduct a pilot experiment on 500 human-
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Setting | Direct Prompt | CoT Prompt

| non-CT+ CT+ | non-CT+ CT+
Multi-Class 18.8 95.7 55.2 69.2
Bi-Class 27.1 89.3 97.4 16.5

Table 1: The recall rate of non-CT+ and CT+ using
direct and CoT prompts under multiple and binary clas-
sification settings. Higher non-CT+ recall denotes less
pre-annotation noise. Higher CT+ recall means reduc-
ing more human annotation.

annotated events. We adopt GPT-3.5 as the LLM
for pre-annotating. The experimental results are
presented in Table 1. We can observe that our ap-
proach, binary classification with chain-of-thought
prompting, achieves a 97.5% recall of non-CT+,
which indicates it introduces little noise during pre-
annotation, and a 16.5% recall of CT+, which sug-
gests that the pre-annotation substantially reduce
the annotation cost. Finally, we pre-annotate the
overall training set, resulting in 16, 950 events la-
beled as CT+ and 56, 989 as non-CT+, with the
latter needing further human annotation.

2.4 Human Annotation

To ensure data quality, we manually annotate all
events pre-labeled as non-CT+ in the training set
and all events in the validation and test sets. We
employ a commercial annotation company for an-
notation, which involves 47 annotators, including 8
senior annotators responsible for annotation train-
ing and quality verification of other annotators’s
annotations. All annotations were performed on
a specially developed platform. We ask the an-
notators to assess the factuality of events based
solely on the provided text, without considering
external knowledge. If annotators can not deter-
mine the factuality based on the provided text, they
will label the event as Uu. For PS+, PS-, and
CT- events, annotators are required to provide sup-
porting evidence, which are the words extracted
from the given text. If there are multiple support-
ing words, annotators are required to extract all of
them. Senior annotators will randomly check 5%
of annotated factuality. If an annotator’s error rate
assessed by the senior annotator exceeds 5%, they
will undergo re-training for the annotation and all
of this annotator’s annotation will be re-labeled.
We randomly sample 100 documents and annotate
them twice by different annotator groups. The fi-
nal inter-annotator agreement (accuracy) is 96.1%,
demonstrating the annotation quality. Annotation

details are provided in appendix A.

2.5 Data Analysis

Table 2 presents the statistics of MAVEN-FACT
and other widely-used EFD datasets, including
FactBank (Saurf and Pustejovsky, 2009), MEAN-
TIME (Minard et al., 2016), UW (Lee et al., 2015),
EB-DLEF (Zhang et al., 2022), DLFE-v2 (Qian
et al., 2022), UDS-IH2 (Rudinger et al., 2018).
More detailed data statistics of splitting MAVEN-
FACT is provided in appendix A. We can observe
that MAVEN-FACT possesses the largest data scale
and includes supporting word annotations. Thanks
to MAVEN’s extensive annotations, MAVEN-FACT
provides comprehensive annotations of events, ar-
guments, relations, and factuality, supporting com-
prehensive and faithful event understanding re-
search and applications.

3 Experiment

3.1 Experimental Setup

Baselines We evaluate several advanced and rep-
resentative models, mainly including fine-tuned
EFD models and large language models with in-
context learning (Brown et al., 2020).

For fine-tuned EFD models, we reproduce sev-
eral advanced models, including (1) BERT+CLS
and RoBERTa+CLS, which adopt BERT (Kenton
and Toutanova, 2019) and RoBERTa (Liu et al.,
2019) as the text encoder, respectively, and use
the representation of a special token [CLS] (Ken-
ton and Toutanova, 2019) as the factuality rep-
resentation of the event for factuality classifica-
tion. (2) DMBERT (Wang et al., 2019) and DM-
RoBERTaA, classical event understanding models
that also utilize BERT and RoBERTa as the text
encoder, respectively, and incorporate a dynamic
multi-pooling mechanism (Chen et al., 2015) to
integrate context and event information into a fac-
tuality representation for the final factuality clas-
sification. (3) GenEFD (Murzaku et al., 2023),
a generative model based on FLAN-T5 (Chung
et al., 2024). Murzaku et al. (2023) transform the
event factuality detection task into a text generation
task and design a meticulous factuality structure
and target text structure, then optimize FLAN-T5
through multi-task learning. This model achieves
state-of-the-art performance on FactBank. Our im-
plementation employs the same setting except for
not using multi-task learning as we only train the
model on the event factuality detection task. For

11143



Dataset | #Doc. | #CT+ #CT- #PS+ #PS- #Uu | #Total | Supporting Words
FactBank 208 7,749 433 589 70 4,619 13,460 X
MEANTIME 120 1,798 44 83 3 125 2,053 X
Uuw 276 — — — — — 13,923 X
UDS-TH2 - - - - - — | 27,289 X
EB-DLEF 7,840 5,222 1,601 935 53 29 7,840 v
DLEF-v2 9,180 5,555 2,029 1,454 84 58 9,180 v
MAVEN-FACT ‘ 4,480 ‘ 105,209 2,330 3,874 540 323 ‘ 112,276 ‘ v

Table 2: Statistics of MAVEN-FACT compared with other event factuality detection datasets. Doc. is the short
for Document. “Supporting Words”” means whether the dataset contains supporting words of factuality. UW and
UDS-IH2 adopt continuous factuality values and hence the statistics for discrete factuality are not applicable.

Model ‘ CT+ ‘ CT- ‘ PS+ \ PS- \ Uu \ Macro-F1
| P R F| P R F| P R F| P R F| P R Fl|
BERT+CLS 94.1 98.6 96.3 | 66.6 54.0 59.6 61.4 35.5 45.0 | 61.0 17.7 27.5 15.4 1.1 2.0 46.1
RoBERTa+CLS 94.1 98.6  96.3 61.0 54.8 57.8 61.3 32.0 420 44.8 19.2 26.9 | 50.0 22 4.1 45.4
DMBERT 94.4 98.4 96.3 64.8 55.9 60.0 62.2 37.5 46.8 45.6 23.2 30.7 26.7 2.2 3.1 47.6
DMRoBERTa 94.3 98.4  96.3 62.3 604 61.3 62.6 344 444 50.0 23.2 31.6 16.7 1.1 20 47.1
GenEFD 94.2 98.7 964 65.9 54.4 59.6 | 63.8 37.5 47.3 57.1 13.8 22.2 0.0 0.0 0.0 45.1
Mistral 7B 92.6 80.7 86.2 30.0 11.8 16.9 14.4 39.8 212 3.5 17.6 5.8 14.3 6.1 8.5 27.7
+CoT 93.0 70.3 80.1 9.0 17.6 11.9 11.6 38.3 17.8 2.6 23.5 4.8 10.5 6.1 7.7 24.4
LLAMA 3 91.7 753 82.7 18.2 11.8 14.3 10.2 38.3 16.1 0.0 0.0 0.0 7.7 6.1 6.8 24.0
+CoT 95.8 62.6 75.8 25.0 17.5 20.7 12.3 719 21.0 11.8 23.5 15.7 1.5 3.0 20 27.0
GPT-3.5 94.1 53.0 67.8 3.6 54.9 6.7 12.5 7.8 9.6 1.2 11.8 2.1 3.7 3.0 3.3 17.9
+CoT 96.1 279 432 4.1 36.3 7.3 84 477 14.3 3.1 529 5.8 3.3 106 5.1 15.1
GPT-4 94.1 94.6 94.4 51.4 37.3 43.2 44.7 56.3 49.8 16.7 11.8 13.8 0.0 0.0 0.0 40.2
+CoT 94.8 94.2 94.5 46.5 39.2 42.6 43.4 58.6 49.8 20.0 23.5 21.6 25.0 3.0 54 42.8

Table 3: Experimental results of fine-tuned EFD models and LLMs with in-context learning on MAVEN-FACT.

encoder-only models, we utilize cross-entropy loss
for training. For training GenEFD, we employ lan-
guage modeling loss (Bengio et al., 2000).

We also evaluate several LLMs with in-context
learning, including two powerful open-sourced
LLMs, Mistral 7B (Jiang et al., 2023) and the
8B version of LLAMA 3 (Meta, 2024), and two
proprietary LLMs, GPT-3.5 (OpenAl, 2022) and
GPT-4 (OpenAl, 2023). For all experiments, we
adopt 5-shot in-context learning. The demonstra-
tions contain one exemplar from each category
and are randomly sampled from the training set
of MAVEN-FACT. We also evaluate LLMs with
chain-of-thought prompt method (Wei et al., 2022),
which is the same as in § 2.3 used for data annota-
tion. Considering the time and monetary costs for
LLMs inference, we sample 2, 000 instances from
the original test set of MAVEN-FACT to evaluate
LLMs. More details of the experimental setup are
placed in appendix B.

Evaluation Setup We adopt the same evaluation
metrics with previous work (Qian et al., 2018a),
and report precision (P), recall (R), F1 scores, and
their macro averages for the CT+, CT-, PS+, and
PS-, and Uu categories. For generative models, we
use the exact match method (Rajpurkar et al., 2016)

to compute the consistency rate between outputs
and ground truth labels. For the chain-of-thought
outputs, we require the LLM to provide its answer
directly after “answer:” and automatically parse
its response. If the outputs do not conform to this
format, they are categorized as Uu predictions.

3.2 Experimental Results

The experimental results are shown in Table 3, and
we have the following observations:

(1) Both the fine-tuned EFD models and LLMs
exhibit moderate performance, particularly in the
CT-, PS+, and PS- categories, compared to the re-
sults in the widely-used FactBank dataset (Qian
et al., 2018a; Murzaku et al., 2023). This suggests
that MAVEN-FACT poses a significant challenge
to existing models. The small scale of existing
datasets with limited non-CT+ data may be insuffi-
cient for training and benchmarking EFD models,
and hinders the development of advanced models.
To further demonstrate that MAVEN-FACT is chal-
lenging and can serve as a valuable resource, we
conducted a detailed error analysis. Additionally,
we performed generalization experiments on Fact-
Bank. Both results are available in appendix B. We
hope the large-scale MAVEN-FACT data will facili-
tate more research efforts to develop advanced mod-
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els for the event factuality detection task. (2) LLMs
significantly underperform fine-tuned models, es-
pecially in the non-CT+ categories, and even the
most powerful GPT-4 only achieves 42.8% macro
F1. This aligns with previous findings that LLMs
with in-context learning often fall short in infor-
mation extraction tasks (Li et al., 2023; Han et al.,
2023), possibly because LLMs lack specific under-
standing abilities to fine-grained information (Peng
et al., 2023a), which is necessary for detecting fac-
tuality, such as “may”. This suggests that LLMs
may confuse event factuality, and we will show in
§ 4 that it results in non-factual responses of LLMs,
i.e., hallucinations (Huang et al., 2023b), into the
tasks requiring event knowledge. (3) The chain-of-
thought approach has different effects on LLMs’
performance. One possible reason is that the de-
tailed instructions in the prompt enhance LLMs’
fine-grained comprehension of texts, such as sup-
porting words, while it may also cause overinterpre-
tation of texts, leading to misclassification of CT+
events into other categories. Although these results
are still below those of fine-tuned models, it sug-
gests that designing meticulous prompts to enhance
the event factuality understanding ability of LLMs
is feasible, and more research efforts are needed for
enhancing this capability of LLMs, such as utiliz-
ing MAVEN-FACT as high-quality alignment data
to align LLMs on the EFD task (Qi et al., 2024).
In conclusion, MAVEN-FACT presents a sig-
nificant challenge to existing EFD models and
LLMs. We hope that the high-quality MAVEN-
FACT dataset will contribute to the training and
benchmarking of EFD models and call for more
research efforts to develop advanced EFD models.

3.3 Supporting Evidence Prediction

There are numerous works exploring explainability
for models by requiring the models to provide ex-
planations, i.e., supporting evidence, for their out-
puts, thereby enhancing the interpretability, trans-
parency, and reliability of models (Luo and Specia,
2024). It is particularly essential for tasks involving
factuality-related outputs where models are prone
to generating hallucinations (Huang et al., 2023b).
Therefore, for event factuality detection, providing
coherent supporting evidence is essential for assess-
ing the inherent understanding of event factuality
and improving the reliability of models. However,
as shown in Table 2, most previous datasets lack
annotations for supporting evidence, i.e., the words
conveying the factuality, leading to a lag in related

Model | Factuality | Supporting Evidence

| P R FI| P R FI
DMROBERTa | 74.5 49.1 581 | 55.8 394 454
GenEFD 76.3 40.5 504 | 49.5 40.8 44.7
LLAMA 3 53.7 143 18.5 4.6 2.8 3.5
GPT-4 62.4 326 425 21.0 18.3 19.5

Table 4: Macro averages of precision (P), recall (R), and
F1 scores of CT-, PS+, PS- on the factuality and sup-
porting evidence prediction task. We report the macro
averages for only these three categories because only
they have supporting evidence in the given input text.

research. MAVEN-FACT comprehensively provide
annotated supporting words' for CT-, PS+, and PS-
events to facilitate research on predicting support-
ing words and developing reliable EFD models.

We evaluate the EFD models on the task of
predicting supporting words for their factuality
predictions in the MAVEN-FACT dataset. Specifi-
cally, we employ a pipeline form where the model
first detects the event factuality and then predicts
supporting words based on its predicted factu-
ality. Given that an event may have multiple
supporting words, we use the sequence labeling
paradigm (Akhundov et al., 2018) for models to
predict these words. Without loss of generality,
we evaluate four representative models, including
DMRoBERTa, GenEFD, LLAMA 3, and GPT-4.
Further experimental details are provided in ap-
pendix B. Table 4 presents the results, and we
can find that the performance of supporting word
prediction is significantly inferior to that of event
factuality detection. This indicates that providing
supporting words is more challenging, and models
may struggle to provide valid supporting evidence
even when they accurately predict factuality.

We further conduct an error analysis of support-
ing word prediction, and the errors stem from two
main sources: incorrect factuality prediction and
incorrect supporting word prediction. We catego-
rize the errors into three types: OnlyF, OnlyW, and
Both, which denote the errors come from only fac-
tuality prediction, only supporting word prediction,
and both, respectively. The results are presented
in Table 5. We can observe that (1) About 30%
of the errors are OnlyW, indicating that even if the
model accurately predicts factuality, it may still
struggle to correctly predict the supporting words.
(2) Except for LLAMA 3, a significant portion of

'In this paper, we refer to supporting evidence as negative
or possibility cues provided as specific words or phrases, and
there are no clear corresponding cues for CT+ events.
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Model | OnlyF  OnlyW Both
DMRoBERTa 6.8 31.0 62.2
GenEFD 24.6 31.6 438
LLAMA 3 0.6 25.4 74.0
GPT-4 9.6 37.6 529

Table 5: Error rate (%) on supporting word prediction.
OnlyF, OnlyW, and Both mean the errors come from
only factuality prediction, only supporting word predic-
tion, and both, respectively.

Model \ Precision Recall Macro F1
DMRoBERTa 57.2 43.5 47.1
+relation 63.7 44.1 49.1
+argument 63.2 45.4 49.3
+both 53.5 41.2 45.6
GenEFD 56.2 40.9 45.1
+relation 57.7 41.4 45.4
+argument 54.4 43.0 46.4
+both 53.8 44.7 47.6
LLAMA 3 25.6 26.3 24.0
+relation 21.9 25.3 11.6
+argument 23.1 29.4 19.4
+both 23.5 25.1 16.9
GPT-4 41.4 40.0 40.2
+relation 42.4 35.9 37.9
+argument 41.4 36.0 37.6
+both 43.2 37.6 39.7

Table 6: Performance on event factuality detection after
adding different event information.

the errors are OnlyF, suggesting that although the
model does not predict factuality correctly, it ac-
curately identifies supporting words. These errors
suggest that the models can not sufficiently explain
their own outputs. This hurts the reliability of the
model in event factuality prediction. More efforts
are needed to develop more reliable EFD models.

3.4 Analysis on Task Interaction

Thanks to MAVEN’s comprehensive annotations,
MAVEN-FACT also facilitates research about the
interactions between event elements, such as argu-
ments and relations, and event factuality, which is
under-explored previously due to a lack of compre-
hensive data. In this paper, we primarily investigate
whether event arguments and relations can help in
event factuality detection. Intuitively, additional
event information can benefit EFD. For example,
if an event has a “time” argument referring to the
past date, the modality of the event’s factuality is
more likely certain.

We conduct experiments on four representative
models, DMRoBERTa, GenEFD, LLAMA 3, and

GPT-4, using MAVEN-FACT to investigate whether
adding event arguments and relations can help in
EFD. For GenEFD, LLAMA 3 and GPT-4, we in-
troduce additional information by transforming ar-
guments and relations into natural language forms
and placing them in the original text input. For DM-
RoBERTa, except for adding them in the text input,
we introduce additional information by concate-
nating the representations of arguments and rela-
tions to the event factuality representation, and then
use this concatenated representation to classify the
factuality. The representations of arguments and
relations are the average representations of their
corresponding tokens. More experimental details
can be found in appendix B.

The results are shown in Table 6, and we have
the following observations: (1) For fine-tuned EFD
models, DMRoBERTa and GenEFD, the experi-
mental results generally align with our expecta-
tions, where the introduction of event arguments or
relations tends to boost factuality detection perfor-
mance. It suggests that fine-tuning models could
better learn these correlations. However, adding
both relation and argument information hurts the
performance of DMRoBERTa. One possible rea-
son is that the concatenated relation and argument
representations may cause the model to more eas-
ily overfit to certain patterns in the training set. (2)
For LLMs with in-context learning, introducing ad-
ditional information tends to worsen performance.
We find that the decline primarily comes from CT+,
and the models are sensitive to prompts (Dong et al.,
2022) and shifted towards classifying factuality as
non-CT+. This suggests that few-shot in-context
learning might introduce some biases instead of
generalizable patterns (Si et al., 2023). More ef-
forts are needed to effectively introduce additional
information by in-context learning for event factu-
ality detection, such as using many-shot in-context
learning (Agarwal et al., 2024).

4 Mitigating Event-related Hallucinations

In addition to benchmarking EFD models, we also
want to explore potential application scenarios of
MAVEN-FACT. Here, we preliminarily explore
using event factuality to mitigate event-related hal-
lucinations in LLMs, as non-factuality is a primary
source of hallucination (Huang et al., 2023b).
Hallucination refers to the phenomenon where
the outputs of models do not align with the input,
typically involving non-factual information in the
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Document: The 2014 Bukidnon bus bombing occurred on
December 9, 2014. ... Extortion is viewed as a motive for
the attacks due to claims that the bus company has faced
threats for refusing to pay protection money to the militants.
The militant group denies any involvement claiming they
would not gain any benefit from conducting such attacks
and claims the accusations against them as fabrication.

Question: Did the bus bombing occur because the bus
company refused to pay protection money to the militants?

Answer: No

Table 7: An instance from our constructed QA dataset.
The “pay” event is a PS- event.

outputs (Huang et al., 2023b). This issue is preva-
lent in existing LLMs, raising concerns about the
reliability and faithfulness of LLMs. There are
numerous works exploring detecting and mitigat-
ing hallucination in LLMs (Ji et al., 2023; Dhuli-
awala et al., 2023; Yang et al., 2023; Zhang et al.,
2024; Li et al., 2024). Event-related hallucination
refers to the model outputting incorrect information
about an event given its context, such as erroneous
event arguments or causal relations, which is under-
explored in previous research. Here, we hope to
explore whether providing explicit event factuality
information can help mitigate event-related halluci-
nations in LLMs.

Experimental Setup We begin with constructing
a knowledge-intensive question-answering (QA)
dataset based on MAVEN-FACT, which is a sce-
nario susceptible to hallucinations (Huang et al.,
2023b). As we aim to analyze hallucination in
LLMs, we deliberately craft questions that are
prone to induce hallucination. Specifically, we first
sample 800 documents from the MAVEN-FACT
test set. For each document, we select the event
which is non-factual and have the most relation
connections with other events in the document.”
We then utilize GPT-4 to generate yes-or-no ques-
tions that require complex reasoning along with
the answers for each event based on its mentioned
document. Then three experts manually review all
the questions and answers, and eliminate questions
without answers or not requiring reasoning, and
correct erroneous answers, resulting in 450 vali-
dated instances. An example of the data is shown
in Table 7. We evaluate two representative LLMs,
LLAMA 3 and GPT-4. For adding event factu-
ality, we adopt two settings: (1) Oracle setting,

2Having more relation connections suggests that the event

involves more knowledge in the document, making it easier to
construct knowledge-intensive questions about the event.

Setting Factuality Info LLAMA3 GPT4
Vanilla X 77.6 83.3
Real-World v 86.2 94.4
Oracle v 88.9 97.8

Table 8: Accuracy (%) on the constructed QA dataset.
“Vanilla” denotes not adding factuality information.

which adds the ground truth factuality. This setting
allows controlled experiments to observe the effi-
cacy of adding factuality. (2) Real-world setting,
which adds the DMRoBERTa predicted factuality
and aligns with real-world scenarios. More experi-
mental details are placed in appendix C.

Experimental Results The results are shown in
Table 8. We can observe that adding factuality in-
formation (Oracle setting) significantly improves
the accuracy of LLMs, i.e., reducing the halluci-
nation rate. Using the factuality automatically ex-
tracted using DMRoBERTa is also effective. It of-
fers a promising direction for research on reducing
event-related hallucinations, namely by integrat-
ing additional factuality detection tools to explic-
itly include key information such as the factuality
of events, triplets in the input, thereby mitigating
model hallucinations. We encourage further ex-
ploration using MAVEN-FACT on this topic and to
investigate more potential applications.

5 Related Work

5.1 Event Factuality Detection Datasets

FactBank (Sauri and Pustejovsky, 2009) is one
of the earliest and widely-used EFD datasets. It
is constructed based on TimeBank (Pustejovsky
et al., 2006) and includes 5 types of factuality.
MEANTIME (Minard et al., 2016) annotates a mul-
tilingual corpus of news articles with events and
their corresponding factuality value, including cer-
tainty and polarity. To represent richer factuality,
UW (Lee et al., 2015) and UDS-IH2 (Rudinger
et al., 2018) adopted a continuous factuality value
with a [—3, 3] range. Recently, some studies in-
troduced document-level EFD datasets, such as
EB-DLEF (Zhang et al., 2022) and DLFE-v2 (Qian
et al., 2022). MAVEN-FACT adopts 5 discrete fac-
tuality categories to enhance annotation quality
and reduce subjective bias, which we believe suffi-
ciently represents factuality.
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5.2 Event Factuliaty Detection Methods

Conventional event factuality detection meth-
ods primarily use neural-based models, mainly
including developing novel network architec-
tures (Rudinger et al., 2018; Qian et al., 2018b;
Veyseh et al., 2019; Cao et al., 2021; Liu et al.,
2022) and designing new objectives (Qian et al.,
2018a, 2019; Zhang et al., 2023). In the era of
generative models, Murzaku et al. (2023) trans-
formed the event factuality detection task into a
text generation form, utilizing FLAN-T5 (Chung
et al., 2024) for factuality detection. In this paper,
we also evaluate LLMs and find that MAVEN-FACT
poses significant challenges to existing methods.

6 Conclusion

This paper introduces MAVEN-FACT, the largest
and high-quality event factuality detection dataset.
MAVEN-FACT comprehensively includes support-
ing evidence for factuality and event annotations
from MAVEN. Experimental results demonstrate
that MAVEN-FACT poses a significant challenge to
EFD models and LLMs. We also find that using
event factuality can help in mitigating event-related
hallucinations in LLMs. We hope that MAVEN-
FACT will facilitate research on the development
and application of event factuality detection.

Limitations

We discuss the limitations of this work here: (1)
Language coverage. MAVEN-FACT only supports
English, which may limit the widespread usage and
application of our data. In the future, we will try
to cover more languages and encourage commu-
nity efforts for developing multilingual MAVEN-
FACT. (2) Annotation approach. Our annotation
approach only saves approximately 15% annotation
cost. To ensure quality, we still employ substantial
human annotation. However, this 15% reduction
means a saving of about 2, 500 USD. We encour-
age the community to develop more advanced au-
tomated annotation methods using MAVEN-FACT.
(3) LLM performance. We do not explore more
prompting methods to enhance the performance of
LLMs. We think this does not affect our experimen-
tal conclusions. LL.Ms typically underperform in
specification-heavy tasks (Peng et al., 2023a) and
require further efforts to improve their performance
in EFD task.

Ethical Considerations

We discuss ethical concerns here: (1) Intellectual
property. The MAVEN-ED dataset is released with
CC BY-SA 4.0 license®. The MAVEN-ARG and
MAVEN-ERE are published with GPLv3* license.
We strictly adhere to their licenses when using
these data. (2) Intended use. MAVEN-FACT is an
event factuality detection dataset. Researchers and
developers can use MAVEN-FACT to develop more
advanced EFD methods and applications. (3) Po-
tential risk control. MAVEN-FACT is constructed
from public data, which we believe has been well
anonymized and desensitized. The data annotation
process does not include any personal or sensitive
information of the annotators. We believe MAVEN-
FACT introduces no additional risks. We will not
release the test set and instead use an online scoring
platform following previous work (Rajpurkar et al.,
2016; Wang et al., 2020, 2022, 2023a) to prevent
potential cheating use and data contamination (Xu
et al., 2024), thereby ensuring a fair evaluation. (4)
Al assistance. The writing of this paper employs
ChatGPT to paraphrase some sentences.
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Appendices
A Details on Data Construction

This section introduces details on annotation of
MAVEN-FACT, including details of annotation
instruction (appendix A.1), annotation coordina-
tion (appendix A.2), and data distribution (ap-
pendix A.3).

A.1 Annotation Instruction

The prompt used in the LLM annotation is shown
in Table 9. Events pre-labeled as non-CT+ in the
training set and events in the validation and test
sets are manually annotated. During the annotation
process, we incorporated heuristic rules derived
from contextual information and event relations
from MAVEN-ERE (Wang et al., 2022) to guide
the annotators. Some examples of the annotation
rules can be seen in Table 12. For each factuality
label, we provided specific examples and detailed
explanations. This made it easier for the annota-
tors to differentiate accurately. Additionally, we
developed a new online annotation platform to sup-
port efficient and precise annotation, as shown in
Figure 4.

A.2 Annotation Coordination

We engage annotators from a commercial data an-
notation company, comprising senior levels for an-
notation training and quality verification and others
for data annotation. There are 47 annotators in total,
among whom 55% are male and 45% are female.
All annotators receive fair compensation, with their
salaries and workloads agreed upon in advance.
Employment is contract-based and adheres to local
regulations. The total cost for annotation, includ-
ing both the factuality and supporting evidence, as
well as the development of annotation platforms,
amounts to approximately 14,000 USD. We ex-
plained how the data would be used and obtained
consent.

A.3 Data Distribution of MAVEN-FACT

We follow the original spilt of MAVEN in (Wang
et al., 2020). The statistics of splitting subsets are
shown in Table 10.

B EFD Experimental Details

In this section, we introduce the implementation
details regarding general details (appendix B.1) and
task-specific details (appendix B.2). Additionally,

we provide the results of a more detailed error anal-
ysis of EFD task on MAVEN-FACT (appendix B.3)
and generalization experiments on FactBank (ap-
pendix B.4).

B.1 General Implementation Details

For fine-tuned EFD models, we train the models
on our train set with a learning rate of 1e — 5 and
a batch size of 16 over 10 epochs based on their
checkpoint from HuggingFace. Table 11 shows
the correspondence between models and the check-
points we used for training. We insert special to-
kens (<e> and </e>) around the trigger words of
events in the text to indicate their positions, which
are also used as the basis for dynamic multi-pooling
for DMBERT and DMRoBERTa.

For large language models with in-context learn-
ing, we use the official OpenAl to evaluate GPT-3.5
and GPT-4, with the decoding sampling tempera-
ture set to 0, and other parameters kept as default.
We utilize the checkpoints from HuggingFace to
evaluate LLAMA 3 and Mistral 7B. The check-
points and API we used are also shown in Table 11.

All experiments are performed in a single run.
We conduct experiments on Nvidia GeForce RTX
3090 GPUs, totaling approximately 200 GPU
hours. For GPT-3.5 and GPT-4, we spend about
300 USD in total.

B.2 Task Specific Details

For the event factuality detection task, we conduct
sentence-level training and testing, each data item
is a sentence with its marked events. We conduct
GenEFD experiments with the prefix “Event fac-
tuality prediction” for each data item. The prompt
used in the in-context learning experiments of large
language models is listed in Table 13.

For the supporting evidence prediction task, we
approach it as a token classification task. The input
consists of a list of words in the sentence and we
insert special tokens showing its factuality around
the trigger word of the event. The output is a list of
the same length, with each element indicating the
type of the corresponding word. In the output, ‘O’

5https://huggingface.co/google-bert/
bert-large-uncased
6https://huggingface.co/FacebookAI/
roberta-1large
7https://huggingface.co/google/flan—tS—base
8https://huggingface.co/meta—llama/
Meta-Llama-3-8B-Instruct
9https://huggingface.co/mistralai/
Mistral-7B-Instruct-ve.2
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Task Definition
You are required to annotate the factuality of events within the provided document. The event trigger words are
marked with ‘(**” and ‘**)’ for your reference. Assign one of the following two labels to each event based on its

context:

Label Definition

CT+: The event is definitely certain to happen or have happened.
OT: Other factuality, including but not limited to, certain not to happen or have happened, possible to happen or

have happened, etc.

Annotation Rules with CoT

1. Firstly, observe the narrative source of the event. If the event originates from roles within the document, label it

OT.

2. Then, look for contextual cues like words that suggest attempts, such as ‘try to’” or ‘seek to’, and words indicating
possibility, such as ‘may’ or ‘might’. These events will also be labeled OT.
3. Events with indicators in the context, such as words conveying negative cues like ‘stop’ or ‘prevent’, will also be

labeled OT.

4.1f at this stage, you still cannot determine the factual certainty of an event, prioritize labeling it as OT.

Document with Example
{DOCUMENT}

The output should be the same document with factuality label assigned behind each event trigger word. Do not

output any other information.
Example:

Document: The company (**announced**) that it will (**launch**) a new product next month.
Output: The company (**announced**)(CT+) that it will (**launch**)(OT) a new product next month.

Table 9: Prompt used for LLM annotation process. The “DOCUMENT” part varies depending on the data item.

Subset | #Doc. | #CT+ #CT- #PS+ #PS- #Uu | #Total
Train | 2,913 | 69,782 1,492 2,262 285 118 | 73,939
Dev 710 | 16,868 384 456 52 20 | 17,780
Test 857 | 18,559 454 1,156 203 185 | 20,557

Table 10: Statistics of splitting MAVEN-FACT. Doc. is
the short for Document.

Model | Checkpoint / API
BERT / DMBERT bert-large-uncased’
RoBERTa / DMRoBERTa roberta—large(’
GenEFD flan-t5-base’
LLAMA 3 Meta-Llama-3-8B-Instruct®
Mistral 7B Mistral-7B-Instruct-ve.2’
GPT-3.5 gpt-3.5-turbo
GPT-4 gpt-4

Table 11: The correspondence between model and
checkpoints or APIs.

represents other types, ‘B’ signifies the beginning
of supporting words and ‘I’ indicates the interior
of supporting words. This definition applies to
the fine-tuned EFD models. For large language
models, to enhance their understanding of the task,
we provide prompts in addition to the input, as
shown in Table 14.

For the task interaction, we utilize different ap-
proaches depending on the models and the tasks. In
terms of tasks, for event relations, we mark triggers
that have causal relations to the event to be classi-
fied with different special tokens in the sentences,
and then concatenate them. For event arguments,

we arrange them in a Type, Entity key-value pair
format. Regarding the models, for DMRoBERTa,
we use the processed event relations and event ar-
guments as the input of its encoder, using the av-
erage representation of the token sequence as their
representation. These representations are then con-
catenated with the original representation for clas-
sification. For GenEFD, we directly concatenate
the processed event relations and event arguments
with the original input as the model’s input. For
large language models, we incorporate explana-
tions of event relations and arguments into the orig-
inal event factuality detection prompt, followed by
the processed event relations and arguments. The
newly added prompt parts is shown in Table 15.

B.3 Error Analysis of EFD

We analyze the error cases. As shown in Table 16,
we can observe that the errors are mainly due to
the modality classification error, i.e., confusion be-
tween “possible” and “certain”. This may be due
to neglect of modality in either pre-training or post-
training, which needs further exploration.

We also investigate more specific error types in
modality classification (Table 17) and polarity clas-
sification (Table 18). We can observe that models
tend to predict events as already having occurred,
i.e., fact. This may lead to event-related hallucina-
tions in the models’ output.
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Modality Rules
1. Modality is labeled based on the context. Events with a possible (PS) modality usually have obvious hint words

in the context, such as words with a tentative meaning like “try to”, “seek to”, or words indicating possibility like

“may”, “might”.
2. The Factuality of an event needs to consider its narrative source. We regard the document itself as the standard

source. If the narrative source of an event is an argument in the document and the narration includes the argument’s

subjectivity, the modality is possible (PS).

Polarity Rules

1. Polarity is labeled based on the context. Events with a negative (-) modality usually have obvious hint words in

9

the context, such as negative cues like “prevent”,

can not”.

Relation Rules

1. For the event set B containing all the events B with the relation B CAUSES A, if any event B in B has the factuality

of CT+, then the factuality of event A is CT+.

2. For the event set B containing all the events B with the relation B PRECONDITIONS A relationship, if the
factuality of event A is CT-, then the factuality of any event B in B is CT-.

Table 12: Some annotation rules for human annotation process. “Modality Rules”, “Polarity Rules” and “Relation
Rules” represent the rules for classifying modality, classifying polarity, and utilizing relations, respectively.

&S 1700381
Bz The Siege of Syracuse in 827828 marks the first attempt by the Aghlabids to BORGUER the city of Syracuse in
Siclly , then a Byzantine province
The Aghlabid army had only months before landed on Sicily , ostensibly in SiiBBOH of the rebel Byzantine
general Euphemius
After defeating local forces and FaKIng the fortress of Mazara , they iafehied on Syracuse , which was the
capital of the island under Roman and Byzantine rule
The siege [81&d through the winter of 827-828 and until summer . during which time the besieging forces
§iiffefed greatly from lack of food and an outbreak of an epidemic . which BIBified the life of their commander
Asad ibn al-Furat
In the face of Byzantine reinforcements , the new Arab leader , Muhammad ibn Abi * I-Jawari , ESEHGGNEE the
siege and ilfigféM o the southwestem part of the istand , which remained i their hands
From there they pusiied the slow conquest of Sicily . which [& to the fall of Syracuse after another long
siege in 877878 , and EUIMINALEA in the fall of Taormina in 902

AR siege_4_20
SEFTAPEAIR: abandoned_4_18

AR HICAUSERRACR
slege_4_20 CAUSE defeating_2_1

ZiBiFTE-hFEHIPRECONDI TONE R :
siege_4_20 PRECONDITION pursued_5_3

lasted_3_2 cT+

suffered_3_18 cT+

imed_3_32 cT+

abandoned_4_18 cT+

siege_4_20 cT-

avandoned_4_18

withdrew_4_22 cT+

pursued_5_3 cT+

led to_5_11 cT+

)00000000

Figure 4: Screenshot for the annotation platform. The trigger word “siege” is selected for annotation, highlighted in
yellow. Events related to it are highlighted in blue and green based on their relation type.

B.4 Generalization Results on FactBank

We have conducted generalization experiments on
FactBank. The results further demonstrate MAVEN-
FACT is of high quality and can serve as a valuable
resource to the community.

FactBank consists of factuality from two sources:
author source and non-author source. We di-
vide FactBank into two subsets “AUTHOR” and
“OTHER”, whose source is author and non-author
respectively. Each subset was further split into
training, validation, and test sets inan 8 : 1 : 1
ratio. Due to the label spaces of FactBank and
MAVEN-FACT not being the same, we remap the
labels in FactBank to align with the taxonomy used
in MAVEN-FACT, as shown in Table 19.

We adopt DMRoBERTza as the EFD model and
use two training methods. For the baseline, we train
DMRoBERTa merely on the FactBank training

set for ten epochs. For MAVEN-FACT augmenta-
tion, we first train DMRoBERTa on MAVEN-FACT
for two epochs and then adapt the trained DM-
RoBERTa on FactBank training set for ten epochs.
We use the FactBank validation set to select the
best-performing checkpoint.

The results are shown in Table 20 and Ta-
ble 21. We can observe that on AUTHOR set
the MAVEN-FACT Augmented model performs
much better, which demonstrates the high quality
of MAVEN-FACT. Furthermore, the MAVEN-FACT
Augmented model also performs better on OTHER
set, even if MAVEN-FACT only contains factuality
of author source.

Considering the large scale and high quality of
MAVEN-FACT, we believe that MAVEN-FACT can
serve as a significant resource in event factuality
detection and event understanding, facilitating re-
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INSTRUCTION:

You are an event factuality classifier. Please annotate the factuality of events within the text. The events are marked
with *<e>" and "</e>’. Assign one of the following five labels to the event:

CT+: The event is certain to happen or have happened.

CT-: The event is certain not to happen or have happened.

PS+: The event is possible to happen or have happened.

PS-: The event is possible not to happen or have happened.

Uu: The event factuality is unknown.

RULES:

Here are some annotation Rules:

1. Firstly, observe the narrative source of the event. If the event originates from roles within the document instead of
the document itself, label it "PS+’ or "PS-’.

2. Then, look for contextual cues like words that suggest attempts, such as ’try to’ or ’seek to’, and words indicating
possibility, such as 'may’ or *might’. These events will also be labeled *PS+’ or "PS-’.

3. Events with indicators in the context, such as words conveying negative cues like ’stop’ or “prevent’, will also be
labeled "PS-’ or "CT-".

INPUT:

Here is the text you need to generate the label for, please do not output other information other than the label.
TEXT: President Herbert Hoover then <e>ordered</e> the Army to clear the marchers’ campsite.

LABEL:

Table 13: An example of prompt for event factuality detection task. The RULES part is used for inference with
chain-of-thought prompt. The INPUT part varies depending on the data item.

search in faithful event understanding.

C Mitigating Hallucination

We employed GPT-4 (gpt-40-2024-05-13) to
construct the QA dataset based on MAVEN-FACT.
The construction process can be divided into two
stages, and Table 22 displays the prompt templates
used in each stage. Moreover, Table 23 presents
the prompt information corresponding to three test
configurations.
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INSTRUCTION:

Task Description:

You are given a list of tokens representing a sentence containing an event. The event is marked with ‘<factuality>’
and ‘</factuality>’, where ‘factuality’ indicates the factuality of the event. The possible values for factuality are:

- CT+ (certainly happened)

- CT- (certainly did not happen)

- PS+ (possibly happened)

- PS- (possibly did not happen)

Your task is to generate an output list. Each element in the output list should correspond to an element in the token
list. Use the following tags:

- ‘O’ for tokens that are not part of an evidential basis.

- ‘B’ for the beginning of an evidential basis.

- ‘T’ for the inside of an evidential basis.

Carefully analyze the input sentence and identify the event marked by ‘<factuality>’ and ‘</factuality>’. Identify
the evidential basis words that support the factuality of the event. Generate the output list with ‘O’, ‘B’, and ‘I’ tags
according to the given rules.

Ensure your output matches the format and corresponds accurately to the input token list.

EXAMPLE:

For example:

Input: [“Webster’, ‘s’, ‘confession’, ‘did’, ‘not’, ‘<CT->’, ‘match’, ‘</CT->’, ‘the’, ‘forensic’, ‘evidence’, *.’]
Output: [‘0’, ‘O’, ‘O, ‘B’, ‘T, ‘0", ‘O’, 0", ‘0", ‘O’, 0", ‘0’|

In this case, the event is “match”, its factuality is CT-, and the evidential basis is “did not”.

INPUT:

Input: [‘The’, ‘driver’, ‘applied’, ‘the’, ‘brakes’, ‘and’, ‘reversed’, ‘the’, ‘engine’, °,’, ‘but’, ‘was’, ‘unable’, ‘to’,
‘<CT->’, ‘stop’, ‘</CT->’, ‘in’, ‘time’, *.’]

Output:

Table 14: An example of the prompt for supporting evidence prediction task. The INPUT part varies depending on
the data item.

EXPLANATION:

In addition to the text, the event is accompanied by CAUSE relations, which is the <c>event</c> that causes the
<e>event</e>, PRECONDITION relations, which is the <p>event</p> that must happen before the <e>event</e>.
You can use these relations to help you determine the factuality of the event.

Argument information is also provided for the event. The arguments are the entities that are involved in the event.
You can use the arguments to help you determine the factuality of the event.

RELATIONS:

Cause Relations:

Most of them were <c>car bombs</c> and most targeted infrastructure, especially the transport network.

At least twenty bombs <c>exploded</c> in the space of eighty minutes, most within a half hour period.
Precondition Relations:

The bombings were partly a response to the breakdown of <p>talks</p> between the IRA and the British government.

ARGUMENTS:
Arguments:TYPE: Agent; ENTITY: IRA. TYPE: Location; ENTITY: Belfast.

Table 15: An example of additional prompt for task interaction compared to event factuality detection task. The
RELATIONS part and ARGUMENTS vary depending on the data item.
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Model | Modality Only ~ Polarity Only  Both

DMRoBERTa 80.02 10.74 9.24
GenEFD 76.43 13.69 9.88
LLAMA 3 60.32 13.49 26.19
GPT-4 51.02 37.76 11.22

Table 16: Error rate (%) on Event Factuality Detection.
Modality Only, Polarity Only, and Both mean the error
from modality classification only, polarity classification
only, and both accordingly.

Model | CT20 02CT
DMRoBERTa | 8.95 91.05
GenEFD 3.77 96.23
LLAMA 3 30.28  69.72
GPT-4 8.20 91.80

Table 17: Error rate (%) on modality detection error.
CT20 means the modality label is “CT” and the predic-
tion is not “CT” and O2CT means the modality label is
not “CT” and the prediction is “CT"”.

Model | P2N  N2P
DMROBERTa | 15.63  84.37
GenEFD 524 94.76
LLAMA 3 0.0  100.0
GPT-4 18.75  81.25

Table 18: Error rate (%) on polarity detection error.
P2N means the polarity label is “+” and the prediction
is “-” and N2P means the polarity label is “-” and the
prediction is “+”.

MAVEN-FACT | FactBank

CT+ CT+

CT- CT-

PS+ PS+, PR+
PS- PS-, PR-
Uu Uu

Table 19: Labels map between MAVEN-FACT and Fact-
Bank. MAVEN-FACT and FactBank represent the labels
used in MAVEN-FACT and FactBank accordingly.

Settings \ CT+ CT- PS+ PS- Uu Macro-F1
Baseline 954 76.6 83.7 0.0 92.0 69.5
MAVEN-FACT Aug | 95.1 76.2 884 100.0 92.1 90.4

Table 20: F1 scores (%) on AUTHOR set of Fact-
Bank. MAVEN-FACT Aug and Baseline represent DM-
RoBERTa model with and without MAVEN-FACT aug-
mentation, respectively.

Settings | CT+ CT- PS+ PS- Uu Macro-F1
Baseline 89.6 66.7 74.7 33.3 64.2 65.7
MAVEN-FACT Aug | 91.2 78.6 73.7 33.3 62.2 68.2

Table 21: F1 scores (%) on OTHER set of Fact-
Bank. MAVEN-FACT Aug and Baseline represent DM-
RoBERTa model with and without MAVEN-FACT aug-
mentation, respectively.
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STEP1: Constructing Reasoning Chain

Please generate an incorrect reasoning chain containing the "{trigger}" event (marked with <e> and </e>) based on
the following document.

Whenever possible, use the "{trigger}" event as the start or middle node event of the reasoning chain, rather than as
the conclusion event. Note that the "trigger" event may not occur in the document, but in the reasoning chain, the
"{trigger}" event must occur for the reasoning to be valid.

This chain of reasoning should try not to include events not mentioned in the document.

Please give the chain of reasoning in numerical order and the reasoning chain within 6 steps.

Document: {document}

Reasoning Chain:

STEP2: Constructing Question

Please give a question based on the above chain of reasoning. It should not be too simple or too difficult.

The question should satisfy the following conditions: If the question is answered based on the above chain of
reasoning, the answer will be Yes. However, if the question is answered based on the fact that "{trigger}" in the
chain of reasoning does not necessarily occur, the answer will be No. Please directly output the questions that meet
the requirements and do not output others.

Table 22: Prompt template for constructing QA dataset based on MAVEN-FACT. The input and output of STEP1
are attached to the input of STEP2 as history. In real application, {trigger} and {document} are filled with their
corresponding input entries.

Vanilla Setting

Please answer the questions according to the document below. Please answer Yes or No directly and do not enter
other words.

Document: {document}

Question: {question}

Answer:

Real-World and Oracle Setting

Please answer the questions according to the document below.

Please carefully distinguish which events actually occurred in the document and which events are just possible
events. Answer the questions based on what exactly happened in the document.

Please answer Yes or No directly and do not enter other words.

Document: {document}

Question: {question}

Note that the "{trigger}" event in the above document is not an exact occurrence, but a {factuality}.

Answer:

Table 23: Prompt template for Vanilla, Real-World, and Oracle Setting in § 4. In application, {document},
{question}, {trigger}, and {factuality} are populated with their respective inputs. Depending on the trigger’s event
factuality, {factuality} is assigned accordingly: "probable occurrence" for PS+, "probable non-occurrence" for PS-,
and "definite non-occurrence" for CT-.
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