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Abstract

Due to the rapid development with pre-
trained language models, fully end-to-end Task-
Oriented Dialogue (TOD) systems exhibit su-
perior performance. How to achieve the ability
to retrieve entities in cross-domain large-scale
databases efficiently is a key issue. Most ex-
isting end-to-end Task-Oriented Dialogue sys-
tems suffer from the following problems: The
ability to handle erroneous but easily confused
entities needs to be improved; Matching in-
formation between contexts and entities is not
captured, leading to weak modeling of domain-
invariant and interpretable features, making it
difficult to generalize to unseen domains. In
this paper, we propose a method for knowledge
retrieval driven by matching representations.
The approach consists of a matching signal ex-
tractor for extracting matching representations
between contexts and entities that have generic
conceptual features and hence domain invari-
ant properties, and an Attribute Filter for filter-
ing irrelevant information to facilitate the re-
selection of entities. Experiments on three stan-
dard benchmarks at the dialogue level and on
large knowledge bases show that our retriever
performs knowledge retrieval more efficiently
than existing approaches.

1 Introduction

Task-oriented dialogue systems (Zhang et al., 2020)
are designed to help users complete certain specific
tasks, such as table booking, hotel booking, ticket
booking, and online shopping. Traditional task-
oriented dialogue systems are developed through di-
alogue state tracking (Kenton and Toutanova, 2019;
Wau et al., 2019a), dialogue strategies (Takanobu
et al., 2019) and natural language generation (Wen
et al.). These modules require annotations to train
and need to generate belief states to query the
database to generate response. In contrast, fully
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end-to-end task-oriented dialog system directly en-
codes KB and uses a neural network to query the
KB in a differentiable manner, and it can directly
generate system response given only dialogue his-
tory and the corresponding KB.

Although the end-to-end paradigm gains increas-
ing attention, retrieving the correct knowledge from
external databases becomes a key limiting factor
for the performance of such models due to the
lack of belief states as supervisory signals. Ex-
isting end-to-end TOD systems can be divided into
two categories based on the relationship between
knowledge retrieval and corresponding generation.
The first class of approaches typically integrates
the processes of knowledge retrieval and response
generation and trains them under the supervision
of reference responses (Madotto et al., 2018; Qin
et al., 2020; Raghu et al., 2021; Xie et al., 2022;
Wau et al., 2022; Madotto et al., 2020; Huang et al.,
2022).The second class of approaches decouples
knowledge retrieval from the corresponding gener-
ation and explicitly extracts the supervisory signals
from the response generation to improve the re-
trieval process, which alleviates the above problem
to some extent. Q-TOD (Tian et al., 2022) extracts
the essential information from the dialogue context
into a query, which is further employed to retrieve
relevant knowledge records for response genera-
tion.

However, although these methods are able to
provide supervisory signals for retrieval, they only
use rough dot product interactions to compute the
similarity when filtering the candidate entities for
generation, which is vulnerable to receiving inter-
ference from irrelevant attributes and has poor do-
main generalization, as shown in Fig.1. Whereas
the information extracted by response generation
originally comes from the candidate entities, the
effectiveness of this supervisory signal is therefore
closely related to the accuracy of the candidate
entities’ input to the response generator.
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In-Domain

Hello, I am looking for an expensive

O restaurant on the south side of town.

[t R
Peking restaurant is in the south part, and '@'
the price range is expensive. Can | help you

with anything else?
O What is the address for Peking restaurant?
[t
1@’

Peking restaurant address is Cambridge

leisure park clifton way cherry hinton.

Out-of-Domain

Hello, | am looking for an cheap hotel on the
west side of town.

2O

1@'
The cambridge belfry is in the west part of
town in the cheap price range . Would you
like me to book a room for you ?

Irrelevant attributes

KB Q affect entity retrieval!

Retrieved Entities

name food address postcode area pricerange
1 | frankie and bennys italian cambridge leisure park clifton way cherry hinton cb17dy south expensive
2 | peking restaurant chinese 10 homerton street city centre ¢b28nx south expensive
3 taj tandoori indian 64 cherry hinton road cherry hinton cb17aa south expensive

Figure 1: Visualisation of the impact of irrelevant attributes on entity selection and entity retrieval errors for different
domain extensions. Attributes colored in grey indicate attributes with low context relevance scores. Wrong answers
are caused by the fact that the retriever views every attribute in the entity equally. In the in-domain case, the retrieval
of the entity is interfered by irrelevant attributes, while in the out-of-domain case, the entity will directly have errors

at the entity level.

In this paper, we propose a knowledge retrieval
method that is sensitive to matching attributes to im-
prove generalisation and interpretability by captur-
ing matching information. Matching information
can be used to filter mismatched parts of entities
to improve entity selection. We first filter a batch
of candidate entities by calculating the rough simi-
larity between the context and the entity, and then
calculate the match representation between the con-
text and the entity and compute its match score
with each attribute in the entity to obtain the rele-
vance of the attribute to the context. Based on this
relevance score, we filter out irrelevant attributes
and recalculate the top-K entities used to generate
the response. The top-K entities are then collocated
in a certain form and fed into the generator. We
compare our system with other systems on three
benchmark datasets(Eric et al., 2017; Wen et al.,
2017; Eric et al., 2020). Our main contributions
can be summarised as:

(i) We extract fine-grained matching informa-
tion between contexts and entities, not just coarse-
grained interactions to judge relevance;

(i1)) We discover that attributes can also facili-
tate the selection of entities, by filtering irrelevant
attributes first to select entities;

(iii)) The experimental results show that our

system achieves state-of-the-art performance both
at the dialog-level and on the total knowledge
database.

2 Related Work

2.1 End-to-End Task-Oriented Dialog

The development of end-to-end trainable methods
to generate responses in conjunction with exter-
nal knowledge bases has received increasing at-
tention relative to traditional modular approaches
in task-oriented dialogue systems. Some works
encode the knowledge base (KB) with memory
networks, and KB records are selected using atten-
tion weights between dialogue context and memory
cells (Qin et al., 2019; Wu et al., 2019b; Raghu
et al., 2021). Some work has explored the use of
tandems of knowledge bases and dialogue contexts,
which are used as input to pre-trained language
models (Xie et al., 2022; Rony et al., 2022). Addi-
tionally, the knowledge base is stored in model pa-
rameters for implicit retrieval during response gen-
eration (Madotto et al., 2020; Huang et al., 2022).
However, these methods generally blend entity re-
trieval and response generation during response
generation, which leads to sub-optimal retrieval
performance when large-scale knowledge bases are
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Figure 2: An overview of our end-to-end task-oriented dialogue system, which consists of a matching signal extractor
an attribute filter, and a response generator. The match signal extractor is used to extract matching information,
homogeneous entity global information, and highlight local matching information.

provided.

The second class of approaches decouples
knowledge retrieval from the corresponding gener-
ation and explicitly extracts the supervisory signals
from the response generation to improve the re-
trieval process, which alleviates the above problem
to some extent. Q-TOD (Tian et al., 2022) ex-
tracts the essential information from the dialogue
context into a query, which is further employed to
retrieve relevant knowledge records for response
generation. MAKER (Wan et al., 2023) introduces
a multi-grained retrieval with both entity and at-
tribute selection. Shi et al. (2023) proposed a dual
feedback network to obtain the supervision signal
of the corresponding generator.Shen et al. (2023)
propose the application of maximal marginal like-
lihood to train a perceptive retriever by utilizing
signals from response generation for supervision.

2.2 Dense Retriever

Because of the excellent performance in effi-
ciency and effectiveness, dense retrieval has been
widely used in first-stage retrieval that efficiently
recalls candidate documents from the large cor-
pus (Karpukhin et al., 2020).

As deep neural networks have achieved promis-
ing results in various NLP tasks, they have also
been explored for information retrieval applications.
One of the mainstream approaches to information
retrieval is to build retrievers using dual-encoder

architecture (Yih et al., 2011). Gillick et al. (2019)
employs the dual encoder architecture for sepa-
rately encoding mentions and entities into high-
dimensional vectors for entity retrieval. However,
through this coarse interaction metric calculation,
fine-grained information about entities in the mod-
eling external database is often ignored. In order to
learn entity representations that can match different
mentions, Liu et al. (2023) proposes a multi-view
augmented distillation framework, where entities
are divided into multiple views, while, at the same
time, a global view is retained to prevent the spread
of uniform information. In document retrieval,
BERM (Xu et al., 2023) improves the generali-
sation of dense retrieval by capturing the matching
signals, splitting a single paragraph into multiple
units, and proposing two unit-level requirements to
represent training constraints. Motivated by these
works, we can conclude that the homogeneous rep-
resentation of global information and the identifi-
cation of locally relevant matches of an entity are
two key factors in entity retrieval.

3 Method

As shown in Fig. 2, our system first retrieves an
initial rough batch of candidate entities from the
knowledge base. Then, the matching signal extrac-
tor performs global information decentralization
and local information sharpening on the retrieved
candidate entities to extract the relevant informa-
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tion of their attributes. Then, the entity enters the
attribute filter to eliminate irrelevant attributes. Af-
ter filtering out the irrelevant attributes, the entities
are reordered to select the top-K candidate entities.
These candidate entities along with the dialogue
context are then fed into the generator model to
generate replies.

3.1 Problem Definition

Given a dialog D = {Uy, Ry, ...,Up, Ry} of T
turns, where U; and R; are the ¢-th turn user utter-
ance and system response, respectively. We use
C; to represent the dialog context of the ¢-th turn,
where Ct = {Ul, Rl, ceey Utfl, Rtfl, Ut}. An ex-
ternal knowledge base (KB) is provided in the form
of a set of entities, i.e., X = {Fy, Es,..., Eg},
where each entity F; is composed of IV attribute-
value pairs, i.e., B; = {a!,v},...,a™,v]N}. The
goal of an end-to-end task-oriented dialogue sys-
tem model is to learn a mapping that takes the di-
alogue context C; and knowledge base /C as input
and generates an information response R;.

Ry = f(Cy, K) (1

3.2 Knowledge Retriever for Entities

Dual encoders are the most commonly used archi-
tecture for large-scale retrieval, so we model the
entity selector as a dual encoder architecture, where
one encoder, Enc,, is used to encode the dialogue
context, and the other encoder, Enc,, is used to
encode each entity in the knowledge base, both of
which are dense vectors. To encode an entity, we
concatenate the attribute-value pairs of this entity
into a sequence and pass it to Enc.. The selection
score s; ; for entity E; is defined as the dot product
between the context vector and the entity vector as:

st; = Enc. (C)" Enc, (E;) )
Then, the top-K candidate entities are obtained by:

Ex} (3

We implement Enc. and Enc. with a pre-
trained language model and allow them to share
weights, where the final ‘[CLS]’ token representa-
tion is used as the encoder output. We follow Shi
et al. (2023) to initialize the pre-trained model.

& =Top K (st;) ={En,...

3.3 Matching Signal Processing

We process the match signals of candidate entities
by first feeding them into the Match Signal Extrac-
tor to homogenize the entity global information and

capture local relevance information, and then feed-
ing them into the Attribute Filter to filter irrelevant
attributes. Finally, we re-encode the entities after
masking irrelevant attributes to compute a score
that is used to select the entities that are finally
used to generate responses. Global Information
Decentralization: This process involves distribut-
ing or dispersing the global, or overall, information
content of an entity across its attributes. It aims
to ensure that the entity representation includes a
comprehensive summary of all its attributes with-
out bias towards any single aspect. This step is
crucial for capturing the full semantic context of
the entity. Local Information Sharpening: After
decentralizing the global information, this process
focuses on highlighting and refining the local, or
specific, information within the entity’s attributes.
It sharpens the distinctions between different at-
tributes and their relevance to the context, thus en-
hancing the ability to identify and match the most
contextually relevant aspects of the entity.

Matching Signal Extractor Firstly, entity rep-
resentations unify and summarise the semantics of
each attribute within an entity, resulting in a com-
prehensive and refined representation of the entity.

After encoding the entity E; using the encoder
described in Section 3.2, we obtain the hidden state
Z = Enc, (E;), and we use te, t. to denote the
“[CLS]” token of Enc, (F;) and Enc, (C¢). The
embeddings A of attributes tokens in an entity can
be obtained from Z as the segmentation of different
attributes:

A={A,A9, ..., AN},

where A; is the embedding of the corresponding
attribute and it is the average pooling of the em-
beddings of tokens in the attribute. In order for
the entity representation to carry the information of
each attribute uniformly, the relationship between
Enc, (E;) and A is described by the loss function
as:

Ly = Dgp [b]| sim (e, A)], “)

where Dpp[]]-] is KL-divergence loss, b =
[%...., %] is a uniform distribution with equal
values and sim (te, A) = {dot (t¢, 4;) | A; € A}
is a distribution to represent the semantic similarity
between t. and A; € A, dot(-, ) is dot product.
Next, we extract matching units m within the
entity that capture the contextual information. By
balancing the semantic representation of attribute
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units in a fair manner, the element-wise multipli-
cation between ¢, and ¢, amplifies similarity parts
of the tensor, namely the semantic representation
of basic matching units, as demonstrated in (Xu
et al., 2023). Therefore, we introduce this match-
ing mechanism as:

m = GELU (t. ® t.) (5)

where © denotes element-wise multiplication op-
erator and GELU represents the activation func-
tion (Hendrycks and Gimpel, 2016)for introducing
stochasticity. Pseudo-labeling is employed for su-
pervision by constructing an N-dimensional 0-1
vector based on the presence or absence of each
attribute in the context. For the pair (¢, F;), y; in
attribute label list Y = {y1, ..., yn} for matching
attribute is that if A; appear in the Cy, y; = 1, oth-
erwise, y¥; = 0. During training, we optimize the
semantic distance between m and each attribute,
namely the attributes scores s, using cross-entropy
loss to identify the corresponding matching at-
tributes:

Le=— Z y;i log (dot (m, A;)) (6)

=1

where A, € A,y; € Y,s, = (dot (m, 4;)). m
is only used as the constraint in training but has
important implications for inference. It is because
that m is the combination of text representations
(t. and t.). The optimization for m is training the
text encoder to output the text representation that is
suitable for matching to improve the generalization
ability.

The matching signal extractor enables the model
to implicitly aggregate the semantics of each at-
tribute within the entity into the entity representa-
tion while ensuring the semantic orthogonality of
the attributes. In the dot product between the con-
text and the entity representation, the semantic in-
formation of the basic matching units is preserved,
while the semantic information of other units is
masked.

Attribute Filtering and Entity Reselection Af-
ter obtaining attribute scores for each entity, we
select the retrieved entities by pruning attributes
with importance scores greater than a predefined
threshold ¢. Specifically, we mask irrelevant at-
tributes to obtain a new entity set with irrelevant
attributes masked out. We then re-retrieve these
entities using the retriever to obtain entity scores s;
and rank them. Finally, we select the top-r entities

&, and feed them into the generator to generate the
response. In this way, the score of the re-selected
entity no longer receives the influence of extra-
neous attributes, and the extraneous attributes are
masked before being fed into the generator.

3.4 Response Generator

Following (Wan et al., 2023), we employ a mod-
ified sequence-to-sequence structure for the re-
sponse generator to facilitate direct interaction be-
tween dialog context and retrieved entities.
Generator Encoder Each entity El- in fft is first
concatenated with dialog context C; and encoded
into a sequence of vector representations Hy ; :

Hyi = Ency (|G B ) )

where Enc, represents the encoder of the response
generator. Then, the representations of all retrieved
entities are concatenated into H; :

H, = [Ht,l; cees Ht,K] (8)

Generator Decoder Taking H; as input, the
generator decoder Dec, produces the system re-
sponse token by token. During this process, the
decoder not only attends to the previously gener-
ated tokens through self-attention but also attends
to the dialogue context and retrieved entities by
cross-attention, we find KB-related tokens in the
response and regard the cross-attention scores from
these tokens to each retrieved entity as the knowl-
edge to distill:

L. = Dxr(5¢|lct). 9

where c¢; Represents cross attention score.
The probability distribution for each response
token in R; is defined as:

P(Rt,i) = Dng (Rt,z‘ | Rt,<i7Ht) (10)

We train the response generator by the standard
cross-entropy loss as:

| Re

Lgen = Z —logP(Ry;),
i=1

(11)

where |R;| denotes the length of R;.
Lastly, the overall loss of the system is the sum
of Ly, L, and response generation 10ss Lge, :

£:£u+£e+£gen +£c (12)
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Model MWOZ SMD CamRest
BLEU EntityF1 | BLEU EntityF1 | BLEU  Entity F1

DF-Net (Qin et al., 2020) 9.40 35.10 14.40 62.70 - -
GPT-2+KE (Madotto et al., 2020) 15.05 39.58 17.35 59.78 18.00 54.85
EER (He et al., 2020b) 13.608 35.60° 17.208 59.008 19.208 65.70%
FG2Seq (He et al., 2020a) 14.608 36.508 16.80° 61.108 20.208 66.40°
CDNET (Raghu et al., 2021) 11.90 38.70 17.80 62.90 21.80 68.60
GraphMemDialog (Wu et al., 2022) 14.90 40.20 18.80 64.50 22.30 64.40
ECO (Huang et al., 2022) 12.61 40.87 - - 18.42 71.56
DialoKG (Rony et al., 2022) 12.60 43.50 20.00 65.90 23.40 75.60
UnifiedSKG (T5-Base) (Xie et al., 2022) - - 17.41 66.45 - -
UnifiedSKG (T5-Large) (Xie et al., 2022) | 13.69" 46.04* 17.27 65.85 20.31* 71.03*
Q-TOD (T5-Base) (Tian et al., 2022) - - 20.14 68.22 - -
Q-TOD (T5-Large) (Tian et al., 2022) 17.62 50.61 21.33 71.11 23.75 74.22
DF-TOD (T5-Base) (Shi et al., 2023) 18.26 52.52 24.12 69.36 25.85 72.83
DF-TOD (T5-Large) (Shi et al., 2023) 18.48 53.17 25.10 71.58 26.00 74.04
MK-TOD (T5-Base) (Shen et al., 2023) 17.33 51.86 2477 67.86 26.76 73.60
MK-TOD (T5-Large) (Shen et al., 2023) 17.55 52.97 25.43 73.31 26.20 71.72
MAKER (T5-Base) (Wan et al., 2023) 17.23 53.68 24.79 69.79 25.04 73.09
MAKER (T5-Large) (Wan et al., 2023) 18.77 54.72 25.91 71.30 25.53 74.36
Ours (T5-Base) 17.63 53.65 25.06 71.79 25.54 73.69
Ours (T5-Large) 18.84 54.80 26.91 73.39 25.73 74.86

Table 1: Overall results of end-to-end TOD systems with dialog-level knowledge bases on MWOZ, SMD, and
CamRest. The best scores are highlighted in bold, and the second-best scores are underlined. T, I, §, * indicates
that the results are cited from (Qin et al., 2019), (Qin et al., 2020), (Raghu et al., 2021), and (Tian et al., 2022),

respectively.
Model MWOZ CamRest
BLEU Entity F1|BLEU Entity F1

FG2Seq 10.74 33.68 |19.20 59.35
CDNET 1090 3140 |16.50 63.60
Q-TOD 16.67 47.13 2144  63.88
MK-TOD (T5-Base) | 17.56  50.09 |26.85 73.51
MK-TOD (T5-Large)| 17.40 5326 |27.82 7198
DK-TOD (T5-Base) | 17.61 51.61 |27.39 70.74
DK-TOD (T5-Large) | 18.36 5296 |26.61 73.58
MAKER (T5-Base) | 16.25  50.87 26.19  72.09
MAKER (T5-Large) | 18.23  52.12 | 25.34 72.43
Ours (T5-Base) 16.76  51.87 |27.09 72.47
Ours (T5-Large) 18.77 53.82 |27.88 73.93

Table 2: Overall results of end-to-end TOD systems
with the total knowledge base on MWOZ and CamRest,
respectively. The best scores are highlighted in bold,
and the second-best scores are underlined.

4 Experiments

4.1 Datasets

We evaluate our system on three multi-turn
task-oriented dialogue datasets: MultiwOZ 2.1
(MWOZ) (Eric et al., 2020), Stanford Multi-
Domain (SMD) (Eric et al., 2017), and CamRest
(Wen et al., 2017). Each dialog in these datasets
is associated with a condensed knowledge base,
which contains all the entities that meet the user

goal of this dialog. For MWOQOZ, each condensed
knowledge base contains 7 entities. For SMD and
CamRest, the size of condensed knowledge bases
is not fixed: it ranges from O to 8 with a mean of
5.95 for SMD and from O to 57 with a mean of
1.93 for CamRest. We follow the same partitions
as previous work (Raghu et al., 2021).

BLEU (Papineni et al., 2002) and Entity F1
(Eric et al., 2017) are used as the evaluation met-
rics. BLEU measures the fluency of a generated
response based on its n-gram overlaps with the
gold response. Entity F1 measures whether the
generated response contains correct knowledge by
micro-averaging the precision and recall scores of
attribute values in the generated response.

4.2 Implementation Details

We employ BERT (Devlin et al., 2019) as the en-
coder of our entity selector and attribute selector
and employ T5 (Raffel et al., 2020) to implement
the response generator. All these models are fine-
tuned using AdamW optimizer (Loshchilov and
Hutter, 2018) with a batch size of 64. We train
these models for 15k gradient steps with a linear
decay learning rate of 10~4. We conduct all exper-
iments on a single 24G NVIDIA RTX 3090 GPU
and select the best checkpoint based on model per-
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formance on the validation set.

4.3 Results

We conduct separate experiments on the dialogue-
level dense knowledge database and the total
knowledge database. First, we show the overall
performance of the evaluated systems when a sub-
sidiary knowledge base is provided for each di-
alogue. Then, we replace the database with the
total knowledge base that includes all entities of
the dataset for comparison.

The results on the dialog-level database are
shown in Table 1. We find that our system achieves
state-of-the-art (SOTA) performance on several
datasets when using T5-Large as the generator
model. Specifically, on MWOZ, our system outper-
forms the previous SOTA (i.e., MAKER) in terms
of BLEU and Entity F1 by 0.07 and 0.08 points,
respectively. On SMD, compared to the previous
SOTA (i.e., MAKER), BLEU improves by 1 point
and Entity F1 improves by 0.08 points. On Cam-
Rest, however, our system is slightly inferior rela-
tive to MK-TOD. This is due to the fact that many
of the dialogues in CamRest contain very small
knowledge bases of only 1-2 entities, in which case
improving the retrieval of entities does not improve
the performance metrics of the dialogues much. By
comparing the experimental results we can find that
our results do not show much improvement relative
to MK-TOD, DK-TOD, and MAKER, the reason
behind this may be that most of these three models
focus on constructing a mechanism for distilling
knowledge from generation to retrieval, while our
model focuses more on improving the accuracy of
retrieved entities.

Most of the previous baselines have been per-
formed with each dialogue corresponding to a con-
densed knowledge base. However, constructing an
exclusive and relevant database for each dialogue in
a real scenario is difficult, and training on a small
and precise database leads to poor scalability of
the model. In the future, it is more likely that the
system will face large knowledge bases across do-
mains. Therefore, we collected the entities of all
the dialogues in the original dataset, constructed
a total knowledge base, and implemented several
recognized E2E TOD systems on MWOZ and Cam-
Rest, respectively, and examined the performance
of these systems, with results shown in Table 2.

We compared it only to those systems that also
implemented an overarching database. We found
that the advantage of our system over the other

benchmark systems is more pronounced when us-
ing the full knowledge base. Comparing the results
in Table 1 and Table 2, we notice that our system
has a greater improvement in experimental results
on the total database compared to other systems.
For example, on MWOZ, our system improves 0.41
and 0.56 points on BLEU and Entity F1, respec-
tively; on CamRest, our system improves 0.06 and
0.35 points on BLEU and Entity F1, respectively.
This may be because on large-scale databases, we
filter attributes by extracting fine-grained matching
information between entities and contexts to res-
elect entities, which is somewhat generic. These
observations validate the superiority of our system
when applied to large-scale knowledge bases and
the feasibility of applying it to real-world scenarios.
In addition, we also find that our model is better
able to gain advantages in both metrics relative to
other models, regardless of the type of knowledge
database.

S Analysis

5.1 Ablation Study

We conducted a disambiguation study of our sys-
tem on MWOZ using both the dialog-level knowl-
edge base and the total knowledge base because of
its relatively uniform distribution of dialogue-level
databases. The results are shown in the first and
second parts of Table 3, respectively.

In order to verify that filtering irrelevant at-
tributes by extracting matching information can
promote entity retrieval and thus improve the qual-
ity of generation, we design the following ablation
experiments: firstly, in order to verify that irrele-
vant attributes affect the selection of entities, we
only cancel the process of entity re-ranking after

Model | BLEU Entity F1
oursdialog—level 18.84 54.80
w/o re-rank 17.86 (] 0.98) 53.79 (| 1.01)
w/0 Ly, 18.19 (] 0.65) 54.41 (1 0.39)
w/o Le 17.68 (| 1.16) 53.79 (| 1.01)
Oursiotal 18.77 53.82
w/o re-rank 1743 (] 1.34) 53.23 (1 0.59)
w/o Ly, 18.34 (| 0.43) 53.48 (| 0.34)
w/o L. 17.18 (] 1.59) 51.95 (1 1.87)

Table 3: Results of ablation study on MWOZ with T5-
base, where “w/0” means without, “re-rank” denotes
candidate entities with masks are recoded for similarity
calculation and sorted to re-filter them, L,,,L. can be
found in Section 3.
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Figure 3: Performance of different retrieval methods
as the number of retrieved entities changes on the full
knowledge base in BLEU (a) and Entity F1 (b) scores.

masking irrelevant attributes, and feed it directly
into generation, and the results of the experiments
show that we found that after removing entity re-
ranking (w/o re-rank) the system performance de-
creases significantly by 1.34, 1.01 on BLEU and
Entity F1, respectively. This indicates that filtering
entities only by relevant attributes change the order-
ing of the original candidate entities after extracting
the matching part between entities and contexts at
a fine-grained level, thus proving that filtering en-
tities by attributes is superior to the context-entity
interaction at a coarse-grained level; and then, in
order to prove the effectiveness of match signal
extraction, we design to remove the loss of match
signal and filter entities directly by coarse-grain
method. Removing L, and L. experimental re-
sults show that the highest decreases on BLEU
and Entity F1 were 0.65 and 0.39, 1.59 and 1.87,
respectively. This explains that the extraction of
matching information needs to be performed on the
premise that the entity information can be repre-
sented uniformly by the attributes contained in it,
which captures the global information of the entity,
while L. highlights the relevant matching part of
the entity, which is indispensable in a retriever.

5.2 Matching Signal Extractor

In computing the matching signals between entities
and contexts, we capture the matching representa-
tions by homogenizing the global information and
extracting the local information and then determin-
ing which attributes need to be retained based on a
given threshold. We compare different approaches
to obtaining matching signals. We designed ex-
periments to compare methods to compute simi-
larity directly from attribute tokens and contextual
“[CLS]” tokens as a criterion for filtering attributes.
Also, in order to investigate the impact of different
numbers of retrieved entities on the system per-
formance as the number of entities increases, we
report the entity F1 and BLEU scores of the above

source
- target

(a) m Representation

source
- target

(b) m Representation(Ours)

Figure 4: T-SNE of the matching representations m for
source and target domains.

retrieval methods, and we observe in Fig. 3 that the
entity F1 and BLEU scores of all the three methods
increase with the increase of the number of enti-
ties, while our retriever always achieves the best
performance. In Fig. 3, we observe a positive corre-
lation between the entity F1 score and the number
of entities over the range of the number of enti-
ties we tested, but it does not imply that the higher
the number of detected entities the better, and that
noisy entities may be introduced as the number of
entities increases. We also observe that our system
outperforms other methods when the number of
entities is small, probably because our system is
able to accurately filter out information about irrel-
evant attributes. The fewer the number of retrieved
entities, the more accurate the entity information
is required. Therefore, our method achieves good
performance when a few entities are retrieved (i.e.,
when the error tolerance is low).

5.3 Domain-invariant Representation

In order to verify that our method improves the
generalization of the model by extracting domain
invariant information, we wanted to design exper-
iments to visualize the distribution of the match-
ing feature m. We first used T-SNE to visualize
the entity representations in the source and target
domains encoded by the baseline (MAKER) and
our model, respectively, as shown in Fig. 4. We
can find that the representations of the matching
features obtained by our method are more domain-
indistinguishable concerning the limit, which indi-
cates that the extracted matching features are not
affected by domain changes, thus suggesting that
our method is more invariant and generalizes better
in representing entities from different domains.

6 Conclusion

We propose a knowledge retrieval method that is
sensitive to matching attributes to improve general-
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isation and interpretability by capturing matching
information. Matching information can be used to
filter mismatched parts of entities to improve entity
selection. We first filter a batch of candidate enti-
ties by calculating the rough similarity between the
context and the entity, and then calculate the match
representation between the context and the entity
and compute its match score with each attribute in
the entity to obtain the relevance of the attribute
to the context. Based on this relevance score, we
filter out irrelevant attributes and recalculate the
entities used to generate the response. We compare
our system with other systems on three benchmark
datasets and the results show that our retriever per-
forms knowledge retrieval more effectively than
existing methods.

Limitations

There are some potential limitations of the paper
worth considering. Firstly, we have not explored
the number of rough candidate entities for retrieval,
but this may affect the final corresponding results.
Second, the pseudo-tagging approach we utilized
when extracting relevant information could be ex-
plored further. We will explore more efficient archi-
tectures for the response generator in future work.
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