
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 10324–10335
November 12-16, 2024 ©2024 Association for Computational Linguistics

In2Core: Leveraging Influence Functions for Coreset Selection in
Instruction Finetuning of Large Language Models

Ayrton San Joaquin♡ Bin Wang♢ Zhengyuan Liu♢

Nicholas Asher§,♡ Brian Lim∞,♡ Philippe Muller§,♡ Nancy F. Chen♢,♡, †
♡CNRS@CREATE, Singapore ♢Institute for Infocomm Research (I2R), A*STAR, Singapore

§CNRS, IRIT, France ∞National University of Singapore, Singapore
†Centre for Frontier AI Research (CFAR), A*STAR, Singapore

Abstract

Despite advancements, fine-tuning Large Lan-
guage Models (LLMs) remains costly due to
the extensive parameter count and substantial
data requirements for model generalization. Ac-
cessibility to computing resources remains a
barrier for the open-source community. To ad-
dress this challenge, we propose the In2Core
algorithm, which selects a coreset by analyzing
the correlation between training and evaluation
samples with a trained model. Notably, we
assess the model’s internal gradients to esti-
mate this relationship, aiming to rank the con-
tribution of each training point. To enhance
efficiency, we propose an optimization to com-
pute influence functions with a reduced num-
ber of layers while achieving similar accuracy.
By applying our algorithm to instruction fine-
tuning data of LLMs, we can achieve similar
performance with just 50% of the training data.
Meantime, using influence functions to analyze
model coverage to certain testing samples could
provide a reliable and interpretable signal on
the training set’s coverage of those test points.

1 Introduction

With the advent of Large Language Models (LLMs)
exhibiting surprising abilities across a variety of
language tasks (Clark et al., 2018; Zellers et al.,
2019; Sakaguchi et al., 2019; Hendrycks et al.,
2020; Cobbe et al., 2021; Gao et al., 2021; Lin
et al., 2022; Beeching et al., 2023), open-source
language models have surged in popularity as part
of broader efforts to democratize their accessibil-
ity (Taori et al., 2023). Furthermore, performance
can be improved with custom data that is smaller
than their pretraining data, which is known as su-
pervised fine-tuning (Liu et al., 2024b). One type
of fine-tuning important to the open-source commu-
nity is instruction tuning, which allows models to
follow a broad or specific-set of instructions and to
discuss with users in natural dialogue (Zhang et al.,
2023). However, instruction-tuning of open-source

LLMs remains limited in multiple areas.
One prominent limitation is the expensive cost

of fine-tuning such models, caused by a large num-
ber of parameters and data required (Liu et al.,
2024a). The popular approach is to scale-up the
parameter count and the dataset size, increasing
the computation required to train the models. This
method to improve LLMs does not lend-well to or-
ganizations without massive computing resources,
such as the majority of entities who rely on open-
source. Another limitation is evaluation, especially
for instruction-following models. Evaluation is
challenging as a result of LLMs’ inherent open-
ended generation, where a space of ideal outputs
exists, and existing evaluations usually measure
ability in a specific area, such as summarization.
Furthermore, evaluation sets may be hard to con-
struct for domain-specific abilities. These two is-
sues limit the continued adoption of open-source
models.

To alleviate the cost of fine-tuning, many have
focused on improving the hardware (Jouppi et al.,
2023) or the algorithm of the training process (Hu
et al., 2021). To improve evaluation, many have
introduced more sophisticated benchmarks (Liang
et al., 2022) or rely on automated evaluation using
more powerful LLMs (Li et al., 2023a). However,
one prominent limitation faced by these approaches
is that they do not analyze how the training data
can be manipulated to induce a better-performing
trained model.

By focusing on the problem of coreset selection,
we instead take a data-centric approach using influ-
ence functions. Influence functions are a method
from robust statistics (Hampel, 1974) and are first
adapted to neural-network-based machine learning
models by (Koh and Liang, 2017). They approx-
imate how much the model’s prediction changes
when a particular training point is removed from
the training process via the model gradients.

In this work, we aim to show that Influence Func-

10324



tions are versatile statistical tools that can address
two questions on data suitability: 1) What training
points are suitable for the test set? and 2) What
test points are suitable given that the model was
already trained on a particular training set? We
use influence functions to identify influential data
to address the two aforementioned issues by mak-
ing fine-tuning more efficient by using less data
and identifying test points well-covered by the fine-
tuned model.

Our method is orthogonal to concurrent efforts
to make fine-tuning more efficient for LLMs that
focus on modifying the model architecture, such
as Simplifying Transformer Blocks (He and Hof-
mann, 2023), or that focus on reducing the num-
ber of trainable parameters, such as LoRA (Hu
et al., 2021). It can therefore be combined with
these methods. In particular, our method relies on
DataInf (Kwon et al., 2023), which works on top
of LoRA to calculate influence values.

Our main contributions can be summarized as
follows:

• We developed In2Core, an algorithm that
significantly reduces the size of the training
set while creating a model that outperforms
the one trained on the full training set.

• With In2Core, we can identify whether a
testing point is well covered by the training set,
thus providing an interpretable explanation of
how a given model reacts to a particular test
point.

• We further improve the efficiency of the influ-
ence function algorithm by limiting the num-
ber of model layers in calculating influence
values, and we introduce a method to select
the optimal number of layers given a memory
budget.

2 Related Work

2.1 Influence Functions

Influence functions, a subset of Data Attribution
methods, seek to measure the effect of a given train-
ing point/s on a trained model. For a given training
point, they seek to capture the change in behavior
of a trained statistical model had that single training
point not been part of the training dataset (leave-
one-out-retraining). It outputs a value, called the
influence value, for each training point in question.

For further discussion on Data Attribution and In-
fluence Functions in machine learning, we refer to
Hammoudeh and Lowd (2024).

The current trend of scaling LLMs to an order of
billions of parameters, as well as leveraging huge
amounts of training data, pose additional compu-
tational challenges for existing influence function
methods (Grosse et al., 2023; Koh and Liang, 2017).
Recent works seek to adapt data attribution for
these kinds of models: TRAK (Park et al., 2023)
uses an "influence function-style" estimation that
simplifies the Hessian matrix, while DataInf (Kwon
et al., 2023) leverages LoRA (Hu et al., 2021) to cal-
culate influence values for fine-tuned LLMs. These
methods make data attribution tractable for modern
LLMs. In our study, we use DataInf because our
focus is on the fine-tuning phase of training.

2.2 Coreset Selection for LLMs
Coreset selection aims to select a subset of the
full training data, such that a model well-fitted to
the coreset also fits to the full data. One of the
first to study it for big data viewed it as a com-
pression method for large datasets (Phillips, 2017).
In machine learning, Mirzasoleiman et al. (2020)
introduced a coreset algorithm to boost iterative
gradient-based training. Coreset selection has been
recently explored for LLMs, given the obvious
problem of expensive training (Li et al., 2023c;
Chen et al., 2023) or to understand model proper-
ties such as in-context learning (Han et al., 2023).
Another line of work such as Han et al. (2023)
and Wang et al. (2023) apply coreset selection for
selecting the pretraining data of language models.
Our work differs by focusing on the fine-tuning
data, which is relevant to practitioners and to the
open-source community.

2.3 Coreset Selection with Influence Functions
Our work is closest to Wang et al. (2023); Yang
et al. (2022); Xia et al. (2024) in that they use influ-
ence functions to rank data in their selection algo-
rithms. Wang et al. (2023) on the pretraining data,
while ours focus on the fine-tuning data. Yang et al.
(2022) apply it for vision tasks with clearly-defined
evaluation metrics (e.g. image classification) for
which they can specify an objective function to
achieve that metric, whereas instruction-following
does not have a clear evaluation metric and remains
an open-problem in the field. We use the perplex-
ity as a coarse proxy to capture what it means to
follow instructions effectively. Xia et al. (2024)

10325



also uses a definition of influence to select coresets
for instruction-tuning. However, we further show
that influence functions can be used to measure
how much a trained model’s coverage on unseen
test samples. Additionally, earlier work (Guo et al.,
2020) used influence values on new, but similar
training data to further fine-tune a tuned model.

3 Influence Functions for Coreset
Selection

In this section, we explain what influence functions
are, their use in assigning a value for each training
datapoint in In2Core, and an algorithmic improve-
ment to use less memory for the influence function
algorithm we use, namely DataInf (Kwon et al.,
2023). We then explain the In2Core algorithm and
perform experiments to showcase the performance
of different subset selections of the data. Finally,
we discuss the implications of having a smaller
and better-quality training dataset, namely faster
training and comparable performance.

3.1 Preliminaries
Following the formulations of (Koh and Liang,
2017; Cook and Weisberg, 1980), an influence func-
tion measures the impact of a given training point
on the change in model parameters for a given
validation point. It measures this impact by up-
weighing this training point and measuring the rate
of change in the model parameters.

In the context of machine learning, given a
model f parameterized by the empirical risk mini-
mizer θ∗, we consider how a given training point
changes the validation loss. Given a training point
z and a validation point z′, the influence of z on
f(θ∗)’s performance on z′ is defined as

I(z, z′) := (∇θℓ(z
′)|θ=θ∗)

T Iθ∗(z) (1)

where

Iθ∗(z) :=
dθz

dϵ
|ϵ=0 = −H(θ∗)−1∇θℓk (2)

and H := ∇2
θ(n

−1
∑n

i=1 ℓ(fθ(z)), the Hessian
of the empirical loss.

Equation (1) can be extended to an entire val-
idation set Dval := z′i

m
i=1 by taking the average

gradient of the validation set as

I(z,D(val) := (
1

m

m∑

i=1

∇θℓ(z
′
i)|θ=θ∗)

T Iθ∗(z)

(3)

Figure 1: Memory efficiency across various number
of LoRA layers to consider when calculating influence
values. The numbers above each bar correspond to the
virtual CPU memory consumed (in GB). The memory
efficiency rate is not linear, and varies across different
models. One should sample a subset to calculate the op-
timal combination of CPU virtual memory and number
of layers to use given their hardware constraints.

The influence value and its sign represents the
impact of including a particular point in the training
set on a given validation point/set, via the validation
loss. For clarity, we follow (Pruthi et al., 2020) in
using their terminologies. We define

1. Proponents - Points with negative influence
values. Their addition to the training set re-
duces the validation loss.

2. Opponents - Points with positive influence
values. Their addition to the training set in-
creases the validation loss.

For current language models, which rely on
transformer-based models with billions of parame-
ters, computing the Hessian term in Equation 2 is
extremely expensive. In practice, we rely on the
Hessian’s estimation. In this paper, we use the esti-
mation of influence from DataInf by (Kwon et al.,
2023).
Efficient DataInf. While the DataInf algorithm
efficiently calculates the gradients of the model
parameters for each point, in practice the CPU
memory consumption from the gradient collection
becomes a bottleneck as the size of the training
dataset grows. This is a problem for sizeable fine-
tuning datasets such as the Ultrachat subset we
use, which contains roughly 50,000 training points.
Figure 1 shows the trend for N=250 points.

We found that selecting the number of layers is
non-trivial. To illustrate this, let all-layer denote

10326



the case where we use every layer with a LoRA
adapter. First, using large k can result in marginal
gains at approximating influence values from all-
layer at the expense of the memory budget. Sec-
ond, different model architectures give different
efficiency, implying k is different for each model
(and dataset). These two reasons require a hyperpa-
rameter search for k.

To enable comparisons across different models
given the same dataset, we define the metric Mem-
ory Efficiency, s := ρ

number of layers used , where ρ is
Spearman’s rank correlation coefficient of a partic-
ular setup with respect to the case where all layers
are used to calculate the gradient (all-layer). ρ is a
metric of interest because it describes how faithful
the ranking of the current setup is to the ranking in
the all-layer setup. Note that k layers refer to the
first k layers because the first layers capture influ-
ence better than the last layers (Yeh et al., 2022).
We then simply set k as the number of layers with
the highest s, subject to our virtual memory bud-
get. For our experiments, we used k = {8, 16} for
Gemma-2B and Mistral-7B, respectively. Practi-
tioners should perform this preliminary evaluation
of memory efficiency on a small subset, in order to
avoid out-of-memory (OOM) errors when calculat-
ing the influence values.

3.2 Algorithm

Given a large dataset Dfull, evaluation set Deval,
and reference model f fine-tuned on Dfull, to se-
lect a coreset Dp, where Dp ⊂ Dfull

1. Calculate the influence of each z ∈
Dfullusing f .

2. Rank each z by influence value.

3. Select p and get the top-p proponents as ele-
ments of Dp.

The first step is the most expensive step as the
influence function algorithm visits each point. In
particular, it is necessary to get the model gradients
for each point, which creates a memory bottleneck.
In Section 3.1, we improved the influence function
algorithm we use to mitigate this.

The second step provides an ordered list of the
training data with respect to each points’ influence
value. For the third step, note that p is a hyperpa-
rameter and depends on the training budget of how
many data points the training can accommodate.

Given the definition of proponents, the "top" pro-
ponents are the points with most negative influence
values.

3.3 Experimental Setup
For coreset selection, we use Mistral-7B-v0.1
(Jiang et al., 2023) & Gemma-2B (Team et al.,
2023) as base models and fine-tune them on sub-
sets of a "full" training dataset, which is a random
50k subset of the first round of dialogues from
Ultrachat-200k (Ding et al., 2023). Note that the
models we use are allowed for research. We evalu-
ate the fine-tuned models on a disjoint 250-random
subset from Ultrachat-200k, following the same for-
mat as the training dataset. For both Sections 3.4
and 4.1, we use perplexity (Jelinek et al., 1977) on
the evaluation set to measure model performance,
given that it is directly related to the loss, whose
reduction is the goal of fine-tuning (training loss)
and is a component to the calculation of influence
values (validation loss).

For simplicity, we refer to the mean perplexity
of the model on the validation dataset as perplexity
and BERTScore between each validation point and
the training dataset as similarity.

3.4 Results
Model Perplexity. Using Equation (3), we cal-
culate the influence values with respect to the en-
tire evaluation dataset. Figure 3 illustrates our al-
gorithm’s performance at coreset selection. The
x-axis represents the different selection strategies
based on their influence values. Minimum refers
to selecting points whose influence values are near-
est to zero in absolute terms. Random refers to
uniformly-sampled points. In all figures, selecting
Proponents consistently leads to the lowest per-
plexity among the other subset selection strategies.
This applies when, with respect to the base models
being fine-tuned, the reference model is smaller
(as in the case with Gemma-2B or it is of a differ-
ent architecture with a different pretraining data (as
with Phi-2 pretrained on synthetic Textbook-quality
data (Li et al., 2023b)). Importantly, selecting the
best h = 25k proponents, which is half of the full
dataset, leads to a model that has lower perplex-
ity than a model trained on the full dataset. This
shows that it is possible to achieve better model
performance with less training data.

Interestingly, the behavior of Minimum and Op-
ponents are similar. In some cases selecting Mini-
mum leads to a model with higher perplexity than

10327



Figure 2: Overview of In2Core for coreset selection. From left to right, we first calculate the influence values of
each training point using the validation dataset and a reference model fine-tuned on the full dataset with LoRA.
Then, we rank the training points by influence values and select the h highest-scoring proponents as the final training
data, where h is a hyperparameter. Finally, we train a base model on this final training data. Both the reference and
base model may have distinct architectures from each other.

(a) Performance of Models (Ref:
Mistral-7B)

(b) Performance of Models (Ref:
Gemma-2B

(c) Performance of Models (Ref:
Gemma-2B

Figure 3: Mean Perplexity of models fine-tuned on different coreset selection strategies on the 250-point Ultrachat
Evaluation Set. These strategies differ by selecting based on the influence values. ’Full’ denotes a model trained on
the full training data. Proponents, which is the default strategy in practice, outperform all groups except Full in
all cases. Interestingly, some strategies result in a worse model than Random. In Section 3.5, we argue that some
points inherently degrade model training when included (e.g. Minimum and Opponents).

Model Accuracy
Full 0.32
Proponents-25k 0.30

Table 1: MMLU Average Accuracy (Zero-shot learning).
All numbers are rounded-off to 2 decimal places.

Opponents. The similarity in behavior is explained
by the distribution of influence values, which is
left-skewed as shown in Figure 4. Thus, there is
a significant overlap between the points selected
for Minimum and those for Opponents. For how
Minimum can lead to higher perplexity than Op-
ponents, it may indicate that points with the least
absolute influence changes the model’s behavior
the least compared to other strategies. In other
words, it best retains the model’s behavior before
fine-tuning, which in our experiments is a base
model that is trained to produce verbose output. A
high perplexity here is then explained by the Min-
imum model producing longer text than the other
models.

MMLU Accuracy. We further evaluate the

two models of interest: Full (trained on the full
dataset) and Proponents-25k (trained on the best
25k proponents) on the Massive Multitask Lan-
guage Understanding (MMLU). MMLU tests lan-
guage models for extensive world knowledge and
problem solving capabilities in multiple-choice
format (Hendrycks et al., 2020). We use the
Gemma-2B models fine-tuned on the Ultrachat sub-
set, which are the same models in the previous ex-
periments. Table 1 reports the average accuracy
across the different subjects as the fine-tuning was
intended to improve general instruction-following.

Proponents-25k surprisingly performs similarly
to Full for a wide range of tasks, and attains a
similar accuracy as Full. There may be large dif-
ferences in some subjects (around 10− 25%), but
there is similar performance in capabilities which
those subjects are components of. For example, for
logical reasoning, which is composed of subjects
such as {formal logic, elementary mathematics,
logical fallacies}, Full performs better in the first
two subjects, but Proponents-25k performs better
for the last subject. We postulate this is because our

10328



Figure 4: Histogram of influence values of the 50k train-
ing set using Gemma-2B as the reference model. The
distribution is left-skewed, with the majority of influ-
ence values being negative. The Opponent and Mini-
mum groups, (points with positive values and values
smallest in influence value magnitude respectively) are
located to the right side of the histogram and have high
overlap (overlap coefficient = 0.59. Note that the num-
bers in blue denote the rounded value of the extremes
of the distribution.

evaluation set represents samples for general capa-
bilities. We expect In2Core can be used to improve
specific capabilities if the evaluation set’s distribu-
tion matches those capabilities. While it performs
slightly worse, Proponents-25k being trained on
half the data provides further evidence that addi-
tional data used by Full is only marginally useful.

3.5 Discussion

More data can result in worse models. For a given
test set, some points are inherently harmful to
include in the training data. This goes against
the conventional idea that more data is better for
transformer-based LLMs, given how their typical
training (both pre-training and fine-tuning) is in-
herently data-intensive. Our work sheds light on
the fact that not all points are of equal quality, and
we can dramatically reduce the size of the training
dataset if we only keep data that works towards our
metric of interest. How specifically these Oppo-
nents, when added to the training dataset, can undo
the influence of Proponents is not well-understood,
but this may be related to the phenomenon of catas-
trophic forgetting (Goodfellow et al., 2013), where
the abilities learned by a model from a given pro-
ponent may be forgotten when learning from an
opponent/s.

We expect such harmful points to become in-

creasingly common as synthetic data is increas-
ingly used to fine-tune LLMs, where there is risk
of model collapse from using poor-quality training
data (Shumailov et al., 2023), or a training dataset
that does not accurately reflect the distribution of
the validation dataset. As such coreset selection
will become an increasingly important method for
most types of LLM training. Our algorithm can be
incorporated as a pre-processing step for practition-
ers before fine-tuning.

Influence values from smaller models transfer to
larger models. Surprisingly, we find that a smaller
model (in this case almost 4x smaller than the
model to be fine-tuned) can act as a reliable ref-
erence model, specifically for selecting what points
to avoid adding in the training dataset. We expect
that this transferring ability will remain as long as
the reference model sufficiently learns the underly-
ing training distribution after training. Importantly,
this allows a further cost reduction of the two most
expensive steps in our algorithm – namely the fine-
tuning of the reference model on the full training
dataset and the subsequent gradient collection.

Influence values transfer across model archi-
tectures. We show that our method applies to
reference models with distinct model families,
even those with completely different pre-training
regimes. This implies that a practitioner can simply
bypass training a reference model if an open-source
version is available.

4 In2Core for Model Coverage

In this section, we use In2Core at test-time. Specif-
ically, we use influence values to measure how
"suitable" individual test points are to a final model
trained on a given training set. We first describe
the rationale and our method for analyzing model
coverage. Then, we perform an experiment com-
paring our method to analyzing model coverage
via semantic similarity. Finally, we discuss the im-
plications of the experiment. Note that we use the
Gemma-2B model fine-tuned on the Proponents
dataset for our experiments, described in 3.4, and
thus omit an Experimental Setup section.

Evaluating a trained instruction-tuned model is
difficult considering the space of acceptable outputs
given certain questions. Rather than solely look-
ing at discrete outputs to determine if the model
generalizes to a test point, we instead augment this
analysis by also looking at the training set. We
capture the influence of the entire training set by

10329



taking its average gradient, thereby giving a single
influence value for each test point. This is akin to
measuring how much a test point falls within the
training distribution. To the best of our knowledge,
this is the first time that influence values have been
used in the literature to analyze how a given train-
ing set as a whole is appropriate for a given test
point via a trained model. Importantly, this method
is compatible with different evaluation metrics. In
Section 4.1, we specifically apply this on the per-
plexity metric.

For instruction-tuned LLMs, having an indica-
tion on whether a given test input fits within its
training distribution is essential because there is
either an absence of a ground-truth to validate with
or a ground-truth that is hard to articulate (e.g. a
writing task where there is a space of acceptable
outputs). We would like to emphasize that influ-
ence functions should not be used by themselves
to evaluate a model’s capability. It may be the case
that the entire training set is beneficial to the model
at learning a specific capability, but the training
set size is insufficient for the model to learn that
capability. Rather, influence functions provide fur-
ther guidance at understanding model capability
at evaluation by tying that capability to the train-
ing set, especially when one wishes to determine
how to improve the model (as in coreset selec-
tion). Our method can be integrated in pipelines
for model debugging (which test points does the
model need more data for?) and handling inference
requests (which requests is the model not suited to
perform well given its training?) in production-
grade LLMs.

Furthermore, using influence functions in this
manner can be computationally-efficient. We can
exploit a feature of influence functions to our ad-
vantage: the most expensive computational step
is calculating the gradients, but once the gradient
computation is done, we can store them. In partic-
ular, we store the average gradient of the training
dataset, and we can arbitrarily use it for future in-
ference on unseen test points. While we still need
to compute the model gradients with respect to
new test points, the largest cost, coming from the
training set, is only performed once.

4.1 Results

In Figure 5, we compare two different notions of
measuring the importance of the entire training set
to each evaluation point: Semantic similarity via

(a) Similarity of the Training Set on Evaluation Set

(b) Influence of the Training Set on Evaluation Set

Figure 5: Relationship between Perplexity and Mea-
sures of Importance of the Training Set on the Test Set
(N=250). Influence values provide a better signal (corre-
lation coefficient = 0.56) to indicate how well a model
generalizes to a particular test point compared to seman-
tic similarity (correlation coefficient = -0.087).

BERTScore (Zhang et al., 2019) and Influence via
influence functions from DataInf. The BERTScore
of two points is their cosine similarity in the con-
textual embedding space of BERT (Devlin et al.,
2018). BERTScore aims to capture the semantic
similarity between two different sequences of texts.
In our experiments, we use DistilBERT (Sanh et al.,
2019) for efficiency. For this case, we calculate the
BERTScore of each training point to each test point.
Then for each test point, we take the mean of the
scores of all training points on that test point. We
define this as the similarity score of the entire train-
ing set for that particular test point. Therefore for
each test point, we obtain a scalar value as the sim-
ilarity score. Meanwhile, to calculate the influence
of the entire training set on each test point, we take
the mean of the training point gradients to reduce
it into a single point. We then calculate influence
values with respect to individual test points as per

10330



normal.
For both types of importance, we sort each test

point into ascending order and plot the rank of each
point. We compare these ranks to the perplexity
of the model on the test point, where the model
is the Gemma-2B fine-tuned on the entire training
set. The red line for each graph denotes the linear
regression line. Coefficient values are within a 95%
confidence interval, but the intervals are too narrow
to visualize. For semantic similarity as a metric,
we hypothesize perplexity and semantic similarity
to have a negative linear correlation (i.e. a down-
ward trend) because test points with lower semantic
similarity to the training set signifies that the test
points are from a different distribution than the
training set. However, while we observe this down-
ward trend, it is a very weak correlation (coefficient
= -0.087), suggesting that semantic similarity as
measured by BERTScore is not a strong signal to
indicate the fit of the training set to the test points.

In contrast, perplexity and influence values ex-
hibit a stronger correlation. For Influence as a
metric, we hypothesise perplexity and Influence
to have a positive linear correlation (i.e. an up-
ward trend) because test points assigned negative
influence values imply that the training set is a pro-
ponent of those test points, and the training set is an
opponent for the reverse case. We see this relation-
ship between perplexity and influence, and observe
that the correlation is stronger (coefficient = 0.56).
This suggests that using influence values provide
a stronger signal to indicate whether the model
can generalize to a particular test point. Further-
more, using influence values is cheaper compared
to using BERTScore, because we can reduce the
training set to a single point when representing it
as a gradient, compared to calculating point-wise
similarities with BERTScore.

4.2 Discussion

Influence functions and evaluation metrics are com-
plementary and co-dependent at improving model
capability. We claim that these two measures are
complementary because they provide an actionable
feedback loop at improving the model. Evaluation
metrics measure how close the model is behaving
towards a desired behavior, and influence functions
verifies if the training data does improve the model
towards that desired behavior. Our coreset selec-
tion aglorithm is an example of how the two mea-
sures synergize instruction-tuning, which in our

experiments focus on perplexity and influence. We
claim that they are co-dependent because using
these measurements on their own provide practi-
tioners inadequate information on (a) whether the
training data is sufficient at improving a capabil-
ity, or (b) whether the additional training data will
even contribute towards improving the capability,
respectively.

Measuring semantic similarity of training points
is insufficient to capture a model’s ability to gener-
alize to a test point. A model’s ability to generalize
to a test point is dependent on the model’s loss on
that test point. Semantic similarity, while providing
an intuitive explanation for model generalization
(a model learning from similar points will perform
well on an unseen but similar point), does not com-
pletely capture different ways how a model learns
from different training points to generalize to a test
point. In particular, some points may not be seman-
tically related to the test point, but they still serve to
reduce the loss on that point. Since influence values
are calculated with respect to the loss value (e.g.
how much a given training point reduces the loss
on an evaluation point/set), they are a closer metric
to capture model generalization, and Section 4.1
demonstrates this empirically via the correlation
coefficients.

5 Conclusion

In this work, we have shown that blindly adding
data into the training set can degrade the model’s
performance. We developed In2Core, an algorithm
for coreset selection based on influence functions.
Our algorithm is practical and can be combined
with other pre-processing steps to make supervised
fine-tuning more efficient. We show that training
on just half of the original training data can be com-
parable with the performance of a model trained
on the full data for a variety of reference and tar-
get models. Importantly, (1) we observe a transfer
effect where a reference model of a different archi-
tecture can be used to select the coreset data, and
(2) this effect holds even with a reference model
that is smaller than the model we are fine-tuning.
Finally, we explore the use of influence to measure
a trained model’s coverage. We show that mea-
suring data influence and an evaluation metric can
aid in efficient model training than merely using
an evaluation metric alone. We also show that this
"influence" computed via influence functions cap-
tures a model’s coverage better than by semantic

10331



similarity.

Limitations

LLM Evaluation There is ongoing work to eval-
uate instruction-following models on a variety of
tasks (Hendrycks et al., 2020; Gao et al., 2021;
Liang et al., 2022; Beeching et al., 2023; Wang
et al., 2024a,b), but reaching a consensus on how
to best evaluate such general-purpose models is
still an open issue. Furthermore, there is an exist-
ing line of work that uses a larger model for au-
tomatic evaluation (Li et al., 2023a; Chiang et al.,
2023; Zhao et al., 2023; Chen et al., 2023; Wang
et al., 2024c), most popularly GPT-4 (Achiam et al.,
2023). However, the decision of the larger model
can be biased to models from the same family. Li
et al. (2023a) Furthermore, the output is opaque
and uninterpretable because there is no guarantee
that the accompanying explanation to its answer is
faithful (Jacovi and Goldberg, 2020).

Group influence. Our formulation of influence
looks at the contribution of each points individually,
but not their contribution as a group of points. We
assumed that removing / adding groups of points
based on their individual influences would create
the expected effect (e.g. a sufficient learned model).
Although we demonstrated this empirically in Sec-
tion 3.4, we leave to future work the theoretical
analysis if there are better methods to select points
based on their individual or group influences.

As for selecting a group of points based on their
group influences, we would like to stress that our
algorithm could be applied for group influence by
replacing DataInf with the group influence algo-
rithm of choice. Calculating group influence with
influence functions has first been studied by (Koh
et al., 2019) and algorithms to calculate it are be-
coming more efficient (Basu et al., 2020).

Average gradient of the tokens as the gradient of
the entire sequence. We take the average gradient
of the tokens when calculating the gradient of each
point to make influence value calculations tractable.
Xia et al. (2024) showed that this method penalizes
the influence of points with long sequences of text.
This is a fundamental limitation for definitions of
influence that involve calculating the gradient of se-
quences of varying lengths. See Table 7 for training
examples selected by In2Core.

6 Ethics Statement

Training LLMs is compute-intensive and thus car-
bon emissions-heavy (Rillig et al., 2023). Our pa-
per introduces a method to make LLM fine-tuning
more efficient, which can lead to positive envi-
ronmental impact. Using less data to fine-tune
translates to less electricity and water consumption,
all else being equal. We intend our method to be
adopted by practitioners to reduce the cost of train-
ing. Our results are also transparent and derived
from open-source LLMs & datasets.

Acknowledgements

This research is supported by the National Research
Foundation, Prime Minister’s Office, Singapore un-
der its Campus for Research Excellence and Tech-
nological Enterprise (CREATE) programme. The
computational work for this article was partially
performed on resources of the National Supercom-
puting Centre, Singapore (https://www.nscc.sg).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Samyadeep Basu, Xuchen You, and Soheil Feizi. 2020.
On second-order group influence functions for black-
box predictions. In International Conference on Ma-
chine Learning, pages 715–724. PMLR.

Edward Beeching, Clémentine Fourrier, Nathan
Habib, Sheon Han, Nathan Lambert, Nazneen
Rajani, Omar Sanseviero, Lewis Tunstall, and
Thomas Wolf. 2023. Open llm leaderboard.
https://huggingface.co/spaces/
HuggingFaceH4/open_llm_leaderboard.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, et al. 2023. Al-
pagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna.
lmsys. org (accessed 14 April 2023), 2(3):6.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge.

10332

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457


Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

R. Dennis Cook and Sanford Weisberg. 1980. Char-
acterizations of an empirical influence function for
detecting influential cases in regression. Technomet-
rics, 22:495–508.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023. Enhancing chat language
models by scaling high-quality instructional conver-
sations. arXiv preprint arXiv:2305.14233.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
et al. 2021. A framework for few-shot language
model evaluation. Version v0. 0.1. Sept, page 8.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron
Courville, and Yoshua Bengio. 2013. An em-
pirical investigation of catastrophic forgetting in
gradient-based neural networks. arXiv preprint
arXiv:1312.6211.

Roger Grosse, Juhan Bae, Cem Anil, Nelson El-
hage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al.
2023. Studying large language model general-
ization with influence functions. arXiv preprint
arXiv:2308.03296.

Han Guo, Nazneen Fatema Rajani, Peter Hase, Mohit
Bansal, and Caiming Xiong. 2020. Fastif: Scalable
influence functions for efficient model interpretation
and debugging. arXiv preprint arXiv:2012.15781.

Zayd Hammoudeh and Daniel Lowd. 2024. Training
data influence analysis and estimation: A survey. Ma-
chine Learning, pages 1–53.

Frank R. Hampel. 1974. The influence curve and its
role in robust estimation. Journal of the American
Statistical Association, 69(346):383–393.

Xiaochuang Han, Daniel Simig, Todor Mihaylov, Yulia
Tsvetkov, Asli Celikyilmaz, and Tianlu Wang. 2023.
Understanding in-context learning via supportive pre-
training data. arXiv preprint arXiv:2306.15091.

Bobby He and Thomas Hofmann. 2023. Sim-
plifying transformer blocks. arXiv preprint
arXiv:2311.01906.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable nlp systems: How should we
define and evaluate faithfulness? arXiv preprint
arXiv:2004.03685.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and
James K Baker. 1977. Perplexity—a measure of the
difficulty of speech recognition tasks. The Journal of
the Acoustical Society of America, 62(S1):S63–S63.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Norm Jouppi, George Kurian, Sheng Li, Peter Ma,
Rahul Nagarajan, Lifeng Nai, Nishant Patil, Suvinay
Subramanian, Andy Swing, Brian Towles, et al. 2023.
Tpu v4: An optically reconfigurable supercomputer
for machine learning with hardware support for em-
beddings. In Proceedings of the 50th Annual Interna-
tional Symposium on Computer Architecture, pages
1–14.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In
International conference on machine learning, pages
1885–1894. PMLR.

Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and
Percy S Liang. 2019. On the accuracy of influence
functions for measuring group effects. Advances in
neural information processing systems, 32.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou.
2023. Datainf: Efficiently estimating data influ-
ence in lora-tuned llms and diffusion models. arXiv
preprint arXiv:2310.00902.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan
Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023a. Al-
pacaeval: An automatic evaluator of instruction-
following models. https://github.com/
tatsu-lab/alpaca_eval.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie
Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
2023b. Textbooks are all you need ii: phi-1.5 techni-
cal report. arXiv preprint arXiv:2309.05463.

Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang,
Min Yang, Lei Zhang, Shuzheng Si, Junhao Liu,
Tongliang Liu, Fei Huang, et al. 2023c. One shot

10333

http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://api.semanticscholar.org/CorpusID:120392916
https://api.semanticscholar.org/CorpusID:120392916
https://api.semanticscholar.org/CorpusID:120392916
https://doi.org/10.1080/01621459.1974.10482962
https://doi.org/10.1080/01621459.1974.10482962
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval


learning as instruction data prospector for large lan-
guage models. arXiv preprint arXiv:2312.10302.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2022. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods.

Yang Liu, Jiahuan Cao, Chongyu Liu, Kai Ding, and
Lianwen Jin. 2024a. Datasets for large language
models: A comprehensive survey. arXiv preprint
arXiv:2402.18041.

Yiheng Liu, Hao He, Tianle Han, Xu Zhang, Mengyuan
Liu, Jiaming Tian, Yutong Zhang, Jiaqi Wang, Xiao-
hui Gao, Tianyang Zhong, et al. 2024b. Understand-
ing llms: A comprehensive overview from training
to inference. arXiv preprint arXiv:2401.02038.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec.
2020. Coresets for data-efficient training of machine
learning models. In International Conference on
Machine Learning, pages 6950–6960. PMLR.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guil-
laume Leclerc, and Aleksander Madry. 2023. Trak:
Attributing model behavior at scale. arXiv preprint
arXiv:2303.14186.

Jeff M Phillips. 2017. Coresets and sketches. In Hand-
book of discrete and computational geometry, pages
1269–1288. Chapman and Hall/CRC.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund
Sundararajan. 2020. Estimating training data influ-
ence by tracing gradient descent. Advances in Neural
Information Processing Systems, 33:19920–19930.

Matthias C Rillig, Marlene Ågerstrand, Mohan Bi, Ken-
neth A Gould, and Uli Sauerland. 2023. Risks
and benefits of large language models for the en-
vironment. Environmental Science & Technology,
57(9):3464–3466.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2019. WINOGRANDE: an
adversarial winograd schema challenge at scale.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao,
Yarin Gal, Nicolas Papernot, and Ross Anderson.
2023. The curse of recursion: Training on gen-
erated data makes models forget. arXiv preprint
arXiv:2305.17493.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Stan-
ford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Bin Wang, Zhengyuan Liu, Xin Huang, Fangkai Jiao,
Yang Ding, AiTi Aw, and Nancy Chen. 2024a. SeaE-
val for multilingual foundation models: From cross-
lingual alignment to cultural reasoning. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), pages 370–390, Mexico City, Mexico.
Association for Computational Linguistics.

Bin Wang, Chengwei Wei, Zhengyuan Liu, Geyu Lin,
and Nancy F Chen. 2024b. Resilience of large lan-
guage models for noisy instructions. arXiv preprint
arXiv:2404.09754.

Bin Wang, Xunlong Zou, Geyu Lin, Shuo Sun, Zhuohan
Liu, Wenyu Zhang, Zhengyuan Liu, AiTi Aw, and
Nancy F Chen. 2024c. Audiobench: A universal
benchmark for audio large language models. arXiv
preprint arXiv:2406.16020.

Xiao Wang, Weikang Zhou, Qi Zhang, Jie Zhou,
Songyang Gao, Junzhe Wang, Menghan Zhang, Xi-
ang Gao, Yunwen Chen, and Tao Gui. 2023. Farewell
to aimless large-scale pretraining: Influential sub-
set selection for language model. arXiv preprint
arXiv:2305.12816.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. 2024. Less: Se-
lecting influential data for targeted instruction tuning.
arXiv preprint arXiv:2402.04333.

Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming
Sun, and Ping Li. 2022. Dataset pruning: Reducing
training data by examining generalization influence.
arXiv preprint arXiv:2205.09329.

Chih-Kuan Yeh, Ankur Taly, Mukund Sundararajan,
Frederick Liu, and Pradeep Ravikumar. 2022. First is
better than last for language data influence. Advances
in Neural Information Processing Systems, 35:32285–
32298.

10334

http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/1907.10641
http://arxiv.org/abs/1907.10641
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.18653/v1/2024.naacl-long.22
https://doi.org/10.18653/v1/2024.naacl-long.22
https://doi.org/10.18653/v1/2024.naacl-long.22


Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence?

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, et al. 2023. Instruction tuning
for large language models: A survey. arXiv preprint
arXiv:2308.10792.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu,
Fei Huang, Yongbin Li, and Nevin L Zhang. 2023.
A preliminary study of the intrinsic relationship be-
tween complexity and alignment. arXiv preprint
arXiv:2308.05696.

A Appendix

A.1 Experimental Hardware Details
We used NVIDIA A100 Tensor Core GPUs. For
influence values computation with the reference
models, we used 1 GPU. For fine-tuning of models
trained on the full dataset, we use 4 GPUs. For the
rest of the fine-tuning setups, we used at most 2
GPUs. We estimate that we used 100 - 200 GPU
hours on this project.

A.2 Coreset selection for Llama2-7B
We conduct further experiments by using Llama2-
7B (Touvron et al., 2023) as the target models to
be fine-tuned. While the proponents version where
Gemma-2B is the reference model performs bet-
ter than the full version, the proponents version
where a Llama2-7B is the reference model per-
forms worse than the full version. The latter is
likely limited by the number of layers used to cal-
culate the influence values, because the highest
spearman correlation we can attain given our hard-
ware constraints was less than 50% for Llama2-7B.

(a) Performance of Models (Ref: Gemma-2B)

(b) Performance of Models (Ref: Mistral-7B)

Figure 6: Mean Perplexity of models fine-tuned on
different coreset selection strategies on the 250-point
Ultrachat Evaluation Set for Llama2-7B models. ’Full’
denotes a model trained on the full training data.

Figure 7: Influece functions are biased towards assign-
ing higher scores to longer sequences. This stems from
the fact that the value calculations are based on taking
the average gradient of the token as the sequence gradi-
ent.

10335

http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830

