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Abstract

There has been increasing interest in explor-
ing the capabilities of advanced large language
models (LLMs) in the field of information ex-
traction (IE), specifically focusing on tasks re-
lated to named entity recognition (NER) and
relation extraction (RE). Although researchers
are exploring the use of few-shot informa-
tion extraction through in-context learning with
LLMs, they tend to focus only on using cor-
rect or positive examples for demonstration,
neglecting the potential value of incorporat-
ing incorrect or negative examples into the
learning process. In this paper, we present
C-ICL, a novel few-shot technique that lever-
ages both correct and incorrect sample con-
structions to create in-context learning demon-
strations. This approach enhances the ability
of LLMs to extract entities and relations by
utilizing prompts that incorporate not only the
positive samples but also the reasoning behind
them. This method allows for the identifica-
tion and correction of potential interface er-
rors. Specifically, our proposed method taps
into the inherent contextual information and
valuable information in hard negative samples
and the nearest positive neighbors to the test
and then applies the in-context learning demon-
strations based on LLMs. Our experiments
on various datasets indicate that C-ICL out-
performs previous few-shot in-context learning
methods, delivering substantial enhancements
in performance across a broad spectrum of re-
lated tasks. These improvements are notewor-
thy, showcasing the versatility of our approach
in miscellaneous scenarios.

1 Introduction

Information Extraction (IE) is an important task in
natural language processing, which aims to obtain
structured knowledge from plain text. It can be
applied to different domains, such as knowledge

* Corresponding author.

Wrong/Negative Samples 

Cheek, 53, is a former chief and charge in Addis Ababa, Ethiopia.
Relation: (Addis Ababa, located in, Ethiopia)

Prediction: 
(Cheek, work for, Addis Ababa)

Harrington taught at Harvard University and the National War College .
Relation: (Harrington, work for, Harvard University)

(Harrington, work for, National War College)

Prediction:
(Harrington, work for, Harvard University)

person location organizationEntity Type

work forlive in located inRelation Type

flagmaker Betsy Ross was born in Philadelphia.
Relation : (Betsy Ross, live in, Philadelphia)

Prediction: 
(flagmaker Betsy Ross, live in, Philadelphia)

LLM

Wrong entity 
boundary

Wrong 
entity/relation types 

Missing relations

Figure 1: Illustration of our method C-ICL using
wrong/negative samples. Take the RE task as an ex-
ample to illustrate. Wrong/negative samples possess
valuable information that LLMs may use to predict the
type of IE errors, prompting the model to avoid or cor-
rect similar errors.

graph construction (Zhong et al., 2023) and ques-
tion answering (Aliod et al., 2006). With the rise
of large language models (Brown et al., 2020; Min
et al., 2022; Touvron et al., 2023; Achiam et al.,
2023), information extraction has made significant
progress (Li et al., 2023a; Xu et al., 2023).

Recent advancements in few-shot IE have shifted
focus from traditional supervised fine-tuning ap-
proaches towards in-context learning (ICL) demon-
strations with large language models (LLMs)
(Chen et al., 2023; Lyu et al., 2023). Prior works
(Wei et al., 2023b; Chen et al., 2023; Ma et al.,
2023; Wadhwa et al., 2023) have explored the use
of natural language prompts or ICL demonstrations
to guide LLMs in labeling test data under few-
shot settings, sometimes requiring additional pre-
training or fine-tuning steps. To align more closely
with the structured nature of information extrac-
tion tasks, recent methods (Li et al., 2023b; Sainz
et al., 2023; Wang et al., 2023a,b; Wan et al., 2023)
adopt code-like or structured prompts to improve
the consistency between pre-training and inference.
However, these methods can not fully unleash the
potential of LLMs, partly due to the reliance of
models on limited positive data and their inability
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to learn from their own errors.
To address this, we propose a contrastive in-

context learning approach that utilizes both cor-
rect (positive) and incorrect (negative) examples
to enhance the learning process of LLMs by ex-
posing them to a broader spectrum of scenarios,
including typical mistakes as shown in Figure 1.
This method aims to exploit the often-overlooked
value in negative data, thus enabling more compre-
hensive and robust information extraction capabil-
ities. Assume that the model has learned its own
tasks and problem-solving modes from the posi-
tive IE data set, but the prediction is still wrong.
Should it think about the reasons for the errors,
summarize the types of reasons, and try to avoid
the above problems in the subsequent inference?
Then, adding negative sample-related information
can help solve this problem. Inspired by this, we in-
tegrate right/positive and wrong/negative examples
as ICL demonstrations to enhance the performance
of in-context learning IE. Specifically, we first use
a large model to generate the label of annotated
data to select hard negative samples, then select
positive samples semantically similar to the cur-
rent test data from training data, and then design
the most in-context demonstrations using different
models (NL-LLMs or Code-LLMs). In the module
that selects wrong/negative samples that contain
more knowledge, we use semantic similarity-aware
self-consistency to conduct ranking.

To demonstrate the superiority of our method,
we conduct experiments on three NER and four
RE benchmarks and carefully analyze the bene-
fits of our approach. Our main contributions are
summarized as follows:

• We develop contrastive in-context learning
with both right/positive and wrong/negative
instances demonstrations, simultaneously en-
hancing LLMs to extract valuable knowledge
for information extraction.

• We select hard negative samples based on the
effective retrieval strategy as in-context learn-
ing, which leverages to enhance the ability of
information extraction.

• We conduct comprehensive experiments on
benchmarks to demonstrate the performance
of the proposed method, establishing new
state-of-the-art results on most datasets.

2 Task Formulation

Given a sentence X with l tokens x1, x2, · · · , xl,
IE tasks are to predict structured target Y ( NER or
RE in this paper) from x. The target Y in NER is
entity spans E((e, t)|xi, . . . , xj) with entity types.
the e is entity in the sequence, and t is the entity
type in the predetermined entity types T (such as
LOC, PER, ORG). In the RE task, the target Y is a set
of relations within entities, usually expressed in the
form of a triple (e1, r, e2). We not only predict the
r ∈ R, but also the entity types t1, t2 of e1, e2. R
denotes the relation types (e.g., Work For, Live
In, Located In). types of e1, e2 also should be
predicted. t ∈ T means the entity type. We treat IE
as a text generation task that completes the text to
be predicted targets via LLMs. We define the task
name as type instruction I to prompt the LLMs
for NER or RE. When in NL-LLMs, its representa-
tion is a text sequence. In code-style prompts, it is
treated as comments inspired by (Li et al., 2023b).
We transform few-shot sample demonstrations into
three parts: the first part is the sentence text, the
second is the targets, and the third is a flag denoting
whether the sample is positive or not. In NL-LLMs,
the output is a list of tuples [(e1, t1), . . . , (ej , tj)].
while in code generation, it is expressed as the op-
eration of adding tuples to the dictionary like “ en-
tity_dict[“person”].append[“Steve”] ”. The given
test sentence has the first two parts, like the few-
shot sample demonstrations. In our work, we pay
more attention to code-style large model informa-
tion extraction beacause of its structure.

3 C-ICL

3.1 Model Overview

We introduce C-ICL as shown in Figure 2, a nov-
elty few-shot in-context learning method for infor-
mation extraction, which predicts the right label
via contrastive samples using LLMs. Unlike prior
methods, which only use the samples with gold
labels as the in-context learning demonstrations
and ignore the knowledge in the wrong/negative
samples predicted by models. Following the prior
approaches (Li et al., 2023b; Guo et al., 2023b), our
C-ICL uses code-style demonstrations for infor-
mation extraction. It consists of building the con-
trastive samples (right/positive and wrong/negative
samples) through retrieval strategies and prompts
the LLMs’ possible incorrect prediction problems.
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Test Data

Steve became CEO of Apple in 1998

Training Data

Cheek, 53, is a former chief and charge in Addis Ababa, Ethiopia.
Relation: (Addis Ababa, located in, Ethiopia)

Tal , a senior Defense Ministry official , has not repeated these views in public .
Relation: (Tal, work for, Defense Ministry)

……

Harrington taught at Harvard University and the National War College .
Relation: (Harrington, work for, Harvard University)

(Harrington, work for, National War College )

Contrastive In-context Demonstrations

Right/Positive Set

Tal , a senior Defense Ministry official , has not repeated these              
views in public .

Relation: (Tal, work for, Defense Ministry)
Wrong/Negative Set

Cheek, 53, is a former chief and charge in Addis Ababa, Ethiopia.
Prediction: (Cheek, work for, Addis Ababa)

Type Instructions
entity type set: person , location , organization
relation type set: work for , live in , located in

Response

def extract_relation(input_text):
# extract the relations of named entities from the input_text .
input_text = "Steve became CEO of Apple in 1998"
entity_relation_list = {}
# extracted relations
entity_relation_list["work for"].append( [("Steve", "person"), ("Apple", "organization")] )

Prediction

Relation: (Steve, work for, Apple)

LLM

Sentence E
m

bedding-
based R

etriever
Self-C

onsistency 
R

etriever

Code-style In-context Learning Demonstrations 

Type 
Instructions

Contrastive In-
context Learning 

Samples

Test 
SentenceSample Flag

Figure 2: The overview of our method C-ICL for IE. Due to the structures of NER and RE tasks being similar, Take
the RE task as an illustration to display the design in this figure. The predictions of the Wrong/Negative set are
obtained through LLM. Right/Positive set and Wrong/Negative set are from the training or validation dataset.

3.2 LLM-based Information Extraction

Considering the natural language and structure of
information extraction, we mainly choose code
paragram style LLM to solve the problem. We take
the query text as a variable and define the target of
the IE task as a variable to return in the functions
of the code program, which can illustrate the goal
of IE functions. Beacause the given defined entity
types and relation types have certainty and unique-
ness, we think of it as a dictionary library. The type
is the keyword in this dictionary, and the entity is
the list element under the keyword.

yner = entity_dict[t].append(e)
yre = entity_relation_dict[r].append(

[(e1, t1), (e2, t2)])
(1)

where y stands the expected output of the tar-
get Y in code-style LLMs. entity_dict and
entity_relation_dict are the return variables de-
noting the representations of the different target Y
of NER and RE. e is the entity span that contains
the tokens xi, . . . , xj in the given sentence X . t is
one of the entity types T and r is one of the rela-
tion types R. t, r denote the keys of the dictionary
in the code function. (e1, t1) and (e2, t2) are the
subject and object entities in a relation.

3.3 In-context Demonstrations Construction

We construct in-context demonstrations for each
test sentence fed to the LLMs. Each demonstration
consists of the following components.

Types Instructions To enhance the model’s
recognition of types in IE tasks, we provide prede-
fined types (R or T ) in the demonstrations, which
prompt LLMs for the purpose of the task, extract-
ing information in a more targeted manner. We use
comments to list possible predefined types instead
of using code initialization to represent all types
like (Guo et al., 2023b; Wang et al., 2023b). If
there are too many types, this representation will
increase the length of the in-context learning dis-
play. We put it at the front of the display to give
a hint. In our method, The type instructions are
shown the following way, illustrated as Figure 3:

DT = #Given entity type set: T . (2)

DR =# Given entity type set: T ;

#Given relation type set: R .
(3)

where DT means the entity type demonstration for
NER task. DR denotes the relation type demonstra-
tion for the RE task. T likes “LOC, PER, ORG” and
R is similar “Work For, Live In, Located In”.
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Type Instructions
#Given entity type set: person , location , organization
#Given relation type set: work for , live in , located in

Figure 3: An example of types instructions in-context
demonstrations. Take the RE task as an illustration.

Right/Positive
def extract_relation(input_text):

# extract the relations of named entities from the input_text .
input_text = “Tal , a senior Defense Ministry official , has not 

repeated these views in public .”
entity_relation_list = {}
# extracted relations
entity_relation_list["work for"].append([("Tal", "people"), 

("Defense Ministry", "organization")])
#Above Result: Right. 

Figure 4: An example of right/positive in-context
demonstrations. Take the RE task as an illustration.

Contrastive Samples In this part, we introduce
samples with two essences, one with golden la-
bels and one with wrong labels. Positive sam-
ples (golden labels) can prompt the large model
to generate text with what characteristics. Nega-
tive samples (wrong labels) are like a set of wrong
questions, prompting problems that may occur in
the model’s inference process and avoiding them.
The contrastive samples can work together to im-
prove the ability for information extraction. We
choose samples {(X̂i, Ŷi)}n̂i=1 (n̂ is the number of
right/positive samples) close to the current test data
through semantic similarity and represent them
as samples with golden labels. Using the self-
consistency method, we select hard negative sam-
ples (X̌i, Y̌i)

ň
i=1 (ň means the count of wrong/neg-

ative samples) as samples with incorrect predic-
tion results. Simultaneously, to prompt the large
model to correct its errors when the prediction is
wrong, we add the instructions (including the flag
of whether the prediction is correct and the correct
result) to the wrong/negative sample demonstra-
tion, as shown in Figure 4 and 5. The contrastive
in-context demonstrations are the following:

D̂ = (X̂1 ⊕ Ŷ1)⊕ · · · ⊕ (X̂n̂⊕ Ŷn̂)

Ď = (X̌1 ⊕ Y̌1)⊕ · · · ⊕ (X̌ň⊕ Y̌ň)

D = D̂ ⊕ Ď
(4)

where ⊕ means concatenation. (Xi ⊕ Yi) means
the presentation of the function of a sample in the
code-style prompt. If the expression of wrong/neg-
ative samples is completely consistent with the pos-
itive sample, without training or fine-tuning, it is
difficult for LLMs to recognize that this is a nega-
tive sample and its meaning. To better let negative

Wrong/Negative
def extract_relation(input_text):

# extract the relations of named entities from the input_text .
input_text = “Harrington taught at Harvard University and the 

National War College .”
entity_relation_list = {}
# extracted relations
entity_relation_list["work for"].append([("Harrington", "people"), 

("Harvard University", "organization")])
#Above Result: Wrong. Right Result is blow :
def extract_relation(input_text):

# extract the relations of named entities from the input_text .
input_text = “Harrington taught at Harvard University and the 

National War College .”
entity_relation_list = {}
# extracted relations
entity_relation_list["work for"].append([("Harrington", "people"), 

("Harvard University", "organization")])
entity_relation_list["work for"].append([("Harrington", "people"), 

("National War College", "organization")])

Figure 5: An example of wrong/negative in-context
demonstrations. Take the RE task as an illustration.

Test Sentence
def extract_relation(input_text):

# extract the relations of named entities from the input_text .
input_text = “Steve became CEO of Apple in 1998”
entity_relation_list = {}
# extracted relations

Figure 6: An example of test sentence in-context demon-
strations. Take the RE task as an illustration.

samples guide the model for avoiding errors, we
introduce a flag instruction behind the response to
differentiate positive and negative samples. Further-
more, the flag instruction contains the right outputs
for the given sample, as shown in Figure 4 and 5.

flag =





“#Above Result: Right.” if X is +

“#Above Result: Wrong. Right Result is blow: D” if X is −
(5)

where flag is the demonstration of judging positive
and negative samples. D is the corrected represen-
tation of the incorrect answer. + and − denote
positive and negative samples, respectively.

Test sentence Similar to the above demonstra-
tion, it only converts the test text shown in Figure
6 and entity/relation types into the code-style in-
put of the contrastive sample. The final contrastive
in-context demonstration is formulated as follows:

Ytest = M(Y |I,D, Xtest) (6)

where Xtest means the code-style transformation of
the test sentence. M is the large language model
like CodeLlama(Touvron et al., 2023). The RE
output of Ytest is like a response module in Figure
2, and the NER task is similar.

3.4 In-context Example Retrieval Strategies
Sentence Embedding-based Retrieval Strategy
Liu et al. (2022) indicates that in-context learning
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demonstrations similar to the test data in semantic
embedding may result in more reliable outcomes.
So, the selection of samples is crucial for few-shot
information extraction. In this part, we use the
sentence embedding-based retrieve to select the
samples from the training dataset for in-context
learning demonstrations. Inspired by the previous
works (Gutierrez et al., 2022; Liu et al., 2022; Guo
et al., 2023b), we use the k nearest neighbors to
retrieve sentences. After ranking the semantic sim-
ilarity, we select the top-k samples with entities or
relations. Our work employs the code LLMs to cal-
culate the semantic similarity via cosine similarity.

Self-Consistency Retrieval Strategy For the
wrong/negative samples, we select hard negative
samples from the training dataset, which contain
valuable knowledge and can better reflect the fuzzy
performance of large language models in infor-
mation extraction tasks. We use the large model
first to get the prediction results of the training
dataset. In this step, we apply self-consistency
(Wang et al., 2023c) with votes to obtain predic-
tions with high confidence. For each prediction, we
determine whether the sample is a hard negative
sample by calculating the F1 score, which indicates
that the prediction is very close to the correct result.
Through this method, we can get high-quality hard
negative samples as the wrong/negative samples of
contrastive in-context demonstrations.

4 Experiments

4.1 Datasets
RE Datasets For relation extraction, we evalu-
ate on datasets CoNLL04 (Roth and Yih, 2004),
ACE05-R (Walker and Consortium, 2005), NYT
(Riedel et al., 2010) and SciERC (Luan et al., 2018).
We follow Lu et al. (2022) to split all these datasets.
NER Datasets We evaluate our approach on
the NER task with CoNLL03 (Sang and Meul-
der, 2003), ACE04(Doddington et al., 2004), and
ACE05-E(Walker and Consortium, 2005). We split
the datasets followed by the works (Li et al., 2020;
Mo et al., 2023, 2024; Li et al., 2023b). Table 3
shows the dataset statistics in Appendix A.

4.2 Experiments Setting
For each IE task, we make a k-shot training set fol-
lowing the previous work (Li et al., 2023b), which
samples k training samples for each entity or re-
lation type via retrieval strategies. Since we have
introduced wrong/negative samples, the settings are

slightly different. We try to keep the overall sample
number consistent for a fair comparison. In our ex-
periments, we set the numbers of samples as 20, 14,
and 14 for NER datasets CoNLL03, ACE04, and
ACE05-E respectively, introduced in contrastive
in-context learning demonstrations. The numbers
of contrastive in-context learning samples for RE
datasets CoNLL04, ACE05-R, NYT, and SciERC
are 20, 12, 24, and 14. We use CodeLlama (Tou-
vron et al., 2023) as the backbone and set the max
token length to 8k and top_p to 0.7. Setting tem-
perature in [0.3, 0.6, 0.9] is dependent on different
datasets. When sampling hard negative samples,
we query each sample to the model 3 times to ac-
quire a suitable response. The experiment details
are listed in Appendix A.

4.3 Evaluation

As in prior work (Lu et al., 2022; Li et al., 2023b),
we use entity F1 score and relation strict F1 score
as the evaluation metrics for NER and RE tasks,
respectively. Note the relation strict F1 score for
RE. A relation is correct only if the relation type,
entity span, and entity type are all right. To ensure
the accuracy of the results, we perform three runs
with different random seeds for each experiment.

4.4 Comparison Methods

To demonstrate the effectiveness of our method, we
adopt several models for comparison as follows.
UIE The method (Lu et al., 2022) is further pre-
trained from T5 on the structured datasets. It em-
ploys the textual structured extraction language to
represent output structures.
InstructUIE The method (Wang et al., 2023a) im-
proves UIE by constructing expert-written instruc-
tions for fine-tuning, enabling consistent modeling
of IE tasks and capturing inter-task dependencies.
CodeIE The method (Li et al., 2023b) proposes
to recast the structured output in the form of code
instead of natural language, and utilize generative
code-LLMs to perform IE tasks.
Code4UIE The method (Guo et al., 2023b) is
a universal retrieval-augmented code generation
framework, which utilizes Python classes to de-
fine schemas and uses ICL to generate codes that
extract structural knowledge from texts.
CodeKGC The method (Bi et al., 2023) lever-
ages the structural knowledge inherent in code
and employs schema-aware prompts and rationale-
enhanced generation to improve performance.
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Model Paradigm Backbone
RE

CoNLL04 ACE05 NYT SciERC
UIE (Lu et al., 2022) SFT T5-large 75.00 66.06 / 36.53
InstructUIE (Wang et al., 2023a) SFT Flan-T5-11B 78.48 / 90.47 45.15
CodeIE (Li et al., 2023b) ICL Code-davinci-002 53.10 14.02 32.17 7.74
Code4UIE (Guo et al., 2023b) ICL Gpt-3.5-turbo-16k 54.40 11.50 51.70 /
CodeKGC (Bi et al., 2023) ICL Text-davinci-003 49.80 / / 24.00

C-ICL (ours)
ICL CodeLlama-7B 53.27 18.75 58.39 12.13
ICL CodeLlama-13B 56.43 20.57 60.16 15.29
ICL CodeLlama-34B 56.93 22.31 60.92 17.33

Table 1: The experiment performances on RE benchmarks. SFT denotes the model adopts supervised fine-tuning
with training data. ICL means the model uses in-context learning. Results are statistically significant with respect to
baselines (p-value < 0.05).

Model Paradigm Backbone
NER

CoNLL03 ACE04 ACE05-E
UIE (Lu et al., 2022) SFT T5-large 92.99 86.89 85.78
InstructUIE (Wang et al., 2023a) SFT Flan-T5-11B 92.94 / 86.66
CodeIE (Li et al., 2023b) ICL Code-davinci-002 82.32 55.29 54.82
Code4UIE (Guo et al., 2023b) ICL Gpt-3.5-turbo-16k 79.70 54.0 57.00
Self-Improving (Xie et al., 2023b) ICL Gpt-3.5-turbo 83.51 / 55.54

C-ICL (ours)
ICL CodeLlama-7B 83.98 47.88 45.65
ICL CodeLlama-13B 85.62 49.69 48.04
ICL CodeLlama-34B 87.36 54.47 55.65

Table 2: The experiment performances on NER benchmarks. SFT denotes the model adopts supervised fine-tuning
with training data. ICL means the model uses in-context learning. Results are statistically significant with respect to
baselines (p-value < 0.05).

Self-Improving The method (Xie et al., 2023b)
uses the LLM to make predictions on the unlabeled
data via self-consistency and explores strategies to
select reliable annotations for NER task.

4.5 Results

RE Results Table 1 shows the results of the RE
task. Among the datasets, NYT has the most
significant improvement, whose results based on
CodeLlama-7B exceed CodeIE and Code4UIE by
+26.22% +6.69%, respectively. The results of NYT
based on CodeLlama-34B exceed CodeIE and
Code4UIE by +28.75% +9.22%, respectively. Our
method gains an improvement of at least 4.73% in
the F1 score compared to the LLM-based baselines
for ACE05. Although CoNLL04 on CodeLlama-
7B is slightly weaker than Code4UIE, there is
a specific improvement on CodeLlama-13B and
CodeLlama-34B by +2.03 points. At SciERC, our
method improves by +4.39 points compared to
CodeIE but is lower than CodeKGC. It is lower
than CodeKGC because CodeKGC re-structure the
corpus into code format and builds a new dataset
for pre-training to effect rationale-enhanced gener-
ation. In addition, the backbone of CodeKGC is a
larger model(Fu et al., 2023) than that we used.

NER Results Table 2 shows the results of the
NER task. Our method achieves superior perfor-
mance overall compared with the previous base-
lines, proving the effectiveness of our method in
the information extraction subtask NER. We get
an F1 score of 87.36% on the CoNLL03 dataset,
increased by +3.76 points compared to the in-
context learning methods CodeIE (Li et al., 2023b),
Code4UIE(Guo et al., 2023b), and Self-Improving
(Xie et al., 2023b). for ACE05-E, our model per-
forms slightly better than the CodeIE method by
0.54 points. For ACE04, our results are weaker
than those above LLM-based baselines. The im-
provement in performance of our method is not
significant on these two datasets overall. The main
reasons include that 1) these two datasets contain
nested entities, and their error types are more nu-
merous and complex compared to those of com-
mon NER tasks; 2) the added wrong/negative sam-
ples, which may lead to longer text length, affect
the capture of contextual information, and lead
to performance degradation; 3) The LLMs-based
baselines are the GPT-based(Brown et al., 2020;
OpenAI, 2022) methods, which are stronger pre-
trained large language model. It should be noted
that LLMs also have limitations with the nested
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ACE04 and ACE05-E NER benchmarks during the
experiments and enhance reasoning for complex
situations. To further verify our method, we re-
produce CodeIE and replace the backbone with
CodeLlama. See Appendix B for relevant results.

Compared with the supervised baselines UIE(Lu
et al., 2022) and InstructUIE (Wang et al., 2023a),
our method performs worse than them, but it is
approaching them on CoNLL03, showing that our
method gives the model an excellent hint to en-
hance the reasoning ability on this task.

5 Further Analysis

5.1 Ablation Study
To demonstrate the effectiveness of the proposed
method, we conduct an ablation study of our
method. We run experiments on RE and NER
datasets based on CodeLlama-7b, CodeLlama-13b,
and CodeLlama-34b. The results are demonstrated
in Figure 7. ① Ours, which is the final approach
with the contrastive in-context objectives; ② w/o
wrong/negative, which denotes that the method
only adopts the right/positive samples as in-context
demonstrations. From the ablation experiments,
our method C-ICL outperforms different levels
of improvement effects than ②, indicating that
the contrastive in-context learning with right/posi-
tive and wrong/negative samples could prompt the
LLMs to learn the positive and effective knowl-
edge information. It can be seen that the larger the
model, the better the effect for IE tasks.
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Figure 7: Alation study of C-ICL based on different
CodeLlama for IE. Left and right figures denote the
ablation study of RE and NER tasks, respectively.

5.2 Examples of Contrastive ICL
Different Shot Numbers To illustrate the im-
pact of different numbers of contrastive in-context
demonstrations on information extraction, we
conducted further experiments on the CoNLL03
(NER) and CoNLL04 (RE) via CodeLlama-7b and
CodeLlama-13b. In this part, we ensure that the
number of wrong/negative samples is consistent
with two and that other display samples are right/-
positive. The results are presented in Figure 8(a).

As can be seen from it, the effect of each IE task
increases as the number of shots increases. Over-
all, the effectiveness of each IE task tends to in-
crease with the number of shots. This phenomenon
is because as the number of sample instances in-
creases, the large language models can glean more
in-context information from them.

Proportion of Positive and Negative Demonstra-
tions We conduct experiments to analyze the pro-
portion of positive and negative samples in con-
trastive in-context demonstrations. In this part, we
evaluate the CoNLL03 (NER) and CoNLL04 (RE)
datasets and run experiments on the CodeLlama-7b.
Note that we sample 300 test data for this anal-
ysis. We set the total number of demonstration
samples to a particular value; the total number of
contrastive samples is fixed, and the numbers of
positive and negative samples are changing. The re-
sults are illustrated in Figure 8(b) and 8(c). Overall,
the effectiveness of information extraction tends
to rise first and then fluctuates with the increase in
negative sample numbers. When positive samples
provide adequate contextual information, adding
negative samples can indirectly prompt the model
to acquire other knowledge (types of errors that
may occur) in entity or relation recognition and
modify erroneous predictions. However, adding
too many wrong/negative samples may increase
noise, making the model ambiguous in identifying
positive and negative knowledge. It will not serve
as an optimistic prompt, resulting in poorer results.
Besides, adding more negative samples makes the
text longer in our design, which can lead to worse
effects. Therefore, preferring a proper number of
contrastive in-context demonstrations is necessary.

5.3 Retrieval Strategy of Contrastive ICL

We run the experiments of different retrieval strate-
gies of contrastive in-context demonstrations in our
method on CoNLL03 and NYT. The bars hatched
in Figure 9 show the results for sampling the pos-
itive samples from training data. The sentence
embedding-based retrieval strategy for positive
samples performs better than random sampling
positive data. In this strategy, the samples are
more similar to the current test sequence in seman-
tics. The bars without hatched in Figure 9 exhibit
the results of different retrieval strategies for the
wrong/negative samples. We find that 1) combining
the self-consistency retrieval strategy and setting an
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Figure 8: The performance of numbers of contrastive in-context demonstrations. (a) means the results of CoNLL03
(NER) and CoNLL04 (RE) with different shot numbers. (b) and (c) present the results of the proportion of positive
and negative samples on CoNLL03 and CoNLL04, where we sample 300 test data for analysis.
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Figure 9: The comparison of retrieval strategies for
contrastive samples. The bars with hatched and not show
retrieval strategies for positive and negative samples,
respectively. SE refers to the sentence embedding-based
retrieval strategy, RA_∗ to random sample, SC to the
self-consistency strategy, F1 to retrieve sample by the
F1 score, F1&SC to retrieve sample via F1 and SC.

F1 score threshold for retrieving hard negative sam-
ples can result in better performance. The strategy
can obtain high-quality samples to prompt LLMs to
learn from more knowledge. 2) Random retrieval
for sampling wrong/negative data has lower effects
than other strategies and it would cause fluctuation.

5.4 Case Study

We select some cases of typical test samples to
illustrate better the amendment of our method in
Figure 10. Given example 1, we show the more
similar positive and negative samples as contrastive
ICL demonstrations in the RE task. In this case,
“southwestern France” and “west-central France”
in the test sample are easily identified as “location”
entities. The introduction of negative samples in
ICL demonstrates potential issues that may arise
during the test inference process. It further points
out errors and provides corrective prompts, assist-
ing the LLM model to accurately infer the correct
results. We also discuss the case of the NER task.
More cases can be seen in Appendix C.

[Test Data]
def relation_extraction(input_text):

""" extract the relations of named entities from the input_text . """
input_text = "Urutigoechea and the others were arrested Wednesday in the cities of Bayonee and Bonloc in southwestern France in 

Poitiers in west-central France ."
entity_relation_list = {}
# extracted relations

[Right/Positive] 
def relation_extraction(input_text):

""" extract the relations of named entities from the input_text . """
input_text = "He and the others leased land in the desert west of this Shiite Moslem holy city about 65 miles south of Baghdad , Iraq 's

capital."
entity_relation_list = {}
# extracted relations
entity_relation_list["located in"].append([("Baghdad", "location"), ("Iraq", "location")])

#Above Result: Right. 
……

[Wrong/Negative]
def relation_extraction(input_text):

""" extract the relations of named entities from the input_text . """
input_text = "Thelma Ann Miller , 23 ; and Toby Miller , 15 , drowned Monday about 1 -LCB- miles northeast of Pinedale in rural 

western New Mexico , said Alex Ashley , a deputy state medical investigator."
entity_relation_list = {}
# extracted relations
entity_relation_list[" located in "].append([(" Pinedale", "location"), ("western New Mexico", "location")])

#Above Result: Wrong. Right Result is blow :
def relation_extraction(input_text):

""" extract the relations of named entities from the input_text . """
input_text = "Thelma Ann Miller , 23 ; and Toby Miller , 15 , drowned Monday about 1 -LCB- miles northeast of Pinedale in rural 

western New Mexico , said Alex Ashley , a deputy state medical investigator."
entity_relation_list = {}
# extracted relations
entity_relation_list["located in"].append([(" Pinedale", "location"), ("New Mexico", "location")])

……

[Type Instructions]
# entity type set: person , location , organization
# relation type set: work for , live in , located in

[Output]
entity_relation_list ["located in"].append([("Bayonee”,"location"), ("France” ,"location")])
entity_relation_list ["located in"].append([(" Bonloc”,"location"), ("France” ,"location")])
entity_relation_list ["located in"].append([(" Poitiers”,"location"), ("France” ,"location")])

Figure 10: Case study. The example stands for the
results of RE. The red text means the incorrect labels
and the green text means the right labels.

6 Related Work

Generative Information Extraction Due to the
differences in subtasks (e.g. NER and RE), infor-
mation extraction (IE) has seen many task-specific
supervised models, including understanding mod-
els (Lample et al., 2016; Tang et al., 2018; Yu et al.,
2020; Wang et al., 2018, 2020, 2019) and gener-
ation models (Yan et al., 2021; Lu et al., 2022;
Mo et al., 2023), span-based models (Yu et al.,
2020; Ye et al., 2022). Some Transformer-based
models have been adapted for many NLP tasks,
such as information extraction (Yang et al., 2022a;
Mo et al., 2024; Wei et al., 2023a), intent discov-
ery (Zhang et al., 2024b,a), and machine transla-
tion (Yang et al., 2022c,b, 2021a, 2023; Zhu et al.,
2023). Through scaling up the model size, large
language models (LLMs) produce competitive re-
sults without training by unifying different IE sub-
tasks. NL-LLMs (Wei et al., 2023b) converts struc-
tured information tasks into natural language, but
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there is an inconsistency between the reasoning
goal and pre-training. Code-LLMs (Chai et al.,
2023; Li et al., 2023b; Guo et al., 2023b; Bi et al.,
2023) converts the text-to-structure IE task into a
structure-to-structure code generation task.

In-context Learning In-context learning (ICL)
can be enhanced in large-scale LLMs (Brown et al.,
2020; Touvron et al., 2023; Bai et al., 2023; Guo
et al., 2023a) by constructing valuable demonstra-
tions (Yang et al., 2021b; Liu et al., 2022; Ru-
bin et al., 2022; Dong et al., 2023; Wang et al.,
2023d). The selected samples may have a positive
or negative effect on in-context learning(Nguyen
and Wong, 2023). Some researchers (Liu et al.,
2022; Guo et al., 2023b) proposes to use KNN
method to retrieve similar samples and Wan et al.
(2023) employs task-aware retrieval and gold label-
induced reasoning representation to select appropri-
ate samples. Wei et al. (2023b); Xie et al. (2023a)
use dialogue and question-answer methods. Code-
style prompts convert them into program methods
(Li et al., 2023b) or classes (Guo et al., 2023b; Bi
et al., 2023).

Hard negative sample Hard negative samples
should have different labels from the anchor sam-
ple but have embedding features very close to the
anchor embedding. Different from learning and
transferring knowledge through positive samples,
models may obtain valuable information from neg-
ative samples to enhance the model performance
(Robinson et al., 2021; Radenovic et al., 2023; Mo
et al., 2024). Introducing negative samples can
directly assist with positive samples to comprehen-
sively extract helpful knowledge for LLM.

7 Conclusion

In this work, we introduce C-ICL, contrastive
in-context learning for few-shot information ex-
traction, including right/positive and wrong/neg-
ative demonstrations. In addition through type
instruction demonstrations prompt mention tags
in the IE task. From the contrastive samples, the
LLMs could obtain effective information and indi-
rect but positive, valuable additional knowledge for
IE tasks. Besides, our method adopts semantic sim-
ilarity retrieval strategies and self-consistency votes
to retrieve in-context examples better suited for the
current sentence and task, significantly improving
IE performance. Extensive experiments prove the
effectiveness of C-ICL on various benchmarks.

Limitations

We acknowledge the following limitations of this
study: (1) This work focuses on exploring the in-
context learning for few-shot NER and RE tasks.
The investigation of this paradigm on other IE tasks
has not been studied yet. (2) We apply the com-
mon sentence embedding similarity for retrieving
positive samples. We use self-consistency and con-
fidence F1 score to obtain hard negative samples
as in-context demonstrations. There might be other
diverse strategies for measuring suitable positive
samples and the quality of hard negative samples.
(3) The performance of our work still lags behind
previous fully-supervised methods.
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A Implementation Experiment

A.1 Dataset Statistics

To ensure a comprehensive evaluation, we select a
diverse set of datasets on the NER and RE tasks, in-
cluding three NER benchmarks and four RE bench-
marks. The specific statistics of these datasets,
including the number of entity and relation types,
as well as the distribution of instances across train-
ing, development, and test sets, are summarized in
Table 3. This detailed breakdown provides insights
into the dataset composition and serves as a refer-
ence for the robustness of the evaluation framework
applied to our approach.

Datasets
Entity
Types

Relation
Types

Train Dev Test

NER
CoNLL03 4 / 14041 3250 3453

ACE04 7 / 6202 745 812
ACE05-E 7 / 7299 971 1060

RE

CoNLL04 4 5 922 231 288
ACE05 7 6 10051 2420 2050
NYT 3 24 56196 5000 5000

SciERC 6 7 1861 275 551

Table 3: Statistics of NER and RE Datasets.

A.2 Implementation Experiment Details

We run all experiments with the deep learning
framework PyTorch NVIDIA Tesla A100 GPUs.
The specific configurations and hyperparameters
used in our method are meticulously chosen to
optimize performance. These parameters include
the maximum sequence length, the batch size, the
number of beams for beam search, the top-p, and
temperatures for controlling the randomness of the
output. The parameters are detailed in Table 4.

Parameters Values
Max Sequence Length 8192
Batch Size [1, 2]
Num_beams 1
Do_sample True
Top_p 0.7
Temperature [0.3,0.6,0.9]

Table 4: The main parameters of our method C-ICL
based on CodeLlama.

B Supplementary Analysis

B.1 C-ICL vs CodeIE based on CodeLlama

Since ChatGPT (OpenAI, 2022) is a robust model,
our method, which is based on the open-source
model CodeLlama, may be at a disadvantage. To

better illustrate the effectiveness of our method
C-ICL, we reproduce CodeIE and replace its back-
bone with CodeLlama, and the relevant parameter
settings are the same as ours. The results are shown
in Table 5 and 6. From the tables, under the same
model and parameters, we can see that our method
is superior to CodeIE. It shows that our method
with wrong/negative samples can provide more ef-
fective information to large models to improve the
performance of IE.

NER
Model Backbone

CoNLL03 ACE04 ACE05-E
Code-davinci-002 82.32 55.29 54.82

CodeLlama-7B 72.33 36.21 35.18
CodeLlama-13B 79.30 38.82 35.87

CodeIE (Li et al., 2023b)

CodeLlama-34B 82.53 46.38 46.46
CodeLlama-7B 83.98 47.88 45.65
CodeLlama-13B 85.94 49.69 48.04C-ICL (ours)
CodeLlama-34B 87.36 54.47 55.65

Table 5: The experiment performances of C-ICL and
CodeIE via CodeLlama on NER benchmarks.

Model Backbone
RE

CoNLL04 ACE05 NYT SciERC

CodeIE (Li et al., 2023b)

Code-davinci-002 53.10 14.02 32.17 7.74
CodeLlama-7B 29.43 7.89 29.04 9.64
CodeLlama-13B 33.91 8.11 31.75 12.96
CodeLlama-34B 36.03 15.94 34.92 10.55

C-ICL (ours)
CodeLlama-7B 53.27 18.75 59.68 12.13
CodeLlama-13B 56.43 20.57 60.16 15.29
CodeLlama-34B 56.93 23.49 60.92 17.33

Table 6: The experiment performances of C-ICL and
CodeIE via CodeLlama on RE benchmarks.

B.2 Prediction Error
In order to explore the impact of wrong/negative
samples as in-context demonstrations on the types
of errors that may occur in information extraction,
we conducted analysis experiments on CoNLL03,
ACE04, CoNLL04, and SciERC datasets via the
backbone CodeLlama-7B. The results are shown in
the Table 7 and 8. The number of entities involved
in the evaluation of CoNLL03 and ACE04 datasets
are 5648 and 3035 respectively. The number of
relations involved in the evaluation of CoNLL04
and SciERC datasets are 422 and 974 respectively.

C Supplementary Case Study

In this section, we present other examples of NER
and RE test datasets in our experiments, as shown
in Figure 11 In example 2, common issues that
arise include the omission of entities or relations.
By providing hints through negative samples, it
is ensured that problems occurring in the gener-
ation process of test samples can be revised and
corrected.

In Example 3, even with the provision of seman-
tically similar positive and negative samples as ICL
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Model Backbone
Entity Type Error Entity Span Error

CoNLL03 ACE04 CoNLL03 ACE04
CodeIE (Li et al., 2023b) CodeLlama-7B 210 329 2300 2303
C-ICL (ours) CodeLlama-7B 126 434 1842 2549

Table 7: Predicton errors on NER datasets. "Ent Type Error" means the predicted entity type of the entity is not in
the predefined type set. "Ent Span Error" means the predicted entity span of the entity is not in the test text.

Model Backbone
Entity Type Error Entity Span Error Relation Type Error

CoNLL04 SciERC CoNLL04 SciERC CoNLL04 SciERC
CodeIE (Li et al., 2023b) CodeLlama-7B 13 93 492 1481 16 38
C-ICL (ours) CodeLlama-7B 7 88 273 1233 7 17

Table 8: Predicton errors on RE datasets. "Ent Type Error" means the predicted entity type of the entity is not in the
predefined type set. "Ent Span Error" means the predicted span of the entity is not in the test text. "Relation Type
Error" means the predicted label is not in the predefined relation type set.

demonstrations, the correct output results are still
not guaranteed. In this case, it can be observed that
the semantics of the test data itself are challeng-
ing. “there” means a location and “highway” is a
facility in the location “there”. The large model
has not yet been handled perfectly to recognize
such issues, even with the guidance provided by
rich ICL demonstrations. For this situation, the
need for further advancements in training and fine-
tuning techniques to improve LLM’s interpretive
capabilities and proficiency in handling complex
inferences.
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[Test Data]
def named_entity_recognition(input_text):

""" extract named entities from the input_text . """
input_text = "This power plant , which will be situated in Rudong , Jiangsu , has an annual generation capacity of 2 . 4 million 

kilowatts ."
entity_list = {}
# extracted named entities

[Right/Positive] 
def named_entity_recognition(input_text):

""" extract named entities from the input_text . """
input_text = "Disheng Ye presented that Tianjin has a population of 9 . 4 million and is the biggest international harbor city and 

external trading shore in northern China ."
entity_list = {}
# extracted named entities
entity_list["geopolitics"].append("Tianjin")
entity_list["facility"].append("international harbor")
……

#Above Result: Right. 
……

[Wrong/Negative]
def named_entity_recognition(input_text):

""" extract named entities from the input_text . """
input_text = "China ' s Railway Ministry will use the railway project World Bank loan to build a railway specific communication 

network to link the whole country ."
entity_list = {}
# extracted named entities
entity_list["geopolitics"].append"China")
entity_list["facility"].append("railway")
……

#Above Result: Wrong. Right Result is blow :
def named_entity_recognition(input_text):

""" extract named entities from the input_text . """
input_text = "China ' s Railway Ministry will use the railway project World Bank loan to build a railway specific communication 

network to link the whole country ."
entity_list = {}
# extracted named entities
entity_list["geopolitics"].append"China")
entity_list["facility"].append("a railway specific communication network"})
entity_list["facility"].append("railway")
……

……

[Type Instructions]
# entity type set: person , location , organization, geopolitics, facility, vehicle, weapon

[Output]
entity_list["geopolitics"].append("Rudong")
entity_list["geopolitics"].append("Jiangsu")
entity_list["facility"].append("This power plant")
entity_list["facility"].append("power plant")

#Above Result: Wrong. Right result is:
entity_list["geopolitics"].append("Rudong")
entity_list["geopolitics"].append("Jiangsu")
entity_list["facility"].append("This power plant")
entity_list["facility"].append("which")

(a) Example 2

[Test Data]
def relation_extraction(input_text):

""" extract the relations of named entities from the input_text . """
input_text = "Now , as you go from Saddam International Airport into town you see there are some big , wide divided highways 

there ."
entity_relation_list = []
# extracted relations

[Right/Positive] 
def relation_extraction(input_text):

""" extract the relations of named entities from the input_text . """
input_text = "A traveler was driving through Arkansas when he lost his way and got off the main highway ."
entity_relation_list = {}
# extracted relations
entity_relation_list["physical"].append([("traveler", "person"), ("Arkansas”, "geopolitics")])
entity_relation_list["part whole"].append([("highway”, "facility"), ("Arkansas”, "geopolitics")])

#Above Result: Right. 
……

[Wrong/Negative]
def relation_extraction(input_text):

""" extract the relations of named entities from the input_text . """
input_text = "we , of course , will bring the word to you just as soon as the army and coalition forces do take control of saddam hussein

international airport , just on the outskirts of baghdad ."
entity_relation_list = {}
# extracted relations
entity_relation_list["part whole"].append([("saddam hussein international airport", "facility"), ("the outskirts of baghdad", "location")])
……

#Above Result: Wrong. Right Result is blow :
def relation_extraction(input_text):

""" extract the relations of named entities from the input_text . """
input_text = "we , of course , will bring the word to you just as soon as the army and coalition forces do take control of saddam hussein

international airport , just on the outskirts of baghdad ."
entity_relation_list = {}
# extracted relations
entity_relation_list["part whole"].append([("saddam hussein international airport", "facility"), ("outskirts", "location")])
……

……

[Type Instructions]
# entity type set: person , location , organization, geopolitics, facility, vehicle, weapon
# relation type set: physical , organization affiliation, personal social, part whole, agent artifact, gen affiliation

[Output]
entity_relation_list ["part whole"].append([("facility", "Saddam International Airport"),("highways", "location")])

(b) Example 3

Figure 11: Supplementary case study of contrastive in-context learning. The red text means the incorrect labels and
the green text means the right labels. Figure 11(a) means the results of NER. Figure 11(b) means the results of RE.
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