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Abstract

Large Language Models (LLMs) have shown
remarkable performance in various basic natu-
ral language tasks. For completing the complex
task, we still need a plan for the task to guide
LLMs to generate the specific solutions step by
step. LLMs can directly generate task plans,
but these plans may still contain factual errors
or are incomplete. A high-quality task plan
contains correct step-by-step solutions for solv-
ing all situations and behavioral instructions
for avoiding mistakes. To obtain it, we propose
the Learning to Plan method, which involves
two phases: (1) In the first learning task plan
phase, it iteratively updates the task plan with
new step-by-step solutions and behavioral in-
structions, which are obtained by prompting
LLMs to derive from training error feedback.
(2) In the subsequent test phase, the LLM uses
the learned task plan to guide the inference of
LLM on the test set. We demonstrate the ef-
fectiveness of our method on the five different
reasoning type tasks (8 datasets). Further, our
analysis experiment shows that the task plan
learned by one LLM can directly guide another
LLM to improve its performance, which reveals
a new transfer learning paradigm.

1 Introduction
Large Language Models (LLMs), such as Chat-
GPT and GPT-4 (OpenAI, 2023), have recently
achieved strong zero-shot/few-shot performance
on various natural language tasks, such as gen-
erating passages (Bang et al., 2023), generating
code (Liu et al., 2023a), and solving grade school
math problems (Qin et al., 2023). LLMs can fur-
ther learn new basic abilities by connecting them
with millions of APIs like TaskMatrix.AI (Liang
et al., 2023; Wu et al., 2023) or new tools like Tool-
Former (Schick et al., 2023). However, LLMs still
struggle to complete complex tasks, such as writ-
ing a long novel (Yang et al., 2022), coding for a
large project (Orlando), and solving complex math
problems (Frieder et al., 2023). This indicates that

Task instruction (prompt): Calculating the sin/cos value
of an angle based on the length of legs and other conditions
in a triangle.

Input: In a triangle ABC, AC is 8 units, and BC is 15 units,
what is cos<ABC?

Label: 15
17

Zero-shot chain of thought: Let’s think step by step.
Corresponding solution of the input: Apply the cosine
rule: cos(̸ ABC) = 82+152−152

2·8·15 = 64
240

Simplify: cos(̸ ABC) = 4
15

Task plan learned by our method: There are two solu-
tions for finding the value of an angle in a triangle. So-
lution 1 involves using the Law of Cosines to calculate
cos( ̸ ABC).

Solution 2 involves using the Pythagorean Theorem to find
the length of the third side of the triangle and then using
the definition of sine to calculate sin(̸ ABC). To find
the length of the hypotenuse of a right triangle using the
Pythagorean Theorem, use the formula (AC)2+(BC)2 =

(AB)2. python functions can also be used to calculate these
values.
Corresponding solution of the input: Using the
Pythagorean theorem, we can have AB =

√
82 + 152 =

17. Then, based on the definition of cosines, we can have
cos < ABC = 15

17

Table 1: We list the typical elements of a task.

knowing every basic step/capability is insufficient
to complete complex tasks - we still require a task
plan consisting of step-by-step solutions and be-
havioral instructions to solve the complex task. We
can employ human experts to write high-quality
task plans for solving complex tasks. However,
writing a task plan by humans is hard and expen-
sive. To automatize this, We can prompt the LLM
to generate the task plan and then use it to guide
the test inference. However, LLMs may gener-
ate errors or incomplete steps in the plan without
the supervision of feedback. To address the prob-
lem, in this paper, we propose the learning to plan
method, which automatically learns the task plan
containing step-by-step solutions and behavioral
instructions by iteratively prompting the LLM to
solve the errors. We present the task plan learned
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by our method in Table 1. In contrast to the task
instruction, our task plan contains multiple step-
by-step solutions. In comparison to the specific
solution, our task plan comprises general solutions
that can guide the LLM to solve all task samples.

Specifically, we first collect the wrong samples
that can not be solved with the guidance of the cur-
rent task plan. This step is called the finding wrong
samples with current task plan step. Next, in the
computing plan update step, we prompt the LLM
to generate multiple new step-by-step solutions for
solving wrong samples and samples similar to them.
We choose the solution that achieves the best per-
formance on a validation set as the plan update.
Text compression is also considered for dedupli-
cation. In the updating plan step, we update the
task plan by directly adding the best new solution
(text) to the original task plan (text). We repeat
the learning process until we can not find a new
solution to improve the task plan’s performance. In
the test phase, we add the learned task plan into the
prompt to guide the LLM.

Experiments on 8 reasoning datasets with five
reasoning types: mathematical reasoning, causal
reasoning, logical reasoning, symbolic reasoning
task, and combinatorial reasoning show that our
method improves the LLM’s performance of these
tasks significantly. For example, our method’s av-
erage performance of 10 tasks from the AMPS
mathematical dataset (Hendrycks et al., 2021) out-
performs the performance directly measured in
the zero-shot/few-shot chain of thought setting by
18.3%/7% respectively (Table 2). We also find
that our method can improve the zero-shot per-
formance of the newest open-source LLMs (e.g.,
Vicuna v1.5). That verifies our method is a general
algorithm for both closed-source and open-source
LLMs. Furthermore, we find that the learned plan
by ChatGPT can directly guide GPT-4 to improve
GPT-4’s performance. This means our learned task
plan in natural language can transfer between LLM
A and another LLM B.

The paper’s main conclusions are as follows:
(1) To solve the complex and specific task, we

propose the learning to plan method that can au-
tomatically learn and update the high-quality task
plan. The task plan then guides the LLM to solve
test samples.

(2) We verify the effectiveness of our method
on 8 reasoning datasets involving 5 different rea-
soning types. Our method boosts the LLM’s per-

formance markedly without finetuning the model.
Our method works well for both closed-source and
open-source LLMs.

(3) We find that the task plan learned by one
weaker LLM (e.g., ChatGPT) can help another
stronger LLM (e.g., GPT-4) to improve its perfor-
mance, which implies that our learned task plan can
transfer between different LLMs as a high-quality
task experience.

2 Related Work

Large Language Models (e.g., GPT3 (Brown
et al., 2020), ChatGPT, OPT (Zhang et al.,
2022), and LLaMA (Touvron et al., 2023))recently
achieve huge progress. They can generate sim-
ple code (Chen et al., 2021), solve simple math
problem(Bang et al., 2023), and write the draft of
mathematical proof(Jiang et al., 2022). Further, as
a text understanding and generation module, they
can connect other APIs (Liang et al., 2023), mod-
els (Wu et al., 2023), and tools (Schick et al., 2023)
to expand basic abilities for solving more complex
tasks. But it’s still challenging for LLMs to solve
complex tasks like writing a novel. Our paper fo-
cuses on the learning problem for the deployed
large language model to solve complex tasks.

Prompt Engineering (Liu et al., 2023b; Wei
et al., 2022; Kojima et al., 2022a) further im-
proves the performance of LLMs by inserting a
prompt into the input. Discrete prompts consist
of natural language phrases. (Jiang et al., 2020)
uses the mining-based methods to extract Middle
words and words in the dependency path as the
potential discrete prompts. Prompt-paraphrasing
methods (Jiang et al., 2020; Haviv et al., 2021)
create the potential prompts by paraphrasing the
original prompt into a set of other prompts. (Gao
et al., 2020) uses pre-trained T5 to generate dis-
crete prompts. However, discrete prompts can not
update the previous prompt to make the prompt
better and do not induce the task information into
their method. Continuous prompts (Li and Liang,
2021; Zhong et al., 2021; Liu et al., 2021b) per-
form prompting directly in the embedding space of
the model. Their templates have their own parame-
ters that can be tuned in the training dataset. But
humans can not directly understand them.

Task Planning Methods can be divided into two
main approaches: One approach prompts the LLM
to break the problem down into sub-problems with-
out feedback. Chain of Thought (CoT) prompting

10063



and Zero-shot CoT (Wei et al., 2022; Kojima et al.,
2022a) generate reasoning intermediate processes
for complex problems by prompting the model to
"think step by step. Least-to-most prompting (Zhou
et al., 2022a) prompts LLMs to decouple a complex
problem into a list of sub-problems and solve them
sequentially. Another approach uses feedback to
decouple complex tasks step by step. Self-refine
method and related methods (Madaan et al., 2023;
Saunders et al., 2022; Yao et al., 2023b; Zheng
et al., 2023) and Tree of thoughts (Yao et al., 2023a)
improve LLMs’ specific solution iteratively by uti-
lizing the feedback provided by LLM itself. Re-
act (Yao et al., 2022), Progprompt (Singh et al.,
2023), and Inner Monologue (Huang et al., 2022)
uses environmental feedback to generate specific
action plan step by step. APE (Zhou et al., 2022b)
and Instruction Induction (Honovich et al., 2022)
update task instruction by iteratively generating in-
struction candidates and selecting the one with the
best validation performance.

3 Method

3.1 Task Plan and Self-Plan Method

To solve the complex task, we need a task plan in
natural language that consists of step-by-step solu-
tions and behavioral instructions to guide the LLM.
For example, to calculate the roots of the quadratic
equation, the plan can be made of the step-by-step
solution based on the quadratic formula and instruc-
tion for taking care of the no real roots situation.
The task plan should be (1) generally applicable
to any sample from the task and (2) easily com-
prehensible by humans, which allows humans to
read, edit, and add new solutions or instructions to
improve the quality of the plan.

To get a high-quality task plan, we can employ
human experts to write the step-by-step solutions
for the task. However, the labor cost is high when
we need to complete a huge amount of tasks. An-
other way is to prompt the LLM to generate the
task plan. Specifically, we ask the LLM to gener-
ate a task plan that includes general step-by-step
solutions to solve the task (see Figure 4 in Ap-
pendix A). Next, we use the generated plan to guide
the inference of the test sample x of the task. This
way utilizes the knowledge of the pre-trained LLM.
However, as we showed in the experiment section,
the generated task plan may have many factual er-
rors and incomplete steps. To automatically obtain
a high-quality plan and reduce factual errors, we

propose the learning to plan method. The learned
plan by our method boosts the LLM’s complex task
performance markedly.

3.2 Learning to Plan

In this section, we introduce the learning to plan
method that learns and updates the task plan p
based on the error feedback. Similar to the tradi-
tional deep learning setting, we divide the training
set D into equal-size training data batches. We con-
sider one training epoch to be completed once the
model has processed all data batches in one pass.
Our method’s learning procedure for each training
iteration consists of three steps: (1) finding errors
that can not be solved with the current task plan (2)
prompting the LLM to generate new step-by-step
solutions and behavioral instructions for solving
the errors and verifying the effectiveness of new
solutions and instructions (3) updating the task plan
with new solutions and instructions. We illustrate
the whole learning procedure in Figure 1.

3.2.1 Finding Wrong Samples With Current
Task Plan

During the t-th training iteration, given the data
batch Dt = {xi, yi}di=1 and the current task plan
pt−1, we collect the wrong samples that can not
be solved with the guidance of the current task
plan pt−1. Note that we set the initial task plan p0
as the empty string for the first iteration. Specif-
ically, we first prompt the LLM to make predic-
tion H(xi, p) for each data point in the batch with
the guidance of task plan pt−1. Then we col-
lect all wrong predictions, their inputs, and their
correct labels to construct the wrong example set
{xi, H(xi, pt−1), yi}d

′

i=1 by identifying if the pre-
diction matches with the true label. We illustrate
this step on the left side of Figure 1.

3.2.2 Computing Plan Update

We update the task plan by adding the plan up-
date consisting of new step-by-step solutions and
instructions ∇p. To obtain ∇p, we first prompt
the LLM to generate multiple plan update candi-
dates that can correctly solve the wrong examples.
Specifically, (1) we randomly choose m wrong ex-
amples from the wrong example set. Then we use
the m wrong examples, previous task plan pt−1,
and a new solution generation prompt (see Fig-
ure 2) as input to prompt the LLM to generate the
new step-by-step solutions to solve the errors. (2)
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Figure 1: The whole learning process of our learning to plan method and examples in the Rounded Rectangle
Annotations.

we repeat (1) K time to collect K plan update can-
didates (see the right bottom of Figure 1).

Choosing the best candidate as the plan up-
date: Next, we verify these candidates on the val-
idation set and select the best one as ∇pt. Specif-
ically, (1) we first randomly sample a subset of
the samples with their label from the training set
as the validation set Dvalid. (2) For each plan up-
date candidate, we pseudo-update the task plan by
directly adding the plan update candidate into it
and test the LLM performance on the validation set
with the pseudo-updated plan. If the updated per-
formance is better than the recent average recorded
performance by a threshold, we maintain this can-
didate and its validation performance. Otherwise,
we delete it. (3) We choose the candidate with
the best validation performance as ∇pt and add its
performance to the recorded performance list.

Compression information: However, directly
using the generated plan update candidate that con-
sists of multiple new solutions may have the fol-
lowing problems: (1) There may be repeated solu-
tions in the plan update, which should be deleted
to reduce the token cost. (2) Trival information in
the solutions drops the generalization of the plan
update toward all samples. (3) The length of the
whole task increases with the addition of plan up-
date ∇pt. Then the total tokens in the input may be
beyond the tokens limitation of the LLM. To avoid

these problems, we prompt the LLM to compress
plan update candidates while maintaining its essen-
tial information. Specifically, for each task plan
update candidate, we use a compression prompt
(Figure 3) to prompt the LLM to generate a com-
pressed plan update candidate that only maintains
important information. Then we choose the best
candidate based on the validation performance.

Prompt for generating plan update candidates.

<m Wrong examples>
You can generate two or three new correct solu-
tions to avoid the above wrong outputs and to
solve all questions refer to the above questions.
You must generate solutions different from those
previous solutions in the previous natural lan-
guage plan: pt−1.
You can generate equations and Python algo-
rithms.
When generating one solution, you should write
no more than two sentences for one solution.
You must not generate detailed examples as we
need general solutions

Figure 2: Prompt for obtaining the plan update candi-
date in the learning to plan method.

3.2.3 Updating the Plan
We update the plan by appending the new plan
update to the end of the current task plan pt−1 (see
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the right top of Figure 1). If we don’t find a new
plan update to improve the task plan, we do not
update it.

Prompt for compressing the plan update

You should summarize the similar solutions in
[∇p] into one solution.
You should maintain solutions for solving dif-
ferent situations.
You must only output no more than five main
solutions.
When generating one solution, you should write
no more than two sentences for one solution.

Figure 3: The compression prompt.

Too long task plan p has drawbacks: (1) the prompt
may be beyond the limitation and (2) turns the
short-text inference problem into a long-text infer-
ence problem. That increases the task difficulty. To
avoid these, we use p, and the compression prompt
to prompt the LLM to generate a compressed and
shorter p. Then we follow the above verification
step to identify if we can use the compressed p to
replace the original p. If the validation performance
of the compressed p is better than the original p’s
performance or just drops a little, we replace the
original p with the compressed p. If not, we repeat
the compression and verification steps until we get
a high-quality compressed task plan p or beyond
the time limitation.

Stop criterion: We can run our method on the
training set with multiple epochs. If we do not find
a ∇pt to improve the performance during recent
batches, we would stop the training process.

4 Experiment

Datasets Mathematical reasoning, we select 10
challenging mathematical tasks from the AMPS
dataset (Hendrycks et al., 2021) (see Table 9 in
Appendix B). Each task corresponds to a specific
mathematical problem type and belongs to one of
the three fundamental math areas: geometry, cal-
culus, and algebra. We also consider the Math
dataset (Hendrycks et al., 2021) and follow its orig-
inal seven task type annotation: pre-algebra, Inter-
mediate Algebra (IA), Algebra, Counting and Prob-
ability (CP), Geometry, Number theory (NT), and
Precalculus. Causal Reasoning: We consider the
Causal Judgment task from BIG-bench (Srivastava
et al., 2022). Given a short story where multiple
cause-effect events are introduced, this task asks

LLM to answer causal questions such as "Did X
cause Y?". We also consider the counterfactual rea-
soning assessment (CRASS) dataset (Frohberg and
Binder, 2021). Given a base premise and a ques-
tionized counterfactual conditional, this task asks
LLMs to choose a correct consequence from a set
of potential effects. Logical Reasoning: We con-
sider the logical reasoning part of the Law school
admission test (LSAT) (Zhong et al., 2023). Given
a long passage and a question based on the passage,
the LLM needs to answer the question by reasoning.
We also consider the date understanding task from
BIG-bench (Srivastava et al., 2022), where LLMs
need to infer the date based on the date-related
information. Symbolic reasoning: We consider
the last letter concatenation task (Wei et al., 2022),
in which LLMs need to extract the last letters of
five random sampled words from Wiktionary1 and
concatenate the last letters as the response. Com-
binatorial reasoning: We consider the SayCan
dataset (Ahn et al., 2022) where LLMs generate
the action sequence for the robot to complete the
instruction. More details are in Appendix B.

Model and settings: We use the ChatGPT
model (GPT-3.5-turbo) as the LLM as the trade-off
of performance and inference cost. We consider the
zero-shot CoT and few-shot CoT settings. In the
zero-shot CoT test setting, we follow (Kojima et al.,
2022b) and add the chain of thought (CoT) prompt
’Let’s think step by step’ after the test sample. No
demonstration example (zero-shot example) is used
in the prompt. In the few-shot CoT test setting, we
use the few-shot CoT prompt that contains fixed
demonstration examples and the test problem. We
list the zero/few-shot inference prompts and the
details of demonstration examples in Appendix C.

Baselines We consider five baselines (1) the
naive zero-shot/few-shot performance of the LLM
directly measured in the test set, which shows the
LLM’s task ability without the guidance of plans.
(2) The self-plan method: We use the task plan gen-
erated by the self-plan method to guide the infer-
ence of the LLM and record its zero-shot/few-shot
test performance. (3) The self-plan method with
selection: We generate multiple plan candidates
by the self-plan method and choose the one with
the best performance as the task plan. (4) kNN
selection method (Liu et al., 2021a): For every
test example, we use the BM25 algorithm to re-

1https://en.wiktionary.org/wiki/
Wiktionary:Frequency_lists/PG/2006/04/
1-10000
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Task 1 2 3 4 5 6 7 8 9 10 Avg
ChatGPT (zero-shot, CoT) 73.5 44.0 65.2 30.4 38.8 53.1 29.2 77.0 60.0 12.2 48.3

ChatGPT + Self-Plan (zero-shot, CoT) 83.6 29.6 68.5 30.4 48.3 67.3 45.3 85.5 42.0 15.5 51.6
ChatGPT + Self-Plan with selection (zero-shot, CoT) 86.0 44.3 83.0 30.4 55.1 53.1 73.9 91.7 63.0 17.5 59.8

APE (Zhou et al., 2022b)(zero-shot, CoT) 76.5 50.2 68.2 35.4 40.1 73.1 39.2 87.2 65.0 15.2 55.0
ChatGPT + Learning-to-Plan (zero-shot, CoT) 89.8 55.1 87.0 60.9 56.1 81.0 54.1 96.0 67.0 18.9 66.6

ChatGPT (few-shot, CoT) 79.8 19.6 94.5 43.8 56.1 73.5 75.0 77.1 65.0 56.0 64.0
ChatGPT + Self-Plan (few-shot, CoT) 85.7 29.5 70.3 21.4 52.1 59.2 37.5 97.5 57.0 8.8 51.9

ChatGPT + Self-Plan with selection (few-shot, CoT) 84.0 38.3 97.0 41.4 51.4 65.3 56.5 100.0 75.0 47.3 65.6
APE (Zhou et al., 2022b)(few-shot, CoT) 82.8 29.3 96.8 50.8 60.1 74.5 76.1 80.1 67.2 60.1 67.8

kNN selection (Liu et al., 2021a) (few-shot, CoT) 90.0 31.1 70.6 30.4 55.0 59.2 77.5 87.5 57.0 56.7 61.5
ChatGPT + Learning-to-Plan (few-shot, CoT) 98.0 38.8 97.8 43.8 56.1 81.6 87.5 100.0 79.0 56.7 73.9

Table 2: Performance of the 10 tasks on the AMPS dataset. ’APE’ is the Automatic Prompt Engineer method. ’Avg’ is the
average performance on 10 tasks.

Task Prealgebra IA Algebra NT Geometry Precalculus CP Avg
ChatGPT (zero-shot, CoT) 48.2 13.9 49.0 25.9 17.1 15.4 22.3 27.4

ChatGPT + Self-Plan (zero-shot, CoT) 40.2 11.5 34.2 22.8 17.8 15.5 20.1 23.3
ChatGPT + Self-Plan with selection (zero-shot, CoT) 50.2 14.5 49.3 26.0 18.8 15.5 27.1 28.7

APE (Zhou et al., 2022b) (zero-shot, CoT) 49.0 14.9 50.0 26.8 18.0 16.0 25.3 28.5
ChatGPT + Learning-to-Plan (zero-shot, CoT) 50.6 15.3 49.5 28.2 18.8 16.6 29.3 29.8

ChatGPT (few-shot, CoT) 52.4 15.8 49.6 28.3 21.3 16.8 30.2 30.6
ChatGPT + Self-Plan (few-shot, CoT) 48.9 15.5 48.4 29.3 19.8 16.9 26.2 29.3

ChatGPT + Self-Plan with selection (few-shot, CoT) 53.4 16.0 49.0 29.0 21.5 15.2 29.3 30.5
APE (Zhou et al., 2022b)(few-shot, CoT) 52.4 15.9 50.0 29.0 21.0 16.5 30.0 30.7

kNN selection (Liu et al., 2021a) (few-shot, CoT) 54.0 14.4 47.5 29.0 20.9 16.0 32.0 30.5
ChatGPT + Learning-to-Plan (few-shot, CoT) 53.7 16.9 49.6 29.8 22.5 16.3 30.2 31.3

Table 3: Performance of the 7 tasks on the Math dataset, ’IA’ is the Intermediate Algebra task, and ’NT’ is the Number Theory
task. ’CP’ is the Counting & Probability task. ’Avg’ is the average performance on 7 tasks.

trieve k most similar examples from the training
set as the demonstration examples in the prompt.
This method can see the entire training set like
our method. (5) Automatic Prompt Engineer (Liu
et al., 2021b) that iteratively updates the task in-
struction by generating instruction candidates and
then selecting the one with the best validation per-
formance. This method has a high computational
overhead for searching the optimal prompt. For the
self-refine method (Madaan et al., 2023), it doesn’t
have a suitable template for our non-mathematical
tasks. We discuss and test it in Appendix D.

Hyper-parameters For our method, we set the
training batch size as 32 and run each task with
10 epochs. We stop the training process if the task
plan is not updated in the recent 10 batches. We
set the validation set size to be 5 times that of the
training batch size. We set the number of selected
wrong samples m and the time of generating re-
vision candidates K in Section 3.2.2 as 3 and 5,
respectively. We set the threshold as 1.0 and the
compression frequency of the plan as 3. The re-
cent average recorded performance in Section 3.2.2
is the average of the recent three recorded valida-
tion performances. Ablation studies of these hyper-
parameters are in Sec. 4.3 and more details are in
Appendix E.

4.1 Experiment Results

Zero-shot CoT setting: We observe that our method
obviously improves the LLM’s average zero-shot
performance of 10 mathematical AMPS tasks by
18.3 percent (Table 2) and achieves the highest per-
formance (29.5) for the complex math tasks from
the Math dataset (Table 3). Our method also im-
proves the performance of four non-mathematical
reasoning tasks markedly (Table 4), especially for
the last letter concatenation task (from 44.6 percent
to 75.2 percent). The huge improvement over rea-
soning tasks is because LLMs learn a high-quality
task plan from the training set to solve complex
tasks. In contrast, the self-plan method’s gener-
ated plan shows significant performance instability.
For example, this method drops the average perfor-
mance on the math dataset by 4.1 percent. The gen-
erated plan contains many unverified factual errors,
rendering it impractical. Selecting the task plan
based on the validation performance to reduce the
factual error boosts the method’s performance from
23.3 to 28.7% on the math dataset. Our method still
outperforms the self-plan method with selection as
our method further has the advantage of iteratively
learning from the error that LLMs can not solve.
Our method outperforms APE as it only optimizes
the task instruction and does not learn from errors.
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Task Causal Judgment CRASS LSAT Date Understanding LLC SayCan Avg
ChatGPT (zero-shot, CoT) 64.5 79.1 52.5 47.3 44.6 36.0 54

ChatGPT + Self-Plan (zero-shot, CoT) 68.2 90.4 52.2 37.3 46.4 36.0 55.1
ChatGPT + Self-Plan with selection (zero-shot, CoT) 66.0 91.3 54.0 44.3 50.6 40.0 57.7

APE (Zhou et al., 2022b) (zero-shot, CoT) 66.0 83.8 52.9 46.8 60.0 40.0 58.3
ChatGPT + Learning-to-Plan (zero-shot, CoT) 70.8 94.2 55.5 48.0 75.2 52.0 66.0

ChatGPT (few-shot, CoT) 62.5 88.4 59.2 50.5 72.6 48.0 63.5
ChatGPT + Self-Plan (few-shot, CoT) 64.5 89.9 43.5 43.0 60.0 44.0 57.5

ChatGPT + Self-Plan with selection (few-shot, CoT) 64.5 91.3 58.5 50.8 75.2 50.0 65.1
kNN selection (Liu et al., 2021a) (few-shot, CoT) 58.3 89.6 59.5 53.2 73.0 50.0 63.9

APE (Zhou et al., 2022b) (few-shot, CoT) 63.5 91.3 44.9 51.5 75.2 48.0 62.4
ChatGPT + Learning-to-Plan (few-shot, CoT) 64.8 92.8 60.1 51.6 81.2 52.0 67.1

Table 4: Performance of the non-mathematical reasoning tasks, ’CRASS’ is the counterfactual reasoning assessment task,
’LSAT’ is the Logical Reasoning task in LSAT, and ’LLC’ is the Last Letter Concatenation task.

Task Algebra Causal Judgment Logical Reasoning (LSAT) Last letter concatenation SayCan
GPT-4-32k 57.8 64.6 81.3 85.4 72.0

GPT-4-32k + Learned-Plan p from ChatGPT 58.9 68.8 82.0 88.6 80.0

Table 5: Five different reasoning tasks’ zero-shot CoT performance. ’Algebra’ task is from the math dataset.

Few-shot CoT setting: Experiments in Table 2,
3, and 4 shows that our method can further im-
prove few-shot performance by learning a task
plan to solve the errors that have not been solved
with the guidance of demonstration examples. Our
method’s average performance also outperforms
other baselines by a clear margin. The performance
improvement of the self-plan method is still unsta-
ble as the factual error problem and can be im-
proved by the selection strategy. APE influences
the few-shot performance slightly as it only adjusts
the task instruction. kNN selection method im-
proves the LLM’s few-shot performance slightly
as the most similar examples based on the term
frequency may not mean the best demonstration
examples for complex reasoning tasks.

4.2 Analysis

Transferring from one LLM to another LLM
Humans can directly transfer knowledge through
natural language. Surprisingly, we find that the
learned task plan from the ChatGPT model can
improve the zero-shot performance of GPT-4 in Ta-
ble 5. That means when both LLMs can understand
natural language well, the learned task plan can be
directly transferred from LLM A to LLM B to im-
prove LLM B’s performance as natural language
task knowledge (step-by-step solutions) rather than
a simple task prompt.

Enhancing open-source LLMs We deploy our
method with the open-source vicuna-13b-v1.5
model (Chiang et al., 2023) and wizardLM (Xu
et al., 2023) to learn the task plan of main reason-
ing tasks. Table 6 shows that the learned plan by
the open-source models can boost its zero-shot test

performance, which means our method also works
well for strong open-source LLMs. The learned
plans by the Vicuna model are clear but shorter
and simpler than those learned by ChatGPT in Ap-
pendix F.

Quality analysis of the learned task plan and
the continual update process We present the
learned task plans by ChatGPT in Appendix G. We
find that the general solutions in the learned plan
are highly relevant and detailed for solving task
samples and are diverse for solving different cases.
Figure 29 in Appendix G shows that our method
learns two general solutions in the plan during the
training. However, the plan is not yet complete and
some test samples can not be solved. After learn-
ing from training errors, the trained plan has rich
general step-by-step solutions to calculate angles
and achieve success in solving the test samples.

Comparing our learning method’s plan with
that of the self-plan method We compare the
learned plan with that of the self-plan method in
Figure 30 in Appendix H. The self-plan’s gener-
ated task plan has a factual error about fraction
simplification. The self-plan with selection method
provides a plan that contains correct solutions re-
lated to the greatest common factor. Compared to
them, our learned task plan provides verified and
diverse step-by-step solutions for different situa-
tions, such as mixed numbers and fractions with
variables. This is because our plan learns from var-
ious samples and errors that LLM may encounter.

4.3 Ablation Study

We conduct the ablation experiments for various
factors (1) CoT prompt: The performance of ex-
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Task Composite function CRASS Logical Reasoning Last letter concatenation SayCan
Vicuna (zero-shot, CoT) 10.2 46.4 31.0 2.0 22.0

Vicuna + Learned-Plan p from Vicuna (zero-shot, CoT) 16.1 94.3 37.8 3.2 25.2
WizardLM (zero-shot, CoT) 12.3 87.0 18.3 6.8 25.2

WizardLM + Learned-Plan p from Vicuna (zero-shot, CoT) 15.0 98.5 19.4 13.8 30.2

Table 6: Performance of five different type reasoning tasks. ’CRASS’ is the Counterfactual Reasoning Assessment task.
’Composite function’ is the second task from the AMPS dataset. ’Logical Reasoning’ is from the Law school admission test.

Hyper-parameter CoT Epoch number Candidate number K Candidate compression
Value w/o w/o+our method CoT CoT+our method 1 5 10 1 5 10 w/o our method

Composite function (AMPS dataset) 42.8 51.0 44.0 55.1 47.1 50.1 55.1 50.0 55.1 55.1 42.8 55.1
Causal Judgment 56.3 60.4 64.5 70.5 64.8 68.7 70.5 69.0 70.5 70.5 58.1 70.5

Last letter concatenation 40.2 60.2 44.6 75.2 58.7 70.0 75.2 52.8 75.2 77.8 50.5 75.2

Table 7: Ablation study.
Hyper-parameter Validation size Wrong samples m Threshold Plan compression frequency

Value 1 5 10 1 5 10 1 5 10 1 3 5 w/o
Composite function (AMPS dataset) 41.8 55.1 57.0 36.7 55.1 47.1 55.1 44.0 44.0 53.0 55.1 47.1 45.2

Causal Judgment 54.2 70.5 71.0 58.3 70.5 64.8 70.5 66.7 64.5 70.5 70.5 62.0 55.0
Last letter concatenation 62.4 75.2 75.2 70.6 75.2 54.2 75.2 63.2 60.6 76.6 75.2 70.2 58.7

Table 8: Ablation study. The validation size is equal to the time value multiplied training batch size.

periments without the CoT prompt drops slightly
(see Table 7) and our method can still improve
LLM’s performance (see experiment ’w/o+our
method’) as our method improves the performance
by learning from LLM’s. We believe our method
can improve other prompting methods by learning
from errors. (2) Epoch number: we record the
performance in the 1st, 5th, and 10th epoch. From
Table 7, we observe that the performance arises
quickly at first epochs and then rises slowly. So
we set the number of epochs as 10. (3) Candidate
number K (Sec 3.2.2): We find a positive corre-
lation between K and the performance as more
candidates mean a larger search space to find a
stronger plan update. But more candidates also
means higher computational consumption required
to verify them. To trade off two aspects, we set
K as 5. (4) Candidate compression (Sec 3.2.2):
Compressing the candidate indeed boosts the per-
formance (see the last chunk in Table 7) as it makes
the plan update candidate more general and be-
comes applicable for all task samples. (5) Valida-
tion size: A larger validation size results in better
generalization performance (see Table 8) with a
higher computation cost inference cost. Therefore,
we set the validation size as 5 times the training
batch size to trade off two aspects. (6) m wrong
samples in the plan update generation prompt (Fig-
ure 2): In Table 8, we observe that performance first
improves with larger m as LLMs can refer to more
wrong examples and then it drops as the poor in-
duction ability of the ChatGPT for too many exam-
ples. (7) threshold in selecting the best candidate
(Sec 3.2.2): We set the threshold as 1.0 as a higher

threshold may filter out good revision, as shown
in Table 8. (8) Plan compression frequency in
(Sec. 3.2.3): A higher compression frequency en-
hances performance, as shown in Table 8 under ’
plan compression frequency’ due to a higher qual-
ity plan and reduced memory requirements. We
set the compression frequency to 3 to trade off the
performance and the compression inference cost.

5 Conclusion

Large Language Models (LLMs) have shown im-
pressive performance in various natural language
tasks. But they still need a task plan when process-
ing complex tasks. In this paper, we introduce the
learning to plan method, which explicitly learns the
task plan based on the error feedback from the train-
ing dataset and uses the learned task plan to solve
the task. Our proposed method’s effectiveness has
been verified through multiple reasoning tasks, and
we conclude that it is a promising approach for
improving LLMs’ complex task performance.

6 Limitations and potential risks

Despite significant improvements on multiple rea-
soning tasks, our learning-to-plan method has limi-
tations: (1) We mainly consider well-defined tasks,
posing challenges in open-domain settings. We
will address this in the future. (2) Obtaining the
training dataset can be difficult. There are no po-
tential risks, as our experiments use public datasets
and focus on reasoning tasks
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A Prompt for self-plan method

We illustrate the prompt for the self-plan method in
Figure 4. For each task, we use the task description
from Table 9,Table 10, and Table 11.
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Self-plan method’s prompt

<Task description>
You can generate multiple general solutions
to solve any questions from the above task.
You can consider equations and algorithms.
When generating one solution, you should
write no more than two sentences for one
solution.
Solutions:

Figure 4: Prompt for the self-plan method.

B Dataset Details

For the AMPS pre-training dataset (Hendrycks
et al., 2021) (see Table 9). We exclude tasks that
have only a few data points (e.g., less than 50) and
select tasks that are not fully solved by the Chat-
GPT model. For tasks in the AMPS pre-training
dataset, the Causal Judgement task, and the date
understanding task, we split the entire dataset into
the training set and the test set using a 3:1 ratio.
When using the learning-to-plan method to verify
the revision candidates, we randomly sample some
labeled samples from the training set as the valida-
tion set. For other datasets (Table 10 and Table 11),
we construct the training set using its respective
training data from the original training set. We use
the test data from the original test set to construct
the test set.

C The zero-shot and few-shot inference
prompts

We list the zero-shot and few-shot inference
prompts in Figure 5 and 6 and provide an exam-
ple for them respectively. Each example consists
of the example problem, the explanation (solution)
for this problem, and the correct answer. We fol-
low (Lewkowycz et al., 2022; Wei et al., 2022)
and set four examples for tasks of mathematical
reasoning, logical reasoning, symbolic reasoning,
and causal reasoning and six examples for the com-
binatorial reasoning task. The examples are ran-
domly chosen from the original training set. For the
AMPS and Math datasets, we use specific prompts
for each category for all methods. Our method
uses the same examples in both training and test
settings. For our method and the self-plan method,
we further add the learned plan to the prompt. The
task plan in the prompt guides the LLM to solve
the complex task step by step. For baselines that

do not have a plan, we directly use the inference
prompts without the plan.
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Table 9: The summary of the 10 tasks on the AMPS dataset. ’N’ is the number of examples in one task.

Task id N Task type Task description Example
1 199 Calculus Fraction division in simplest form Reduce to lowest terms: 1

9
÷ 7

6
2 394 Calculus Calculating the value of a composite function h(n) = 2n, f(x) = 2x2 + 6x − h(x),

f(h(−2)) = ?
3 368 Geometry Angle Calculation If ̸ AOC = 180◦ and ̸ BOC = 160◦ , what is

̸ AOB, in degrees?
4 94 Geometry Calculating the length of the hypotenuse or a leg

of the right triangle
In the right triangle shown, angle A = 30◦ and AC =
18. How long is AB?

5 393 Algebra Given a number A, find its factor/multiple in a
list of numbers.

Which of the following numbers is a factor of 56?
{3, 6, 8, 10, 13}

6 197 Calculus Calculating the significant figures in a number How many significant figures does 00.033 have?
7 97 Geometry Calculating the sin/cos value of an angle based

on the length of legs and other conditions.
AC is 8 units long, BC is 15 units long, AB is 17 units
long, What is cos( ̸ ABC)? in a triangle.

8 192 Calculus Fraction Division 1
8

÷ 8
3

= ?

9 400 Calculus Fraction reduction in the form of the mixed num-
ber

Express your answer as a mixed number simplified to lowest

terms. 9
3

4
− 5

4

6
= ?

10 593 Geometry Calculating the length of a leg in a triangle based
on the length of another leg and the sin, cos, and
tan value of an angle

BC = 9, sin(̸ ABC) =
√

2
2

,cos( ̸ ABC) =
√

2
2

, tan( ̸ ABC) = 1, then AC = ?

Table 10: The summary of the 7 tasks on the Math dataset. ’Training number’ is the number of examples in the training set of
one task. ’Test number’ is the number of examples in the test set of one task.

Task name Training number Test number Task description Example
Prealgebera 1205 871 basic-level algebra problem What is the largest prime factor of 78?

Intermediate Algebra 1295 903 intermediate-level algebra problem Let a, b, and c be distinct real numbers such

that a
3+6
a

= b3+6
b

= c3+6
c

. Find a3 + b3 +

c3 .

Algebra 1187 1744 high-level algebra problem For what value of x does 212 =
(

1
8

)x
?

Number Theory 869 540 Number Theory problem What is the sum of the four positive factors of the
positive integer value of

√
196?

Counting and Probability 771 474 probability problem A box contains 5 white balls and 6 black balls. Five
balls are drawn out of the box at random. What is the
probability that they all are white?

Geometry 870 479 Geometry problem What is the sum of the lengths of the altitudes of a
triangle whose side lengths are 10, 10, and 12? Ex-
press your answer as a decimal to the nearest tenth.

Precalculus 746 546 basic level calculus problem Find all values of k for which the angle between the

vectors




k
1
1


 and




1
k
1


 is π

3
.

Table 11: The summary of the 6 reasoning tasks. ’Training number’ is the number of examples in the training set of one task.
’Test number’ is the number of examples in the test set of one task.

Task name Training number Test number Task description Example
Causal Judgment 189 47 Given a short story, LLMs need to

judge if event X causes event Y.
Story: ... Question: Did Bob intentionally harm the
health of the townspeople?

Counterfactual Reasoning Assessment 273 68 Given a premise, LLMs need to
judge the possible result if the event
in the premise does not happen.

Premise: A man does not flirt with a woman. Question:
What would have happened if he had flirted with her?
Options: (A) The man would have asked the woman
on a date. (B) The man would not have asked the
woman on a date. (C) That is not possible.

Logical Reasoning (LSAT) 3503 509 Given a passage and a question,
LLMs need to infer which option
is true.

Passage: ... Question: Which one of the following
principles is best illustrated by the example above?
Options: (A) ... (B) ... (C) ... (D) ...

Date Understanding 368 92 LLMs need to infer the date based
on the context.

The first day of 2019 is a Tuesday, and today is the
first Monday of 2019. What is the date 24 hours later
in MM/DD/YYYY?

Last Letter Concatenation 1500 500 Given n words, LLMs need to ex-
tract and concatenate the last letters
of the n words.

Take the last letters of each word in "California en-
durance drink finely singing" and concatenate them

SayCan 73 25 Given an instruction, LLMs need to
generate an action sequence for the
robot to complete the instruction.

How would you move the chips bag from the table to
the counter?
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Our method’s zero-shot inference prompt for the test sample.

<Prompt pattern>
[Question]
Let’s think step by step. [Plan]. Please follow the solutions step by step to get the answer.
<Example>
"Passage: Retailers that excel in neither convenience nor variety of merchandise tend not to be
very successful. Yet many successful retailers excel in just one of the areas and meet competitors’
standards for the other. Hence, a retailer’s success need not depend on excellence in both areas.
Question: The structure of the reasoning in the argument above is most parallel to that in which
one of the following? Options: (A)Runners who have only average speed and endurance are
unlikely to win long-distance races. Some long-distance champions, however, win by being above
average in speed or endurance only; therefore, being above average in both speed and endurance
is not necessary. (B)Bicyclists who have only average speed are unlikely to win short races, but
in a long-distance race such bicyclists can win if they have better-built bicycles than average
and better endurance than average. Therefore, most bicycle races are not won by bicyclists with
above-average speed. (C)Excellence in a particular swimming stroke is not always necessary in
order for a swimmer to win a race that requires each swimmer to use several different strokes
in sequence, and many swimmers win these races without being the best at any of the strokes.
Therefore, anyone who does excel at all the strokes is almost certain to win. (D)Apples that
are neither especially firm nor especially flavorful are unsuitable for baking; yet while flavor is
essential for both baking and eating, many flavorful apples that are soft are suitable for eating.
Hence, the apples that are best for eating need not be both firm and flavorful. (E)Most plants that
are neither ornamental nor edible are useless and are thus classified as weeds; yet many such plants
are useful for purposes other than food or ornamentation, and are thus not classified as weeds.
Hence, not all inedible and non-ornamental plants are weeds.
Let’s think step by step. You need to identify the conclusion and premises of an argument and
look for any assumptions that the argument relies on. Consider any counterexamples or objections
that could weaken the argument. Look for evidence or reasoning that supports or undermines the
conclusion. Identify the conclusion and premises of the argument, and look for any assumptions it
relies on. Consider any counterexamples or objections that could weaken the argument. Look for
evidence or reasoning that supports or undermines the conclusion. Please follow the solutions step
by step to get the answer."

Figure 5: Zero-shot inference prompt. We give the general prompt pattern we used for all tasks first and then we
give an example from the logical reasoning task to explain the general prompt pattern. We put the learned plan into
’[plan]’.
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Our method’s few-shot prompt for the test sample.

<Prompt pattern> Here are the answers to the problems in the exam.
Problem 1: [Problem description]
Explanation for Problem 1: [Problem explanation]
The answer is therefore: [Answer]
...
Problem n: [Problem description]
Explanation for Problem n: [Problem explanation]
The answer is therefore: [Answer]
Problem n+1: [Problem description]
Let’s think step by step. [Plan]. Please follow the solutions step by step to get the answer.
Explanation for Problem n+1:

Figure 6: Few-shot inference Prompt. We give the general few-shot prompt pattern we used for all tasks first and n
is the number of demonstration examples.
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Example of our method’s few-shot prompt.

<Example>
Here are the answers to the problems in the exam.
Problem 1:h(n) = 4n2 − 2(f(n)) f(n) = n+ 1 g(x) = 5x− 4(f(x)) f(h(0)) = ?
Explanation for Problem 1:First, let’s solve for the value of the inner function,h(0). Then
we’ll know what to plug into the outer function.h(0) = 4(02) − 2(f(0))To solve for the
value ofh, we need to solve for the value off(0)f(0) = 1f(0) = 1That meansh(0) =
4(02) + (−2)(1)h(0) = −2Now we know thath(0) = −2. Let’s solve forf(h(0)), which
isf(−2)f(−2) = −2 + 1f(−2) = −1
The answer is therefore -1.
Problem 2:g(t) = 6t− f(t) f(t) = 2t g(f(9)) = ?
Explanation for Problem 2:First, let’s solve for the value of the inner function,f(9). Then we’ll
know what to plug into the outer function.f(9) = (2)(9)f(9) = 18Now we know thatf(9) = 18.
Let’s solve forg(f(9)), which isg(18)g(18) = (6)(18) − f(18)To solve for the value ofg, we
need to solve for the value off(18)f(18) = (2)(18)f(18) = 36That meansg(18) = (6)(18) −
36g(18) = 72
The answer is therefore 72.
Problem 3:g(x) = −3x2 − 2x − 7 + 4(f(x)) f(x) = −6x2 − 2(h(x)) h(x) = −4x2 + 3x
h(f(2)) = ?
Explanation for Problem 3:First, let’s solve for the value of the inner function,f(2). Then we’ll
know what to plug into the outer function.f(2) = −6(22) − 2(h(2))To solve for the value off ,
we need to solve for the value ofh(2)h(2) = −4(22) + (3)(2)h(2) = −10That meansf(2) =
−6(22) + (−2)(−10)f(2) = −4Now we know thatf(2) = −4. Let’s solve forh(f(2)), which
ish(−4)h(−4) = −4(−4)2 + (3)(−4)h(−4) = −76
The answer is therefore -76.
Problem 4:h(t) = −4t2 + 4t− 2− 2(g(t)) g(x) = 7x g(h(1)) = ?
Explanation for Problem 4:First, let’s solve for the value of the inner function,h(1). Then we’ll
know what to plug into the outer function.h(1) = −4(12) + (4)(1) − 2 − 2(g(1))To solve for
the value ofh, we need to solve for the value ofg(1)g(1) = (7)(1)g(1) = 7That meansh(1) =
−4(12)+(4)(1)−2+(−2)(7)h(1) = −16Now we know thath(1) = −16. Let’s solve forg(h(1)),
which isg(−16)g(−16) = (7)(−16)g(−16) = −112
The answer is therefore -112.
Problem 5:h(n) = −6n− 1 g(x) = 7x2 + 7x+ 7− 5(h(x)) g(h(1)) = ?
Let’s think step by step. When substituting a value into a function that is defined in terms of
another function, make sure to substitute the entire expression for the second function, not just the
value of the variable. Please follow these solutions step by step to get the answer.
Explanation for Problem 5:

Figure 7: Example for the few-shot inference Prompt from the math reasoning task. n is the number of demonstration
examples.
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D Learning to Plan vs Self-Refine

Recent research has found that Large Language
Models (LLMs) can iteratively optimize their spe-
cific solutions based on feedback generated by the
LLMs themselves. For instance, the self-refine
method (?) prompts the LLM to generate a solu-
tion and receive feedback for refining the solution
in multiple iterations, continuing until the LLM
determines that further revision is unnecessary. In
contrast to our approach, the self-refine method
does not optimize general knowledge for the task.
Therefore, it (1) does not accumulate knowledge
and (2) can not be further optimized by humans.

We empirically compared our method to the self-
refine method using its official code 2, conducting
experiments with ChatGPT. The self-refine method
enhances ChatGPT’s zero-shot performance on var-
ious tasks, such as the composition function task
(44.0 to 52.0), counterfactual reasoning assessment
task (79.1 to 87.5), logical reasoning task (52.5
to 54.0), and last letter concatenation task (44.6
to 60.0). And our method still surpasses the self-
refine method.

Additionally, we combined our method with self-
refine: (1) we first leverage the learned plan to
instruct the LLM in generating the initial solution
for a test sample, (2) and then use the self-refine
method to iteratively optimize the initial solution.
This combined approach further elevates zero-shot
performance on the composition function task (55.1
to 62.0), counterfactual reasoning assessment task
(94.2 to 98.0), logical reasoning task (55.5 to 58.0),
and last letter concatenation task (75.2 to 82.0).
This highlights the complementary nature of our
method with reflection-series methods, collectively
enhancing the LLM’s test performance.

In the future, we believe that designing algo-
rithms to enable LLM to learn general knowledge
when iteratively optimizing solutions of test sam-
ples holds promise. This approach offers three ad-
vantages: (1) No pre-training samples are needed,
(2) the learned general knowledge can both en-
hance performance and reduce the iteration steps
required for future test samples and (3) the learned
knowledge is human-readable and supports editing.

E Details of Baselines

For all baselines, we use the same ChatGPT model
with our learning to plan method. We use a temper-

2https://github.com/madaan/self-refine

ature of 0 for stable output. For the self-plan with
selection method, the candidate number is equal to
K× total training iteration number in the learning
to plan method for a fair comparison. The size of
the validation set is equal to that of our method.
For other baselines, we follow their official code to
conduct experiments across all datasets3. For the
self-plan with selection method, the candidate num-
ber is equal to K× total training iteration number
in the learning to plan method for a fair compari-
son.

F The learned task plan by Vicuna

Task 2
Task Definition: Calculating the value of a
composite function (dataset size:394).

Example: h(n) = 2n, f(x) =
2x2 + 6x− h(x), f(h(−2)) = ?

Learned natural language plan p
(zero-shot cot):

Here are the main solutions for solving the
given problem:

1. Simplify the given functions and substi-
tute the given values into the equation to calculate
the required value.

2. Differentiate the given functions if neces-
sary, substitute the given values into the function,
and calculate the required value.

3. Use the quadratic formula to solve the
quadratic equation.

4. Determine the type of equation and use
the appropriate method to solve for the required
value.

5. Factor the equation if necessary and solve
for the required value.

Figure 8: The task details of the ’composite function’
task of the AMPS dataset and its learned task plan
learned by Vicuna

3APE: https://github.com/keirp/
automatic_prompt_engineer
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Counterfactual Reasoning Assessment Task

Task Definition: Given a premise, LLMs
need to judge the possible result if the event
in the premise does not happen.

Example: Premise: A woman does
not increase his own capacity.
Question: What would have happened if
she had increased his own capacity?
Options: (A) The woman would have felt
accomplished. (B) The woman would not
have felt accomplished. (C) That is not
possible.

Learned natural language plan p
(zero-shot cot):

When dealing with anti-causal reasoning questions,
it is important to consider all possible outcomes
and eliminate any options that are not supported by
the premise. In some cases, it may be necessary to
consider additional information or assumptions to
make an informed decision.

When dealing with anti-causal reasoning questions,
it is important to carefully analyze the premise and
consider all possible scenarios before selecting
an answer. It is also important to avoid making
assumptions or jumping to conclusions based on
common sense or intuition, as these may not always
be accurate. Instead, it is important to consider all
possible outcomes and eliminate any options that are
not supported by the premise. In some cases, it may
be necessary to consider additional information or
assumptions to make an informed decision.

Figure 9: The task details of the Counterfactual Rea-
soning Assessment task and its task plan learned by
Vicuna.
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Last Letter Concatenation Task
Task Definition: Given n words, LLMs need to extract and concatenate the last letters of the n
words.

Example: Take the last letters of each words in "spur drowning Japan dialect valet " and
concatenate them

Learned natural language plan p (zero-shot cot):

To concatenate the last letters of each word in a phrase, follow these steps: identify the last letter of each
word, arrange the letters in the correct order, and concatenate them to form a new word. To avoid errors, it is important
to pay attention to the position of the words in the phrase and double-check your work.

Figure 10: The task details of the Last Letter Concatenation task and its task plan learned by Vicuna

Logical Reasoning (LSAT) Task

Task Definition: Given a passage and a question, LLMs need to infer which option is true.

Example: Passage: Hana said she was not going to invite her brothers to her birthday
party. However, among the gifts Hana received at her party was a recording in which she had
expressed an interest. Since her brothers had planned to give her that recording, at least some of
Hana’s brothers must have been among the guests at Hana’s birthday party after all.
Question: A reasoning error in the argument is that the argument
Options: (A) disregards the possibility that a change of mind might be justified by a change in
circumstances (B)treats the fact of someone’s presence at a given event as a guarantee that that
person had a legitimate reason to be at that event (C)uses a term that is intrinsically evaluative as
though that term was purely descriptive (D)fails to establish that something true of some people is
true of only those people (E)overlooks the possibility that a person’s interest in one kind of thing is
compatible with that person’s interest in a different kind of thing.

Learned natural language plan p (zero-shot cot):

To avoid errors in logical reasoning, carefully examine the premises and conclusions of an argument and
identify any flaws or unsupported assumptions. Consider alternative explanations and potential counterarguments to
strengthen the evaluation of the argument.

To solve logical reasoning questions, carefully analyze the premises and conclusions of the argument, look
for any flaws or unsupported assumptions, and consider alternative explanations and potential counterarguments.
Evaluate each option based on how well it supports the conclusion, and avoid errors by maintaining separate solutions
for different situations. When generating a solution, write no more than two sentences.

Figure 11: The task details of the Logical Reasoning (LSAT) task and its task plan learned by Vicuna
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SayCan Task

Task Definition: Given an instruction, LLMs need to generate an action sequence for the robot to
complete the instruction.

Example: How would you move the chips bag from the table to the counter?

Learned natural language plan p (zero-shot cot):

solutions: To locate a missing item, we can follow these general rules:

1. Check all possible locations for the item and bring it to the user if found.

2. Use a search algorithm or consult with others to find the item and bring it to the user.

3. Ask the user to describe the item in more detail to narrow down the search.

4. Review the item’s usage history or consult with other users to determine its typical location.

5. Use a tracking system or designated storage location to locate the item.

6. Consider the urgency of the situation and prioritize the search accordingly.

Figure 12: The task details of the SayCan task and its task plan learned by Vicuna
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G The learned task plan by ChatGPT

Task 1
Task Definition: Fraction division in
simplest form (dataset size:199).

Example: Reduce to lowest terms:
1
9 ÷ 7

6

Learned natural language plan p
(zero-shot cot):

To divide fractions, we can flip the second
fraction and multiply. Then, we can simplify the
resulting fraction by dividing the numerator and
denominator by their greatest common factor. When
dividing fractions, we may need to flip and multiply
more than once.

Solution 1:To divide two fractions, we can
flip the second fraction and multiply. Then, we
can simplify the resulting fraction by dividing
the numerator and denominator by their greatest
common factor.

Solution 2: Another way to divide fractions
is to convert them into decimals and then divide.
This can be useful when dealing with fractions that
have large denominators.

Solution 3: When dividing mixed numbers,
we can convert them into improper fractions and then
apply the same rules for dividing fractions.

Solution 4: In some cases, we may need to
simplify the fractions before dividing. We can do this
by finding the prime factors of the numerator and
denominator and canceling out any common factors.

Solution 5: When dividing fractions with
variables, we can use the same rules as dividing
numerical fractions, but we need to be careful with
the algebraic manipulation and ensure that we do not
divide by zero.

Learned natural language plan p
(few-shot cot):

To divide fractions, we can either multiply
the first fraction by the reciprocal of the second
fraction or invert the second fraction and multiply.

Similar solutions involve dividing two frac-
tions by multiplying the first fraction with the
reciprocal of the second fraction. The resulting
fractions are then simplified by dividing both
the numerator and denominator by their greatest
common factor.

Figure 13: The task details of task 1 of the AMPS
dataset and its learned task plan

Task 2
Task Definition: Calculating the value of a
composite function (dataset size:394).

Example: h(n) = 2n, f(x) =
2x2 + 6x− h(x), f(h(−2)) = ?

Learned natural language plan p
(zero-shot cot):

Solution 1: When substituting a value into a
function that is defined in terms of another function,
make sure to substitute the entire expression for the
second function, not just the value of the variable.

Solution 2: When evaluating a function with
a nested function inside, substitute the value of
the nested function into the equation for the outer
function, not just the variable of the nested function.

Solution 3: Remember to use the correct or-
der of operations when evaluating a function,
especially when there are multiple terms and
exponents involved.

Solution 4: Double-check your calculations
and make sure to use the correct signs and coeffi-
cients when simplifying expressions.

Solution 5: Practice and review basic algebraic
principles, such as the distributive property and com-
bining like terms, to help simplify complex functions.

Learned natural language plan p (few-shot
cot):

Two solutions are provided for finding f(h(−2))
and h(f(2)), one involving substitution and one
involving evaluation of the expressions.

To find h(g(−8)) and h(f(−1)), one can
substitute the given value into the expression for
g(n) or f(n) and then substitute the resulting value
into the expression for h(x).

Two solutions are also provided for finding
f(g(−3)) and g(f(−4)), again involving substitu-
tion and evaluation of the expressions.

Figure 14: The task details of task 2 of the AMPS
dataset and its learned task plan
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Task 3
Task Definition: Angle Calculation (dataset size: 368).

Example: If ̸ AOC = 180◦ and ̸ BOC = 160◦, what is ̸ AOB, in degrees?

Learned natural language plan p (zero-shot cot):

Here are the five main solutions for finding unknown angles in triangles:

1. Use the fact that the sum of angles in a triangle is 180 degrees. Subtract the known angles from 180
degrees to find the unknown angle.

2. Use the Law of Cosines to find the unknown angle in a triangle with two sides and the included angle
known.

3. Use the Pythagorean Theorem and trigonometric functions to find the unknown angle in a right trian-
gle.

4. Use the fact that the sum of all angles in a triangle is 180 degrees to find the third angle when two an-
gles are known.

5. Use the Law of Sines and trigonometric functions to find the unknown angle in a triangle with one side
and two angles known.

Learned natural language plan p (few-shot cot):

There are two similar solutions. The first solution subtracts the measure of ̸ RPS from 180◦ to find m̸ QPR. The
second solution uses the fact that the sum of angles in a triangle is 180◦, but there is an error in the calculation that is
corrected by subtracting m̸ RPS from 180◦.

There are two solutions to find m̸ MON : using the fact that the sum of angles in a triangle is 180◦ and
the fact that m̸ LOM and m̸ MON are supplementary angles. The first solution yields m̸ MON = 175◦ while
the second solution yields m̸ MON ≈ 175◦ by using trigonometry.

There are two solutions given to find the measure of angle LOM. The first solution uses the fact that angles
LOM and MON are supplementary, while the second solution uses the Law of Cosines. Both solutions yield the answer
of 56 degrees.

Solution: To find the measure of an angle, we can use the Law of Sines to find the length of the opposite
side and then use the Law of Cosines to find the measure of the angle. This method can be applied to different situations
where we need to find the measure of an angle, such as in triangles or other geometric shapes.

Figure 15: The task details of task 3 of the AMPS dataset and its learned task plan
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Task 4
Task Definition: Calculating the length of the hypotenuse or a leg of the right triangle (dataset
size: 94).

Example: In the right triangle shown, angle A = 30◦ and AC = 18. How long is
AB?

Learned natural language plan p (zero-shot cot):

To find the length of a side in a right triangle with a 30 degree angle, there are several solutions. These
include using the ratio of the side opposite the angle to the hypotenuse, the Pythagorean theorem, the special right
triangle with angles of 30-60-90 degrees, trigonometric functions, and the Law of Sines or the Law of Cosines.

There are two main solutions to find the length of the side opposite a 30 degree angle in a right triangle.
One solution involves using the ratio of the side opposite the angle to the hypotenuse, while another solution involves
using the sine function. The first solution gives BC = 1

2
AB for the first two questions and BC = 5 for the third

question, while the second solution gives BC = 2 for the first question, BC = 3 for the second question, and
BC =

√
3
2

for the third question.

To find the length of the side opposite a 30 degree angle in a right triangle, we can use the tangent function,
which gives us a length of 3

√
3. Alternatively, we can use the Law of Cosines to find the length, which gives us a length

of approximately 6.19 units.

There are two solutions to find the length of the side opposite a 30 degree angle in a right triangle: using
the sine function to get AB = 2 sin(30◦) = 1, or using the Pythagorean theorem and the special right triangle to get
AB = 2

√
6

3
.

Two solutions for finding the length of the side opposite a 30 degree angle in a right triangle are using the
cosine function, which gives us a length of AC cos(30◦), or using the Law of Sines to find the length of AB, which
simplifies to AB = 2AC sin(30◦). Both solutions can be implemented in Python using the math library.

There are two ways to find the length of the side opposite a 30 degree angle in a right triangle. The first is
to use the ratio of the side opposite the angle to the hypotenuse, which gives AC = 1

2
AB

√
3 = 6

√
3. Another method

is to use the Law of Sines, which gives AC = 2AB sin(30◦) = 12.

Learned natural language plan p (few-shot cot):

There are several methods to find the length of a missing leg in a right triangle.

The first solution is to use the ratio of sides in a 30-60-90 triangle, which is 1 :
√
3 : 2.

The second solution is to use the Pythagorean theorem. Trigonometric functions such as sine and cosine
can also be used. Furthermore, a Python algorithm can be implemented to solve for the missing leg in both situations.

To find the length of a missing leg in a right triangle with a known angle and hypotenuse, we can use the
sine or tangent function.

Finally, there are two solutions to find the missing leg of a right triangle with a known angle of 60 degrees
and hypotenuse, which involve using the cosine function or the Pythagorean theorem.

Figure 16: The task details of task 4 of the AMPS dataset and its learned task plan

10083



Task 5
Task Definition: Given a number A, find its factor/multiple in a list of numbers. (dataset size: 393).

Example: Which of the following numbers is a factor of 56? {3, 6, 8, 10, 13}
Learned natural language plan p (zero-shot cot):

1. Using the modulo operator in Python.

2. Checking the last digit of the number.

3. Dividing the number by the factor and checking if the result is an integer.

4. Using bitwise operators to check for powers of 2.

5. Using the Euclidean algorithm to find the greatest common divisor.

To identify multiples of a certain factor, we can use the modulo operator in Python. Another way is to
check the last digit of the number. For example, to check if a number is a multiple of 8, we can check if its last three
digits are divisible by 8 using the expression "number%1000%8 == 0". Other solutions include using loops, lists, and
recursion to identify multiples of a certain factor.

Learned natural language plan p (few-shot cot):

There are several ways to check if a number is a multiple of another number. One way is to use the mod-
ulo operator or divide the number and check if the result is an integer.

Another way is to use prime factorization or the GCD/LCM formula.

Additionally, we can use the Euclidean algorithm or the formula n = km.

There are also methods that involve checking the sum of digits or using Python functions like "divmod()"
and "all()".

Figure 17: The task details of task 5 of the AMPS dataset and its learned task plan
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Task 6
Task Definition: Calculating the significant figures in a number (dataset size: 197).

Example: How many significant figures does 00.033 have?

Learned natural language plan p (zero-shot cot):

To determine the number of significant figures, count all non-zero digits and any zeros between non-zero
digits. Therefore, the number 0197.01239440 has 11 significant figures, the number 0798 has 3 significant figures, and
the number 0.03 has 1 significant figure. Leading zeros are not significant.

Another way to determine the number of significant figures is to look at the precision of the measuring in-
strument. It is also important to consider the rules for rounding when performing calculations with significant figures.

Solution: To determine the number of significant figures, count all non-zero digits and any zeros between
non-zero digits. Ignore leading zeros. If a number ends in zeros, the zeros are only significant if there is a decimal point.
For example, the number 0.0032 has 2 significant figures, while the number 3200 has 2 significant figures. Additionally,
the number 5000 has 1 significant figure, while the number 5000. has 4 significant figures.

The solutions provided all involve counting the significant figures in a number by counting non-zero digits
and zeros between non-zero digits. One specific Python algorithm involves converting the number to a string, removing
leading zeros, trailing zeros after a decimal point, and then returning the length of the resulting string as the number
of significant figures. Other solutions may involve using scientific notation or logarithms to determine significant figures.

Learned natural language plan p (few-shot cot):

Solution: To determine the number of significant figures in a number, count all non-zero digits and any ze-
ros between them. Trailing zeros after the last non-zero digit are only significant if there is a decimal point present.
Therefore, 0.253971000 has 9 significant figures and 292.785854000 has 12 significant figures.

To determine the number of significant figures in a number, one solution is to count all non-zero digits and
any zeros between them, including trailing zeros after the last non-zero digit if there is a decimal point. Another solution
is a Python algorithm that converts the number to a string and counts the number of characters excluding leading and
trailing zeros. This would output the number of significant figures.

Figure 18: The task details of task 6 of the AMPS dataset and its learned task plan
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Task 7
Task Definition: Calculating the sin/cos value of an angle based on the length of legs and other
conditions in a triangle. (dataset size: 97).

Example: AC is 8 units long, BC is 15 units long, AB is 17 units long ,What is cos( ̸ ABC) ?

Learned natural language plan p (zero-shot cot):

There are two solutions for finding the value of an angle in a triangle. Solution 1 involves using the Law of
Cosines to calculate cos(̸ ABC).

Solution 2 involves using the Pythagorean Theorem to find the length of the third side of the triangle and
then using the definition of sine to calculate sin( ̸ ABC). To find the length of the hypotenuse of a right triangle using
the Pythagorean Theorem, use the formula (AC)2 + (BC)2 = (AB)2. python functions can also be used to calculate
these values.

Learned natural language plan p (few-shot cot):

When working with trigonometric functions, it is essential to identify the correct sides of the triangle. La-
beling the angles and sides of the triangle can help avoid confusion. In addition, simplifying fractions and using the
appropriate trigonometric function for the given situation are crucial for obtaining the correct answer.

Figure 19: The task details of task 7 and its learned task plan

10086



Task 8
Task Definition: Fraction Division. (dataset size: 192).

Example: 1
8 ÷ 8

3 = ?

Learned natural language plan p (zero-shot cot):

Here are the main solutions for dividing fractions:
1. Flip the second fraction and multiply.

For example, to divide
2

7
by

8

3
, we flip

8

3
to get

3

8
and multiply to get

2

7
× 3

8
=

6

56
.

2. Convert mixed numbers to improper fractions, flip the second fraction, and multiply.

For example, to divide 2
1

2
by

3

4
, we convert 2

1

2
to

5

2
, flip

3

4
to get

4

3
, and multiply to get

5

2
× 4

3
=

10

3
.

3. Use cross-multiplication.

For example, to divide
2

5
by

1

3
, we cross-multiply to get 2× 3 = 5x, which simplifies to x =

6

5
.

4. Use the reciprocal of the second fraction.

For example, to divide
3

4
by

5

6
, we take the reciprocal of

5

6
to get

6

5
and multiply to get

3

4
× 6

5
=

18

20
.

5. Divide both fractions by their greatest common factor.

For example, to divide
16

24
by

4

9
, we simplify both fractions by dividing by their greatest common factor of 8 to get

2

3

and
1

2
, respectively. Then, we flip

1

2
and multiply to get

2

3
× 2

1
=

4

3
.

Learned natural language plan p (few-shot cot):

There are two main solutions for dividing fractions: inverting the second fraction and multiplying, or con-
verting the division sign to a multiplication sign and flipping the second fraction. Both methods yield the same result
and can be used to solve all three questions. Additionally, Python code can be used to solve each question by defining
the numerators and denominators of each fraction and then dividing them.

Another solution involves simplifying the fractions by finding a common factor, then dividing their numera-
tors. Finally, the fractions module in Python can be used to simplify the result to a fraction.

Figure 20: The task details of task 8 of the AMPS dataset and its learned task plan
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Task 9
Task Definition: Fraction reduction in the form of the mixed number (dataset size: 400).

Example: Express your answer as a mixed number simplified to lowest terms. 9
3

4
− 5

4

6
= ?

Learned natural language plan p (zero-shot cot):

To add or subtract mixed numbers, we first convert them to improper fractions, find a common denominator,
add or subtract the whole numbers separately, and simplify the resulting fraction if possible. If the final fraction is
improper, we can convert it back to a mixed number. This method applies to all situations involving mixed numbers.

Learned natural language plan p (few-shot cot):

One solution for subtracting mixed numbers with fractions is to convert the mixed numbers to improper frac-
tions, find a common denominator, subtract the fractions, and simplify the resulting improper fraction to a mixed number.

Another solution is to convert the mixed numbers to improper fractions, subtract the fractions, and simplify
the resulting improper fraction to a mixed number without finding a common denominator. Both solutions are presented
in Python algorithms.

Figure 21: The task details of task 9 of the AMPS dataset and its learned task plan
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Task 10
Task Definition: Calculating the length of a leg in a triangle based on the length of another leg
and the sin, cos, and tan value of an angle. (dataset size: 593).

Example: BC = 9, sin(̸ ABC) =
√
2
2 ,cos( ̸ ABC) =

√
2
2 , tan(̸ ABC) = 1, then

AC = ?

Learned natural language plan p (zero-shot cot):

Solution 1: For both questions, we can use trigonometric ratios involving the given angle to find the length
of one side of the triangle. Then, we can use the Pythagorean theorem and simplify to find the length of the other side.

Solution 2: Another method is to use the fact that the sum of the squares of the sine and cosine of an angle
is equal to 1. We can substitute in the values we know and solve for the length of the desired side.

Solution 3: In the second question, we can also use the law of cosines to find the length of one side of the
triangle, and then use the Pythagorean theorem to find the length of the other side.

Solution 4: If we are given the area of the triangle, we can use the formula A = 1/2 · ab · sin(C) to find
the length of one side, and then use the Pythagorean theorem to find the length of the other side.

Solution 5: If we are given the radius of the circumcircle of the triangle, we can use the formula R = a · b · c/4A to
find the length of one side, and then use the Pythagorean theorem to find the length of the other side.

Learned natural language plan p (few-shot cot):

There are two main solutions to find the missing side length in the given right triangle.

Solution 1 involves using the sine function to calculate the length of the missing side.

Solution 2 involves using the Pythagorean theorem. For each question, we can choose either solution depending on the
given information.

Figure 22: The task details of task 10 of the AMPS dataset and its learned task plan
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Causal Judgment Task

Task Definition: Given a short story, LLMs need to judge if event X causes event Y.

Example: The receptionist in the philosophy department keeps her desk stocked with
pens. The administrative assistants are allowed to take the pens, but faculty members are supposed
to buy their own. The administrative assistants typically do take the pens. Unfortunately, so do the
faculty members. The receptionist has repeatedly emailed them reminders that only administrative
assistants are allowed to take the pens. On Monday morning, one of the administrative assistants
encounters Professor Smith walking past the receptionist’s desk. Both take pens. Later that day,
the receptionist needs to take an important message... but she has a problem. There are no pens
left on her desk.
Did the administrative assistant cause the problem?

Learned natural language plan p (zero-shot cot):

Consider the agent’s intentions and actions to determine causality. Use counterfactual scenarios to deter-
mine causality. Consider normative expectations and social norms to determine causality. Consider the agent’s
intentions and actions to determine causality. Use counterfactual scenarios to determine causality. Social norms and
normative expectations can play a role in determining causality.
Use counterfactual scenarios to determine causality by imagining what would have happened if the causal factor had not
occurred. Consider social norms and normative expectations as they can play a role in determining causality, as actions
that violate these norms may be seen as causing negative outcomes.

Learned natural language plan p (few-shot cot):

To determine causality, consider the counterfactual scenario, temporal order, potential mechanisms, and con-
trol for other factors. Evaluate the strength of the relationship and plausibility of the mechanism, while considering
alternative explanations for the outcome.

Figure 23: The task details of the Causal Judgment task and its learned task plan
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Counterfactual Reasoning Assessment Task

Task Definition: Given a premise, LLMs need to judge the possible result if the event in the
premise does not happen.

Example: Premise: A woman does not increase his own capacity.
Question: What would have happened if she had increased his own capacity?
Options: (A) The woman would have felt accomplished. (B) The woman would not have felt
accomplished. (C) That is not possible.

Learned natural language plan p (zero-shot cot):

When answering inference questions, remember that the scenario presented is hypothetical and did not actu-
ally happen. Choose the most logical answer based on cause-and-effect relationships.
Avoid making assumptions about cause-and-effect relationships in anti-causal inference questions. Focus on the
information provided in the premise and choose the most reasonable answer.
Summarize similar solutions into one rule and maintain solutions for solving different situations. When generating a
solution, write no more than two sentences.
Focus on the information provided in the premise and avoid making assumptions about cause-and-effect relationships.
For anti-causal inference questions, choose the most logical answer based on cause-and-effect relationships.
Acknowledge that the premise does not provide enough information to determine a cause-and-effect relationship when
answering anti-causal inference questions. Choose the most reasonable answer based on the given scenario.
Focus on the information provided in the premise and avoid making assumptions about cause-and-effect relationships.
Choose the most logical answer based on the given scenario for non-causal inference questions. For anti-causal
inference questions, acknowledge that the premise does not provide enough information to determine a cause-and-effect
relationship and choose the most reasonable answer based on the given scenario.

Learned natural language plan p (few-shot cot):

Consider all possible outcomes and analyze the situation to determine the likelihood of each option.
Use logic and reasoning to determine the most likely outcome by considering all possible scenarios and eliminating
unlikely or impossible options.
Focus on the cause and effect relationship between the premise and the question to determine the most likely outcome
and avoid errors in reasoning.
Carefully analyze the premise and question to determine all possible outcomes and their likelihood to avoid errors in
reasoning.
Use logic and reasoning to consider all possible scenarios and eliminate unlikely or impossible options when answering
anti-casual inference questions.
Focus on the cause and effect relationship between the premise and the question to determine the most likely outcome
and avoid errors in reasoning.

Figure 24: The task details of the Counterfactual Reasoning Assessment task and its learned task plan
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Logical Reasoning (LSAT) Task

Task Definition: Given a passage and a question, LLMs need to infer which option is true.

Example: Passage: Hana said she was not going to invite her brothers to her birthday
party. However, among the gifts Hana received at her party was a recording in which she had
expressed an interest. Since her brothers had planned to give her that recording, at least some of
Hana’s brothers must have been among the guests at Hana’s birthday party after all.
Question: A reasoning error in the argument is that the argument
Options: (A) disregards the possibility that a change of mind might be justified by a change in
circumstances (B)treats the fact of someone’s presence at a given event as a guarantee that that
person had a legitimate reason to be at that event (C)uses a term that is intrinsically evaluative as
though that term was purely descriptive (D)fails to establish that something true of some people is
true of only those people (E)overlooks the possibility that a person’s interest in one kind of thing is
compatible with that person’s interest in a different kind of thing.

Learned natural language plan p (zero-shot cot):

Identify the conclusion and premises of an argument and look for any assumptions that the argument relies
on. Consider any counterexamples or objections that could weaken the argument. Look for evidence or reasoning that
supports or undermines the conclusion.
Identify the conclusion and premises of the argument, and look for any assumptions it relies on. Consider any counter
examples or objections that could weaken the argument. Look for evidence or reasoning that supports or undermines the
conclusion.

Learned natural language plan p (few-shot cot):

Look for an answer choice that resolves the paradox by providing a possible explanation for why the ob-
served phenomenon occurred. Pay attention to the language used in the passage, including any conditional statements or
cause-and-effect relationships. Consider the context of the passage and any relevant background information that may
help to explain the observed phenomenon.

Figure 25: The task details of the Logical Reasoning (LSAT) task and its learned task plan
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Date Understanding Task

Task Definition: LLMs need to infer the date based on the context.

Example: The deadline is Jun 1, 2021, which is 2 days away from now. What is the
date one year ago from today in MM/DD/YYYY?

Learned natural language plan p (zero-shot cot):

To find a date a year ago, subtract 1 from the year and keep the same month and day. To find a date a
month ago, subtract 1 from the month and keep the same day and year. To find a date 24 hours later, add 1 to the day
while keeping the same month and year.
To find a date a year ago, subtract 1 from the year and keep the same month and day. To find a date a month ago, subtract
1 from the month and keep the same day and year. To find a date 24 hours later, add 1 to the day while keeping the same
month and year.
To find a date a year ago, subtract 1 from the year and keep the same month and day. To find a date a month ago,
subtract 1 from the month and keep the same day and year. To find a date 24 hours later, add 1 to the day while keeping
the same month and year.

Learned natural language plan p (few-shot cot):

Always double-check the date and format when converting between different date formats. Use a datetime
module or calculator to ensure accuracy.
When dealing with holidays or special events, double-check the year to ensure you’re referencing the correct date. Use a
calendar or reference guide to confirm the date.
Always use a reliable source or tool to ensure accuracy when dealing with dates. Double-check the date format and any
conversions made to avoid errors. When referencing holidays or special events, double-check the year using a calendar
or reference guide to confirm the date and avoid mistakes. Keep separate solutions for different situations and limit each
solution to no more than two sentences.
Always double-check dates and formats using reliable sources or tools to ensure accuracy.
When dealing with holidays or special events, double-check the year and use a calendar or reference guide to confirm
the date and avoid mistakes.
Note: Maintain separate solutions for different situations and limit each solution to no more than two sentences.

Figure 26: The task details of the date understanding task and its learned task plan
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Last Letter Concatenation Task
Task Definition: Given n words, LLMs need to extract and concatenate the last letters of the n
words.

Example: Take the last letters of each words in "spur drowning Japan dialect valet " and
concatenate them

Learned natural language plan p (zero-shot cot):

To find the last letters of each word in a phrase, identify the last letter of each word and write them down
in order. Then, concatenate the letters to form the final answer. Make sure to follow this process for each phrase, as
different phrases may require different solutions.

Learned natural language plan p (few-shot cot):

To concatenate the last letters of words in a given phrase, first write down the words and identify their last
letters. Then, concatenate the last letters in the order they appear in the phrase to get the final answer. Double-check
your answer to avoid errors.
To concatenate the last letters of words in a given phrase, first list the words and identify their last letters. Then,
concatenate the last letters in the order they appear in the phrase to get the final answer. Double-checking your answer
can help avoid errors. It’s important to have separate solutions for different situations and to keep each solution concise,
no more than two sentences.
To concatenate the last letters of words in a given phrase, list the words and identify their last letters. Then, concatenate
the last letters in the order they appear in the phrase to get the final answer. Always double-check your answer for
accuracy.

Figure 27: The task details of the Last Letter Concatenation task and its learned task plan
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SayCan Task

Task Definition: Given an instruction, LLMs need to generate an action sequence for the robot to
complete the instruction.

Example: How would you move the chips bag from the table to the counter?

Learned natural language plan p (zero-shot cot):

Identify the requested item, locate it in the designated area, and bring it to the user.
Gather all items on a table and dispose of them properly, confirming completion with the user.
Identify the specific type of item requested, search for it in the designated area, and bring it to the user.

Learned natural language plan p (few-shot cot):

Solution 1: Before preparing a meal, make a list of necessary ingredients and consider any dietary restric-
tions or preferences. Follow a recipe or create a dish based on the chosen ingredients.
Solution 2: When cleaning a space, start by decluttering and organizing items that are out of place. Then, dust surfaces
and sweep or vacuum the floors for a clean and tidy environment.
Solution 3: Before packing for a trip, make a list of necessary items and consider the length of the trip, weather, and
planned activities. Pack clothing and other essentials based on these factors to ensure a comfortable and enjoyable trip.

Figure 28: The task details of the SayCan task and its learned task plan
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Continual update process of the task plan for calculating angle task

Question:If ̸ QPS = 180◦ and ̸ QPR = 134◦, what is ̸ RPS, in degrees?

Task plan learned by our method (currently in training):
Use the Law of Sines or Law of Cosines to find unknown angles in a triangle.
Another solution is to use the Pythagorean Theorem to find the length of the hypotenuse or one of the legs in a right
triangle.
Solution guided by the plan: We need at least one more angle measurement or side length to use trigonometric ratios
or the Law of Cosines to solve for the missing angle.

Task plan learned by our method (after the training):
1. Use the fact that the sum of angles in a triangle is 180 degrees. Subtract the known angles from 180 degrees to find
the unknown angle.
2. Use the Law of Cosines to find the unknown angle in a triangle with two sides and the included angle known.
3. Use the Pythagorean Theorem and trigonometric functions to find the unknown angle in a right triangle.
4. Use the fact that the sum of all angles in a triangle is 180 degrees to find the third angle when two angles are known.
5. Use the Law of Sines and trigonometric functions to find the unknown angle in a triangle with one side and two
angles known.
Solution guided by the plan: we can use solution 1. Since ̸ QPS = 180◦, we know that ̸ QPR and ̸ RPS are
adjacent angles that add up to 180◦.
Therefore, we can subtract ̸ QPR from 180◦ to find ̸ RPS:

̸ RPS = 180◦ − ̸ QPR = 46◦

Therefore, ̸ RPS is 46◦

Figure 29: Task plans and solutions guided by them in different learning phases. ’Currently in training means that
the training process is starting but has not been finished.
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Task plan for the task 1

Task Definition: Fraction division in simplest form (dataset size:199).

Example: Reduce to lowest terms: 1
9 ÷ 7

6

Natural language task plan p by self plan method :

Solution 1: Invert the second fraction and multiply.

Solution 2: You can use the fact that division by a fraction is equivalent to multiplication by its reciprocal.
Then, simplify by dividing both the numerator and denominator by their Least common multiple.

Natural language task plan p by self plan with selection method :

Solution 1: To reduce a fraction to its lowest terms, find the greatest common factor (GCF) of the numera-
tor and denominator, then divide both by the GCF. Repeat until the GCF is 1.

Solution 2: Use the Euclidean algorithm by dividing the numerator by the denominator, and taking the re-
mainder. Then divide the denominator by the remainder and take the remainder again. Repeat until the remainder is 0,
and the last divisor is the GCF. Divide both numerator and denominator by the GCF to get the lowest terms.

Solution 3: Express the fraction as a product of its prime factors, then cancel any common factors between
the numerator and denominator.

Learned natural language task plan p by learning to plan method (zero-shot cot):

To divide fractions, we can flip the second fraction and multiply. Then, we can simplify the resulting frac-
tion by dividing the numerator and denominator by their greatest common factor. When dividing fractions, we may
need to flip and multiply more than once.

Solution 1:To divide two fractions, we can flip the second fraction and multiply. Then, we can simplify the
resulting fraction by dividing the numerator and denominator by their greatest common factor.

Solution 2: Another way to divide fractions is to convert them into decimals and then divide. This can be
useful when dealing with fractions that have large denominators.

Solution 3: When dividing mixed numbers, we can convert them into improper fractions and then apply the
same rules for dividing fractions.

Solution 4: In some cases, we may need to simplify the fractions before dividing. We can do this by find-
ing the prime factors of the numerator and denominator and canceling out any common factors.

Solution 5: When dividing fractions with variables, we can use the same rules as dividing numerical frac-
tions, but we need to be careful with the algebraic manipulation and ensure that we do not divide by zero.

Figure 30: Task plans for the task 1 of the AMPS dataset
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