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Abstract

Large Language Models (LLMs) have shown
superior capability to solve reasoning prob-
lems with programs. While being a promis-
ing direction, most of such frameworks are
trained and evaluated in settings with a prior
knowledge of task requirements. However, as
LLMs become more capable, it is necessary
to assess their reasoning abilities in more re-
alistic scenarios where many real-world prob-
lems are open-ended with ambiguous scope,
and often require multiple formalisms to solve.
To investigate this, we introduce the reason-
ing in the wild task, where an LLM is tasked
to solve a reasoning problem of unknown type
by identifying the sub-problems and their cor-
responding formalisms, and writing a program
to solve each sub-problem, guided by a tac-
tic. We create a large tactic-guided trajec-
tory dataset containing detailed solutions to
a diverse set of reasoning problems, rang-
ing from well-defined single-form reasoning
(e.g., math, logic), to ambiguous and hybrid
ones (e.g., commonsense, combined math and
logic). This allows us to test various aspects of
LLMs reasoning at the fine-grained level such
as the selection and execution of tactics, and
the tendency to take undesired shortcuts. In
experiments, we highlight that existing LLMs
fail significantly on problems with ambigu-
ous and mixed scope, revealing critical limi-
tations and overfitting issues (e.g. accuracy on
GSMSK drops by at least 50%). We further
show fine-tuning a local LLM on the trajecto-
ries data leads to better performance. Project
repo is available here.

1 Introduction

Large language models (LLMs) demonstrate
strong capabilities in solving a wide variety of rea-
soning problems that involve different formalisms
such as formal logic, math, graph, and common-
sense reasoning. As an example, recent LLMs
achieve above 90% (Figure 1) accuracy on math
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Figure 1: Commonly used metrics such as accuracy,
while suggesting LLMs perform well on reasoning
tasks in free-form (ICL-CoT), fail to reflect their ca-
pability in a more fine-grained reasoning benchmark.
We find LLMs’ accuracy drops significantly when
tasked to solve problems with a non-trivial program (w/
Prog.+); this further decreases when tasked to reason
in the wild, where the tasks are blended with other con-
texts and their reasoning types are unknown (w/ Hyb).

benchmarks such as GSM8K (Cobbe et al., 2021),
and above 80% accuracy on commonsense reason-
ing benchmarks such as ReClor (Yu et al., 2020).
However, these results are typically obtained in
the in-context learning (ICL) setting with answers
generated in free text. Such a way is criticized for
lacking reliability and is prone to question distri-
bution shift and hallucination (Kabra et al., 2023;
Schick et al., 2023; Hao et al., 2023).

Agent-like! LLM frameworks show great po-
tential in addressing these limitations, which
solves reasoning tasks by writing programs (Yao
et al., 2022; Gou et al., 2023; Yuan et al., 2024).
While being a promising direction, most of these
frameworks are trained and evaluated on bench-
marks with well-defined scope and a clear formal-
ism to solve, such as GSMS8K, where questions
are guaranteed to be an arithmetic problem that
can be solved with a single math model. Such

"We use "Agent-like" as many of the existing approaches
that augment LLMs with external mechanisms only have par-
tial components of a language agent (Sumers et al., 2023).
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https://github.com/gblackout/Reason-in-the-Wild

Well-Defined, Single-Scope
Problem

Mark has the option of getting a $300
lens with a 20% discount or a $220
lens. How much money does he save
by buying the cheaper lens?

|

ICL-CoT

Let’s solve it step-by-step: Mark could
have spent $300 * (1 —0.2) = $240 for
the first lens, so we save $240- $220 =
$20 for buying the cheaper one.

X Unreliable

X Weak to distribution-shift

Single-Shot Program

price_one = 300 * (1 - 0.2)
price_two = 220
saving = price_one - \

price_two
(saving)

Ambiguous, Mixed-in-scope Problem

Context:

Jerry works at Acme Corporation, whose strategic decisions
are set to significantly affect its employees' daily routines.
Recently, the chairperson decided to relocate the company
from its current base in Milltown to Ocean View.

To celebrate the relocation, Jerry helped preparing candy
gift bags. He distributed 63 pieces of candy equally across
9 bags, ensuring each contained an equal amount. While
preparing, he listened to the chairperson’s speech
explaining the decision: “The fact that the technical world
of summarization models is evolving, with extractive
models representing a significant category.

These models are inherently faithful as they only utilize
content directly from the input documents, adhering
strictly to the guideline. That’s why we need to move”, said
the chairperson.

Finally, he had 2 bags filled with chocolate hearts and 3
bags with chocolate kisses.

Which one of the following is correct:

1. The number of candies Jerry put that were not chocolate
is 26.

2. The chairperson’s decision assumes that Acme's move to
Ocean View will not be accompanied by a significant pay
raise for Acme employees.

3. The chairperson cannot logically prove or disprove the

Thought: | have

Thought: Option 1 is a math problem. | will use math tactic to solve it.
Action: [Call tactic] math

=63 /9
ags = (9 - 2 - 3) * pleces_per_bag
non_choolate_bags

observed the program output being 24, now | will answer.

Action: [Answer] 24

Obs: [Math Tactic
—

Execution result] 24

Thought: It looks

like Option 1 is incorrect, now | will examine Option 2, which is a
commonsense reasoning problem. | will use general program tactic to solve it.
Action: [Call tactic] general program

S |
General Program Tactic Trajectory J

Thought: | have

observed the program output being True, now | will answer.

Action: [Answer] True

Obs: [General Program Tactic Execution result] True

fact that "Extractive models are always faithful".
X Solve single-type problem
X No self-correction

(S

Thought: | have checked all options, | will give answer
Action: Option 2 is correct

=

Figure 2: Solving ambiguous, mixed-in-scope problem via reasoning in the wild.

an assumption does not hold in real-world scenar-
ios, where the problems could: (1) be ambiguous
in scope, where the problem is not a well-defined
math or formal logic task, and the program writ-
ten cannot fully solve the problem and requires
further reasoning to derive the final answer; (2)
require multiple formalisms to solve, where the
problem needs to be decomposed into subprob-
lems with each requiring different sets of skills
to solve; (3) be mixed with irrelevant context,
where the context contains irrelevant information
that needs to be excluded when building a formal
model. Such problems are widely present in the
real world, for example, Figure 2 shows an exam-
ple of a multichoice question, where Option 1 re-
quires a math model to verify, Option 2 requires a
generic program, which does not fit into any of the
well-defined formalisms, and Option 3 requires a
predicate logic model to verify. Solving this prob-
lem poses a higher demand on the reasoning-in-
the-wild capability of an LLM agent, who needs
to recognize the subproblems, identify the formal-
ism, and write the program to finally answer it.
Yet, there lacks such a comprehensive benchmark
to evaluate LLMs’ capability in these aspects.

To move towards bridging this gap, we intro-
duce the task of reasoning in the wild. Given a
reasoning problem of an unknown type, the task
is to solve the problem by iteratively identify-
ing the sub-problems and their corresponding for-
malisms, then writing the suitable programs to

solve each subproblem. To better control and as-
sess the agent’s behavior, we introduce the notion
of tactics. We draw inspiration from the tactic con-
cept in interactive theorem prover literature, where
a person proves a math theorem by decomposing
and transforming the problem into sub-problems
and solving them by corresponding tactics (Lean,
2024; Isabelle, 2024). In our setting, a tactic is
a guideline consisting of descriptions, code tem-
plates, and an action space, which defines a spe-
cific way to tackle the given problem. As we will
see in later sections, by explicitly applying the
constraint of tactic we obtain a fine-grained insight
into LLMs’ behavior in problem-solving beyond
common holistic evaluation protocols.

To enable such a study, we create a large
tactic-guided trajectory dataset, namely ReWild,
that consists of problem-solving trajectories (for-
matted similar to ReAct (Yao et al.,, 2022)
as a chain of Thought, Action, and corre-
sponding Observation) over a wide range of
reasoning problems.  These problems range
from well-defined single-form reasoning such as
GSMSK (Cobbe et al., 2021), FOLIO (Han et al.,
2022) to ambiguous one such as ReClor (Yu et al.,
2020). On top of existing problems, we also
create new hybrid problems that require multi-
ple formalisms to solve. ReWild is generated
through GPT4 with expert-written prompts and is
further post-processed and verified by a combined
pipeline of manual annotation and automated fil-
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tering. The resulting dataset consists of 6.7K tra-
jectories with a total of 21.7M tokens.

In our experiments, we evaluate a diverse set of
the most powerful LLMs to date on our bench-
mark. Remarkably, we find existing LLMs fail
significantly when tasked to solve reasoning prob-
lems with tactic-guided programs (see Figure 1,
Prog.+) and the performance further deteriorates
for hybrid problems (see Figure 1, Hyb). Through
the lens of tactics, we analyze the results and
identify three critical limitations of existing
LLMs: (1) Many LLMs show “overfitted” behav-
ior and fail to follow the tactic on popular prob-
lems such as GSMS8K, leading to a drop in per-
formance; (2) Most LLMs, except for GPT4 se-
ries, show a lack of the capability of “instruction-
following in long context”, where it fails to fol-
low the tactic on trajectories that are typically 3K
long; (3) Powerful LLMs including GPT4 tend to
hallucinate and generate “trivial programs” on am-
biguous reasoning problems, showing a poor gen-
eralizability over out-of-distribution problems. Fi-
nally, we show that these limitations can be al-
leviated via fine-tuning. We train and release a
LLaMA3-8B model on ReWild, which we refer
to as Tactlc-Guided ReasonER (TIGER-8B), and
show it achieves GPT4 level performance.

2 Related Work

Program-aided LLMs. Recent research has im-
proved LLMs’ reasoning capabilities with the help
of programs, achieving better performance on
math (Gao et al., 2023; Kabra et al., 2023; Chen
et al., 2023b) and logic (Feng et al., 2023; Pan
et al., 2023; Yang et al., 2023; Olausson et al.,
2023; Ye et al.,, 2023) reasoning tasks. These
works are “hardwired” to solve a specific type of
reasoning problem, and do not explicitly model
the interactions with the environment as a trajec-
tory, limiting their in-the-wild applications.
Trajectory-based LLM agents Agent-like
LLMs models such as ReAct (Yao et al., 2022)
explicitly model the interaction as a trajectory,
and several works study its potential in solving
reasoning problems. The most prominent ones
in this space are FireAct (Chen et al., 2023a),
ToRA (Gou et al., 2023), and EURUS (Yuan et al.,
2024), which collect problem-solving trajectory
data from GPT models in solving various known
reasoning tasks and train local models, showing
they can achieve better performance after fine-

Tactic name: predicate_logic_z3
Problem type and tactic: This tactic builds a formal
logical model using predicate logic using z3 lib
Code template:
t z3
check_model (solver) :

f main():
s = z3.Solver()
<your code>

Action Space:

#A# Plan

Input: the problem given

Functionality: give a plan for the question, 1include
a sketch of the solution and libs to be used

Output: text description of the plan, code snippets
#A# Build FOL model

Input: the problem given

Functionality: build the FOL system ..

Output: the main() function with z3 code

#A# Revise code

#A# Aggregate and answer

Figure 3: Example of a predicate logic tactic.

tuning.

These approaches highlight the benefits of pro-
grams or fine-tuning but do not uncover critical
limitations of existing LLMs. Our work under-
scores several key aspects neglected in previous
works. We demonstrate: (1) how to set up a
unified reasoning framework to tackle various ex-
isting and new (mixed) reasoning problems, (2)
how to incorporate various mechanisms (§3) in
the reasoning process which will enable a more
fine-grained analysis of system’s abilities, and (3)
how to evaluate such complex trajectories to gain
deeper insight into LLMs’ limitations and behav-
ior beyond common holistic evaluation protocols.

3 Reasoning in the Wild

The task of reasoning in the wild considers an
LLM agent solving reasoning problems by writ-
ing programs and interacting with an environment
defined by a tactic. Similar to prior agent-like
LLM frameworks (Yao et al., 2022), the problem-
solving process consists of a series of Thoughts,
Actions, and observations. At each step, the
LLM agent fi1m generates a thought ¢ that serves
as a chain-of-thought (CoT) context for its ac-
tion, and an action ¢ which carries out the ac-
tual action in the environment: this could be out-
putting a plan in free text (i.e., Plan), generat-
ing a program (i.e., Write Program), or return-
ing an answer (i.e., Answer). Then it receives
observation o from the environment. The se-
ries of £ = [(t,a,0)V, (t,a,0)?),..] forms a
problem-solving trajectory £ that will be included
as prompt for the next round of interaction.
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Figure 4: Solving reasoning problems by applying
Routing and problem specific tactics.

Different from the prior work, we extend this
problem-solving trajectory by explicitly apply-
ing a tactic to specify and monitor the agent’s
behavior. Formally, let 7" € T = {11,153, ...}
be a tactic, and each tactic is defined by T' =
{xp, A, O} (Figure 3). Here, @y is the tactic
description, which is a passage describing what
this tactic is suitable for and how it is gener-
ally used; A = {aj,as,...} is the action space
defining the allowable actions in this tactic, for
example, Plan and Write Program. Each ac-
tion is defined by its input, functionality, and out-
put a = {@in, Gfunc, Gout}; and O is the tactic-
corresponding observer that parses, monitors, ex-
ecutes the agent’s action, and finally provides ob-

servations o. A complete tactic is shown in §A.
Let ¢ be a reasoning problem and fipm be the

LLM agent, the agent solves the problem by per-
forming two levels of reasoning: (1) At the top
level, a Routing trajectory is formed that picks the
subproblems and the corresponding tactics; (2) At
the second level, the chosen tactic is carried out,
forming a “sub-trajectory” for subproblem solv-
ing. As shown in Figure 4:

1. Routing: Given the problem ¢, the agent ex-
ecutes the Routing tactic, that is 7;., where it ex-
tracts the subproblem gg,p from ¢, and identifies
the best tactic 7" to solve it by checking all the tac-
tic descriptions included in 7} and reflecting on
the past experience £ (where £©) = ). At every
(1)-th iteration:

ty("2)7 aS'Z) < fLLM(Qa TT’ g(i—l))’

and [gsub, Tsup) are parsed from the output part of
the action a\” (i.e., a,(f())ut).

2. Problem solving: Solves subproblem gg,, with
the chosen tactic Tgyp. At every (j)-th iteration:

t(j)a a(j) — fLLM(QSub7 Tsub7 g<j_1))a

sub
o) = 0(a!), &3 = €3 U{{t0,0)7},

where sub-trajectory 55(1?3 = (). The sub-trajectory
terminates if the Answer action is called where the
output part ay is returned as the observation osf)
to the Routing trajectory.

3. Update Routing: Update the routing trajectory

gD =0V U {(t,a,0)},

and then repeat step 1 until the Answer action is
called in the routing trajectory, where the final an-
swer to problem g is aggregated and returned.

By explicitly applying and monitoring the tac-
tics and actions, we (1) make it easy to control the
agent’s behavior, defending against potentially un-
desired behaviors; (2) gain deeper insight into the
LLMs, by tracing if it uses the right tactic for the
right subproblems; (3) make it possible to create a
challenging hybrid problem that requires multiple
tactics to solve with fine-grained metrics.

4 Data Generation

To enable evaluating (and training) LLMs on our
task, a large dataset of problem-solving trajec-
tories over diverse reasoning problems needs to
be created. To do so, we select several exist-
ing datasets and generate the trajectories with the
specific tactic and ICL prompts and select those
successful ones with non-trivial programs (intro-
duced shortly) to include in our dataset, ReWild.
Tactics and datasets. We manually create
a pool of diverse tactics, each corresponding
to the following datasets: (1) Math Tactic for
GSMSK; (2) Logic Tactic for FOLIO, which is a
logic-grounded natural language inference (NLI)
dataset; (3) Graph Tactic for ProScript (Sak-
aguchi et al., 2021), which is a dataset containing
graph-like steps for achieving certain goals such as
“opening a bank account”; and (4) General Pro-
gram Tactic for ReClor, which is a commonsense
reasoning dataset. To generate trajectories, we
manually created examples and included them as
ICL prompts to guide the generation using a mix-
ture of three models: gpt4-turbo-0409, gpt-4o,
and claude-3-opus. More details in §B.
Post-processing. We filter the generated trajec-
tories with the following steps: (1) We filter those
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that do not write any programs or those with pro-
grams that failed to run. This indicates the model
“shortcuts” the process by directly outputting the
answer. (2) A more severe shortcutting happens
with ReClor dataset for all the LLMs we tested.
We refer to this as “trivial programs”: ReClor
problems are typically ambiguous in scope and
do not fit into any existing formalisms are known
to be trained by these LLMs. When LLMs are
“forced” to generate programs, they often gener-
ate programs that “hardcoded” the answer and put
CoT free-form reasoning in the comments. We
filter them by labeling a set of programs and us-
ing them as ICL prompts of an LLM classifier
(Examples and details are provided in §B). In ex-
periments, we show this phenomenon is widely
present and causes a significant performance drop.

Hybrid data generation. Apart from the
problem-solving trajectories, we also generate hy-
brid problems and routing trajectories. As an ex-
ample, let ¢1 = [gc,1,Gq,1) and g2 = [gc2, Ga 2]
be two problems randomly sampled from the orig-
inal datasets, where ¢. is the “context” part and
qq, the “answer” part of the question. We cre-
ate a multichoice hybrid problem by (1) “blend-
ing” the context part into a new coherent pas-
sage using an LLM (i.e., gpt4-turbo-0409) ¢} =
Jiim(4e15¢e,2); and (2) putting each answer g ;
as an option to the new hybrid problem with only
one of them correct and the rest replaced with in-
correct answers. Figure 2 shows a hybrid prob-
lem of this kind. We apply a similar pipeline as in
program filtering to ensure the blending procedure
preserves all the original information.

To further test LLMs on solving hybrid prob-
lems of different levels of difficulties. We cre-
ate hybrid problems with the following configu-
rations: (1) different numbers and types of op-
tions: let G, F, R denote one option from GSM8K,
FOLIO, and ReClor, we create problems of 5 lev-
els of difficulties, that is GG, GF, GFX, GFR, and
GFRX. For example, a GG problem is blended from
two GSMS8K problems with two options; a GFRX
problem is blended from four problems with the
first three each from G, F and R, and X means an op-
tion randomly sampled from any of the preceding
datasets (Note that GFX only samples from G and
F). We exclude proScript as its answer is a graph
and is thus difficult to fit as an option; and (2) dif-
ferent blending granularities: for each level of
problems, we have half of them blended by only
adding limited transition words and relevant con-

text is generally put together, while the other half
is blended with their sentences shuffled and inter-
leaved together to make it difficult to extract the
relevant context (see an example in Table 9 of §B).

Routing Trajectories. Creating routing trajec-
tories is straightforward with the hybrid problems.
Since we know the ground-truth original problem
associated with each option in the problem, we
create corresponding trajectories with each step
“reversing” the blending process by pasting the
original problem as the action and the ground-truth
answer as the observation. Example routing tra-
jectory and hybrid problems shown in §B.

The final ReWild contains a total of 6.7K trajec-
tories and 21.7M tokens. Statistics and details are
available at §B and Table 2.

S5 Tactic-Guided Reasoner Fine-Tuning

Trajectories provided by ReWild make it possible
to fine-tune local LLMs to perform the reasoning
in the wild task. However, training on such tra-
jectories is nontrivial and we discuss two differ-
ent ways to train a LLaMA3-8B model. We refer
to these fine-tuned models as TactIc-Guided Rea-
sonER (TIGER-8B).

Learning from imperfect trajectories. Trajec-
tories collected in ReWild, while solving the prob-
lems, do not always have optimal steps. For ex-
ample, a trajectory may involve writing a bad pro-
gram in step 1 and correcting it with Revise Code
action in step 2. In this case, training the model
on predicting tokens of step 1 is improper, as it ef-
fectively encourages the model to “imitate” a non-
optimal step. Theoretically, a principled solution
is to bring in the reinforcement learning technique,
as it resembles off-policy learning. Here, we intro-
duce a simple yet effective approach to the issue
while still enjoying the low variance and computa-
tional cost of a standard auto-regressive objective.

Our approach takes advantage of the fact
that “a bad step is easy to detect in hind-
sight”. Consider a trajectory with one bad step
[(t,a,0)c1, (t,a,0)w2, (t,a,0)s]. Since the LLMs
can perform the same action multiple times and
some actions are dependent on other actions
(e.g., Revise Code can only happen after Write
Program), we can easily detect non-optimal steps
with rule-based labeling. For example, if Revise
Code is performed then any programs produced
before it are incorrect; and if Answer is performed
then any Answer before this action is incorrect.
Once they are recognized, we experiment with
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Performance on Standalone Problems without Routing

Acc. w/ Prog.
GSM8K

proScript

Acc. Opt. done (%)
GSM8K

All

proScript proScript

gpt3.5-turbo —— gpt4-turbo-0409
gpt-4o0 gemini-1.0-pro

ReClor

ReClor

—— gemini-1.5-pro
claude-3-sonnet

Acc. w/ Prog.+
GSM8K

Prog. Qual.
GSM8K

GSM8K

(Fuzzy) All
All

ReClor

proScript

proScript

Performance on Standalone Problems with Routing

Tac. Recog. (%) Prog. Qual.
GSM8K GSM8K

All

ReClor

proScript

proScript

command-r-plus ~ —— Tiger-1PJ-8b

Tiger-PJ-8b

Figure 5: Results of the standalone problems. Exact scores provided in §D.

two different approaches: (1) imperfect trajectory
training (IPJ): we mask out the label of ¢ and
a of incorrect steps but still train on the origi-
nal trajectory, in which case the trainable tokens
are [(t,a, 0)c1, 0w2, (t,a,0)c3]; (2) perfect trajec-
tory training (PJ): we recreate a perfect trajec-
tory by replacing the incorrect ones with subse-
quent correct ones, in which case a new trajectory
[(t,a,0)c1, (tw2, ac3,0c3)] is created and trained
(assuming a2, a.3 are same type). Training the
model with PJ and IPJ approach is straightforward
and we leave details in §C.

6 Experiments

Settings. We evaluate seven most powerful
API LLMs to date listed in Figure 5 (excluding
claude-3-opus due to its high API cost), and two
of our models TIGER-PJ-8B and TIGER-IPJ-8B
on the standalone and hybrid problems of ReWild.
All API LLMs are given up to five trajectories as
ICL prompts (detailed settings in §D).

6.1 Standalone problems

We first evaluate models on standalone problems
that require only one formalism to solve. Specifi-

cally, we evaluate them in two settings: (1) With-
out routing: model is given the ground-truth
problem-solving tactic, and tasked only to solve
the standalone problem, and (2) with routing:
model is tasked to first find the right tactic and
then solve the problem. This is effectively a spe-
cial case of hybrid problems with only one option.
This can be seen as an easy hybrid benchmark that
sits between the two types of problems.

We evaluate the model with the following met-
rics: (1) accuracy (Acce): the standard accuracy of
models solving the problems; (2) Acc with pro-
gram (Acc w/ Prog): a more strict notion of the
Acc where trajectories that do not produce a pro-
gram are considered as failed. This score reduces
if the model fails to follow instructions to write
the program before answering; (3) program qual-
ity (Prog Qual): recall the “trivial program” is-
sue in §4, LLMs can generate a trivial program
to shortcut the process. To quantitatively measure
this behavior, we measure the difference between
the generated program and the ground-truth one
using CodeBleu (Ren et al., 2020), a BLEU score
designed for code; (4) Acc w/ non-trivial program
(Acc w/ Prog+): is a more strict version of Acc w/
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Error Types on Standalone Problems == wrong Ans.
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Figure 6: Error types of the standalone problems.

Prog where the trajectories with programs Code-
Bleu scores lower than a threshold (= 0.15) are
considered as failed. This metric decreases if a
model shortcuts the process and generates triv-
ial programs; (5) tactic recognition (Tac Recog):
the accuracy of the model correctly recognizes the
right tactic for the problem (with routing only); (6)
Acc w/ options done (Acc Opt done): the most
strict accuracy where only trajectories that (a) cor-
rectly recognized the tactics for all options and (b)
generated a program with CodeBleu higher than
the threshold for all options, are considered cor-
rect. The model having the highest Acc Opt done
is the most desired one of this task (with routing
only).

LLMs overfit on popular problems. Fig-
ure 5 shows the results with and without the
routing. One major issue we find is that many
LLMs while performing well on GSM8K in
ICL-CoT, fail significantly in our benchmark,
where gpt-40 achieves only 7.95% on Acc and
gpt4-turbo-0409 achieves only 53.56%. Upon
further investigation, we find LLMs tend to ig-
nore our instructions and ICL examples on only
returning the numerical answer and proceed to re-
turn answers with explanations. To validate our
observation, we categorize the errors into three
types and summarize the per-dataset counts in Fig-
ure 6. Here, Wrong Ans means a valid answer
is returned but is incorrect; Runtime Err means
Answer action is never called; and Wrong Format
means Answer is called but the format is invalid,
e.g., included irrelevant context and explanations.
Figure 6 shows that all LLMs have exception-
ally high Wrong Format rates on GSM8K in both
benchmarks; such a phenomenon does not exist
for other datasets, precluding the possibility of
bad prompting. Given that the GSM8K dataset

comes with CoT ground-truth answers, we conjec-
ture that most of the LLMs are trained on these
CoT answers which leads to an overfitted be-
havior in answering. Examples shown in §D.

Nevertheless, we implement a fuzzy match
pipeline that considers the answer correct as long
as the ground-truth numerical answer exists in the
answer output. The fuzzy match results are shown
under GSMS8K (fuzzy), which aligns much better
with that of ICL-CoT, further confirming our ob-
servation. For the hybrid evaluation in §6.2, we
use only the fuzzy match on GSM8K options.

Many LLMs lack instruction-following ca-
pability in long context. We find many LLMs
struggle to follow the instructions in a long
context. =~ The most prominent case is with
claude-3-sonnet, whose overall Acc decreases
from 40.83% to 12.09% on Acc w/ Prog, in-
dicating the model very frequently skips writ-
ing programs before answering. Other models
generally see a decrease of 5%-10%, except for
gpt4-turbo-0409, which is less than 1%.

Trivial programs and hallucination. Figure 5
sees a general decrease of 10%-45% on ReClor
problems with Acc w/ Prog+, with the largest drop
being 45.73% from gemini-1.5-pro. On top of
this, the Acc Opt done scores drop to near zero
for with-routing benchmarks, indicating a high er-
ror rate in recognizing the tactic for ReClor prob-
lems. This confirms our observation in §4 that ex-
isting LLMs generalize poorly to rarely trained
coding problems. This observation is further val-
idated in Prog Qual chart, where the CodeBleu
scores of ReClor are the lowest.

Potential training data imbalance. Looking
at Figure 6, we find a high Runtime Err rate
with FOLIO, which primarily relies on the z3 li-
brary for building the logic model. We find this is
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Performance on Hybrid Problems

Acc. (%)
GG

Acc. Opt. done (%)
GG

gpt3.5-turbo —— gpt4-turbo-0409
gpt-4o0 gemini-1.0-pro

SubP. Recog.
GG

—— gemini-1.5-pro
claude-3-sonnet

Tac. Recog. (%) Prog. Qual.
GG GG

All

command-r-plus
Tiger-P)-8b

—— Tiger-IP)-8b

Figure 7: Results of the hybrid problems. Exact scores provided in §D.

Blend hard

Acc. Opt.  SubP. Tac.
done (%) Recog. Recog.

Blend easy

Acc. Opt.  SubP. Tac.
done (%) Recog. Recog.

Model

gpt-4o 16.60 0.22 81.40 14.94 0.19 78.18
gptd-turbo-0409 15.83 0.15 80.69 14.52 0.14 7846
gemini-1.5-pro 4.53 0.12 26.1 3.93 0.1 22.63
Tiger-PJ-8b 8.94 0.52 93.02 7.76 0.5 94.43
Tiger-IPJ-8b 8.88 052 93.02 9.54 0.5 4.43

Table 1: Results of hybrid problems with different
blending strategies (zero-scored model removed).

because models frequently write syntactically in-
correct code leading to runtime errors and cannot
correct it despite multiple Revise Code attempts.
This suggests that the training data likely leans to-
ward popular libraries and the models struggle to
generalize to rare libraries.

Fine-tuning alleviates above issues. TIGER-
8B generally performs better for these issues, with
the IPJ version performing slightly better than the
PJ one. TIGER-8B has more consistent Acc scores
for all metrics and maintains the highest score on
ReClor in the with-routing setting. TIGER-8B’s
overall performance is similar to GPT4 models,
and we believe it would further improve if given
more data and trained with larger models.

6.2 Hybrid problems

We evaluate LLMs on hybrid problems using
a similar set of metrics: note that Acc Opt
done here counts the trajectories that answer cor-
rectly the hybrid problem with all its options cor-
rectly recognized and solved with high-quality
programs. We also include the subproblem recog-
nition metric (SubP Recog) measuring the BLEU
score between the extracted subproblem text and
the original problem text.

Hybrid problems are highly challenging. We
summarize the results in Figure 7. All models
maintain an Acc score above 35% on hybrid prob-
lems except for command-r-plus. We observe a

consistent drop in scores of all models when mov-
ing to problems of higher difficulties, indicating
that difficulty levels are effective. Remarkably,
the Acc Opt done score drops significantly, where
most LLMs drop to near zero, with only GPT se-
ries and TIGER-8B maintaining an overall score of
around 10%. Furthermore, most of the scores are
earned on easy ones such as GG, and all API LLMs
could not even successfully answer a single prob-
lem from GFR and GFRX. Thanks to fine-tuning,
TIGER-8B maintained the highest SubP and Tac
Recog scores and the best Prog Qual, and man-
aged to solve a few more problems in hard difficul-
ties. We conjecture the task has gone beyond the
capacity of an 8B model and we might see a big-
ger gap by fine-tuning larger models. Comparing
all LLMs, GPT4 series has a clear advantage, still,
their capabilities are far from obtaining a reason-
able score in this benchmark. In summary, we be-
lieve the hybrid problems remain a highly chal-
lenging and valuable benchmark that provides
deep insights into LLLMs’ reasoning capability.

Blending strategies. We summarize the results
on different blending strategies in Table 1. We ob-
serve a drop in the Acc and SubP Recog moving
from easy to hard for many LLMs, but they are not
overall very sensitive to different blending strate-
gies. This suggests that LLMs are generally strong
at retrieval in short context. We leave the investi-
gation in long context in future work.

7 Conclusion

We present reasoning in the wild, a task that chal-
lenges LLMs’ reasoning capabilities in solving
ambiguous and mixed-in-scope problems, where
we create dataset ReWild. Our experiments re-
veal critical issues of the existing LLMs and show
that they can be alleviated with fine-tuning, that is
TIGER-8B.
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8 Limitations

During the creation of ReWild, we used a com-
bined approach of manual labeling and auto fil-
tering. It is likely the trajectories, especially for
ReClor data, still contain “trivial programs”.
During evaluation, we use two different ICL
prompts for problem-solving trajectories to bal-
ance between cost and performance. While the
total length of the message can go to 10K long,
it does not exhaust all the context window length.
That said, it is likely by providing more fully de-
tailed trajectories, the API LLMs can achieve bet-
ter performance than those reported in the paper.

9 Ethics Statement

Potential negative impact. The trajectory data
contain fully the LLM-generated contents, and the
code and text could potentially contain misinfor-
mation. It is also possible, while unlikely that run-
ning the programs in the trajectory could cause un-
expected behaviors in the host machine due to dif-
ferent environment configurations.

Artifact statements. We release data, code,
and weights under Apache 2.0 license and they are
intended for research use only. Additionally, the
usage of the TIGER-8B model should follow the
license agreement of LLaMA and Alpaca. ReWild
is released under CC BY NC 4.0 and the use of
such dataset should follow the policy of OpenAl.
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A Reasoning in the Wild examples

Tactic description examples. An example of a
complete tactic description is shown in Table 7.

B Data generation

Tactic Pool. We manually create a pool of di-
verse tactics for different types of reasoning in-
cluding: (1) Math Tactic, where the agent builds
a math model to solve problems involving math;
(2) Logic Tactic, where the agent builds a logic
model using the Python Z3 library to model and
verify logical statements, which can be used for
logical deduction, induction, and abduction prob-
lems; (3) Graph Tactic, where the agent builds a
graph model using the Python NetworkX library
to model a graph structure, which can be used for
problems involving sorting items as a graph; (4)
General Program Tactic, where the agent writes
a general program using all libraries above to rep-
resent problems that do not fit into any of the for-
malisms above, such as commonsense reasoning;
and (5) Routing Tactic, which is the main tactic,

which the agent follows to decompose the prob-
lem into subproblems and identify the best tactic
for solving it.

Datasets. We select the following datasets each
corresponding to our designed tactics above for
trajectory generation: (1) GSM8K (Cobbe et al.,
2021): a popular arithmetic math dataset; (2) FO-
LIO (Han et al.,, 2022): a logic-grounded nat-
ural language inference (NLI) dataset; (3) Pro-
Script (Sakaguchi et al., 2021): a dataset con-
taining graph-structured natural language steps for
achieving certain goals such as “opening a bank
account”; and (4) ReClor (Yu et al., 2020): a com-
monsense reasoning dataset curated from LSAT
and GMAT tests in the form of multichoice prob-
lems.

Trajectory collection process. To generate tra-
jectories that adhere to our setup, we first manually
created trajectories for each dataset, then include
them as ICL prompts to guide the generation.
We use a mixture of three models in the process:
gpt4-turbo-0409, gpt-40, and claude-3-opus.
In particular, we find claude-3-opus performs
the best in zero-shot and out-of-distribution prob-
lems such as ReClor, and GPT4 series have the
best instruction-following capability during gener-
ation. Based on our initial experiments, we set the
maximum number of steps of each trajectory to 7
to balance between the final success rate and the
cost. A trajectory is terminated if (1) the Answer
action is called and the result is correct; (2) the
max steps are reached; (3) the model makes 3 con-
secutive errors, which is typically a bad sign of a
failed trajectory.

Post-processing. After generation, we filter the
trajectories with the following steps: (1) We fil-
ter those that do not write any programs or those
with programs that failed to run. This indicates
the model “shortcuts” the process by directly out-
putting the answer. (2) A more severe shortcut-
ting happens with ReClor dataset for virtually all
the LLMs we tested. We refer to this as “trivial
programs”: ReClor problems are typically am-
biguous in scope and do not fit into any exist-
ing formalisms are known to be trained by these
LLMs, such as math and formal logic. When
LLMs are “forced” to generate programs for them,
even with multiple ICL prompts given, they very
often generate programs that either (a) are a fancy
CoT, where they put CoT free-form reasoning in
the comments and have programs directly return
the answer; (b) or have the answer “hardcoded”
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Subset  #Train #Test Avg. steps Avg. Tokens
GSMBK 1.2K 239 4.2 2.1K
FOLIO 0.9K 192 43 4.6K
proScript  1.1K 277 5 3.4K
ReClor 1.1K 235 5.2 43K
Hybrid IK 500 4 2K
All 5.3K 1.4K 45 3.2K

Table 2: ReWild dataset statistics.

as constants. Examples are shown in Table 8.
We filter these trajectories by first manually label-
ing a subset of good and bad programs, and use
LLMs to filter the rest using them as ICL prompts.
To further boost the filtering accuracy, we use a
majority vote of three LLMs: gpt4-turbo-0409,
claude-3-opus, and gemini-1.5-pro. On our
manually labeled test set, this framework achieves
an accuracy of 72% with 16% being false positives
(i.e., the bad programs inferred as good ones). We
measure Krippendorff’s alpha, that is the inter-
model agreement rate, which is 0.69, indicating
the annotations are generally aligned. In experi-
ments, we show that this phenomenon is widely
present in all LLMs and causes a significant per-
formance drop in all ReClor-related problems.

Trivial program examples. Trivial program
examples shown in Table 8.

Hybrid problem examples. Hybrid problem
examples shown in Table 9.

Routing trajectory examples. Routing trajec-
tory examples shown in Table 10.

Dataset statistics. We show statistics
of ReWild in Table 2. Due to budget limits,
we did not generate trajectories for all the
problems. We plan to release the generation
pipeline for researchers interested in continuing
the process. For each dataset and the hybrid one,
we aim for 1K for training and 250 for testing
(FOLIO has fewer total testing samples). ReWild
contains a total of 6.7K trajectories and 21.7M
tokens. In experiments, we find it supports a
sufficient fine-tuning of an LLaMA3-8B model
and evaluation of existing LLMs.

C Tactic-Guided Reasoner Fine-Tuning

In §5, we introduce two ways to prepare the tra-
jectory data: perfect trajectory training (PJ) and
imperfect trajectory training (IPJ). PJ training is
straightforward as it resembles standard imitation
learning and is applied in prior work such as Re-
Act (Yao et al., 2022) and ToRA (Gou et al., 2023).

We find IPJ training could further improve the
model’s performance because it trains the model to
correct the previous steps, making it more robust
during inference time. In experiments, we fine-
tune two versions of LLaMA3-8B: (1) TIGER-PJ-
8B which trains on PJ data; (2) TIGER-IPJ-8B
which trains on PJ and IPJ data. Both models are
trained with LoRA r = 64, o = 64. Additionally,
we train the routing model by continuing training
on the TIGER-PJ-8B on routing trajectories with
LoRA r = 16, = 16. All training is performed
for 3 epochs on a single A100 GPU.

D Experiments

Hyperparameters. For all experiments, We set
the max steps allowed in a trajectory to 7, and
the max consecutive errors to 3. For routing tra-
jectory, all API LLMs are given two full routing
trajectories as ICL prompts. For problem-solving
trajectory, all API LLMs are provided with 5-shot
ICL prompts consisting of the first two steps (typ-
ically, Plan and Write Program) to a problem.
This prompt is given for the first two steps of the
in-progress trajectory, then we swap it into ICL
prompts of two problem-solving trajectories of the
same problem type with their main output contents
omitted. We do this because we find the most diffi-
cult part of a trajectory is the first few steps, where
the model figures out the right overall approach,
so we insert more detailed solutions. And for the
rest, we insert a complete trajectory to guide the
model with formatting. This helps to balance be-
tween the performance and cost as one trajectory
ICL example is 3K long.

For CodeBleu metric (Ren et al., 2020), we set
the weights of ngram match, weighted ngram
match, syntax match, dataflow match to
0.15,0.15,0.35, 0.35 to favor programs with sim-
ilar functionality rather than textual appearance;

GSMSK overfitted answers. Example overfit-
ted outputs of GSM8K shown in Table 3.

Full results. We show the numerical results in
Table 4, Table 5, and Table 6.
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gpt4-turbo-0409 Output

gemini-1.5-pro Output

out_content:

The rainfall on Tuesday is 5 inches.
gt answer:

5

out_content:

The monthly earnings of the dance studio are a net loss of $120.00.
gt answer:

480

out_content:

James made a total commission of $17,500 from selling 10 cars.
gt answer:

17500

out_content:

Dorothy has 4 Facebook friends.
James has 16 Facebook friends.
gt answer:

16

out_content:

5

gt answer:
12

out_content:
42.0

gt answer:
1248

claude-3-sonnet Output

command-r-plus Output

out_content:

The number of pieces of candy that are not chocolate is 49.
gt answer:

20

out_content:

The total dollar amount in a stack containing two thirds of the 9,300 pennies is $62.00.

gt answer:
62

out_content:
The total amount Molly will pay for catering the party is $131.

out_content:

The answer is **40%%*,
gt answer:

140

out_content:

The answer to the question is **180000 meters**.

gt answer:
180000

out_content:

There are 12 teachers at Dr. Wertz’s school.

gt answer: gt answer:
101 36
Table 3: Example of overfitted outputs on GSM8K problems.
Model GSMSK GSMBK Soft FOLIO
Acc (%) Accw/Prog. Accw/Prog+ Prog. Qual. Acc (%) Accw/Prog. Accw/Prog+ Prog. Qual. Acc (%) Accw/Prog. Accw/Prog+ Prog. Qual.
gpt3.5-turbo 12.97 12.97 11.72 0.3 34.73 34.73 28.87 0.3 4.17 2.08 2.08 0.26
gpt-4o0 7.95 7.95 7.53 0.56 98.33 96.65 9331 0.56 54.69 50.52 50.52 0.34
gptd-turbo-0409  53.56 53.56 48.95 0.51 97.07 96.65 90.38 0.51 64.06 64.06 64.06 0.41
gemini-1.0-pro 43.93 42.68 39.75 0.39 66.95 63.18 59.83 0.39 29.17 28.65 28.12 0.29
gemini-1.5-pro 79.08 69.87 65.27 0.41 87.87 78.66 73.64 0.41 65.1 65.1 64.58 0.33
claude-3-sonnet 17.99 5.44 4.6 0.16 53.97 21.34 20.08 0.16 51.56 11.46 11.46 0.11
command-r-plus ~ 12.13 11.72 10.88 0.43 79.08 78.24 69.46 0.43 17.19 17.19 17.19 0.35
Tiger-PJ-8b 70.29 70.29 65.27 0.47 71.13 71.13 66.11 0.47 73.44 73.44 73.44 0.43
Tiger-IPJ-8b 76.15 76.15 73.64 0.51 76.99 76.99 74.06 0.51 64.06 64.06 64.06 0.42
Model proScript ReClor All
ode Acc (%) Accw/Prog. Acc w/Prog+ Prog. Qual. Acc (%) Accw/Prog. Accw/Prog+ Prog. Qual. Acc(%) Accw/Prog. Accw/Prog+ Prog. Qual.

gpt3.5-turbo 1.08 1.08 1.08 0.44 11.91 11.49 9.79 0.24 12.94 12.41 10.5 0.32
gpt-4o0 48.74 44.77 44.77 0.58 74.04 62.13 54.47 0.23 68.82 63.41 60.66 0.44
gptd-turbo-0409  47.29 47.29 47.29 0.66 86.81 84.68 71.06 0.25 73.17 72.53 67.55 0.47
gemini-1.0-pro 3.61 325 3.25 0.49 31.06 17.45 12.77 0.15 31.71 27.15 25.03 0.34
gemini-1.5-pro 35.74 31.41 31.41 0.6 70.09 38.03 24.36 0.12 63.48 5191 47.13 0.38
claude-3-sonnet 21.3 325 3.25 0.09 41.7 13.62 12.77 0.13 40.83 12.09 11.56 0.12
command-r-plus ~ 19.13 19.13 19.13 0.6 47.23 46.38 37.87 0.27 40.93 40.51 36.16 0.43
Tiger-PJ-8b 30.69 30.69 30.69 0.64 61.28 60.43 46.38 0.25 57.26 57.05 52.28 0.46
Tiger-IPJ-8b 34.66 34.66 34.66 0.65 70.21 68.94 44.26 0.22 60.23 59.92 53.02 0.46

Table 4: Results of standalone problems without routing.
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Model GSMSK GSMBK Soft FOLIO
Acc (%) Accw/Prog. Acc w/Prog+ Prog. Qual. Acc (%) Accw/Prog. Accw/Prog+ Prog. Qual. Acc(%) Accw/Prog. Accw/Prog+ Prog. Qual.
gpt3.5-turbo 16.74 14.23 76.57 0.32 44.77 3431 76.57 0.32 2.6 1.04 12,5 0.22
gpt-40 13.81 12.13 99.16 0.55 95.4 89.54 99.16 0.55 52.6 52.6 97.92 0.3
gptd-turbo-0409  53.56 49.79 100 0.5 96.23 86.61 100 0.5 64.58 60.94 91.15 0.4
gemini-1.0-pro 41 37.24 93.72 0.36 60.67 51.88 93.72 0.36 29.69 26.04 69.27 0.24
gemini-1.5-pro 74.06 61.09 97.91 0.43 90.38 74.48 97.91 0.43 80.63 73.82 87.96 0.31
claude-3-sonnet 11.72 3.35 53.14 0.07 30.54 8.79 53.14 0.07 4.69 2.6 54.69 0.04
command-r-plus 7.95 7.53 82.43 0.38 66.53 60.25 8243 0.38 224 13.54 36.98 0.19
Tiger-PJ-8b 68.55 62.28 96.2 0.47 69.76 65.19 96.2 0.47 73.29 73.29 99.5 0.42
Tiger-IPJ-8b 73.9 72.11 96.3 0.51 74.13 74.12 96.3 0.51 63.89 63.84 99.5 0.41
Model proScript ReClor All
Acc (%) Acc w/Prog. Acc w/Prog+ Prog. Qual. Acc (%) Accw/Prog. Accw/Prog+ Prog.Qual. Acc(%) Accw/Prog. Accw/Prog+ Prog. Qual.
gpt3.5-turbo 0.8 0.5 514 0.42 0.43 0 62.55 0.17 12.22 9.05 52.64 0.29
gpt-4o 47.2 45.8 89.52 0.57 5.11 3.83 60.43 0.23 50.03 47.81 86.42 0.42
gpt4-turbo-0409 46.5 46.5 92.12 0.65 11.49 8.94 53.62 0.27 54.06 50.24 84.32 0.47
gemini-1.0-pro 3.21 3.04 73.49 0.44 4.09 0 26.36 0.1 237 19.66 66.66 0.3
gemini-1.5-pro 30.1 28.21 82.31 0.58 7.62 2.24 75.78 0.12 50.58 43.24 8591 0.38
claude-3-sonnet 20.8 19.9 84.56 0.12 1.28 0.43 45.11 0.07 15.12 8.71 60.68 0.08
command-r-plus 17.4 16.9 74.12 0.55 8.09 7.23 48.94 0.2 28.55 24.79 62.39 0.35
Tiger-PJ-8b 30.54 30.54 99.8 0.65 59.71 45.37 974 0.24 56.45 51.72 98.23 0.46
Tiger-IPJ-8b 34.53 34.53 99.7 0.64 69.57 46.77 97.5 0.22 59.24 53.58 98.25 0.45
Table 5: Results of standalone problems with routing.
Model 2 ef efx
Acc (%) Acc. Optdone (%) SubP.Recog. Tac.Recog. Prog. Qual. Acc (%) Acc. Optdone (%) SubP.Recog. Tac.Recog. Prog. Qual. Acc(%) Acc.Optdone (%) SubP.Recog. Tac. Recog. Prog. Qual.
£pt3.5-turbo 53 0 0 3 0.02 50 0 0.01 35 0.02 36 0 0 1.33 0.01
gpt-do 78 46 0.14 91 043 75 2 0.28 90.5 036 70 10 0.25 87.33 0.35
gptd-turbo-0409 78 46 0.13 94 043 67 21 0.19 925 039 55 9 0.16 87.67 0.37
gemini-1.0-pro 43 1 0.11 43 0.15 42 0 0.12 305 0.1 30 0 0.15 3633 0.12
gemini-1.5-pro 71 11 0.14 404 0.16 69 8 0.17 295 0.12 58 1 0.12 2279 0.08
claude-3-sonnet 47 0 0 2 0.01 36 0 0.01 4 0.01 36 0 0.02 533 0.01
command-r-plus 31 0 0.05 17 0.08 17 0 0.08 18 0.09 14 0 0.06 1833 0.08
Tiger-PJ-8b 46 18 0.52 98 045 51 17 0.57 92 043 24 7 054 90 0.39
Tiger-IPJ-8b 48 19 052 98 048 48 16 0.57 92 042 25 7 054 90 0.39
Model gft gfix all
ode Ace (%) Acc. Optdone (%) SubP.Recog. Tac. Recog. Prog. Qual. Acc (%) Acc. Optdone (%) SubP.Recog. Tac. Recog. Prog. Qual. Acc(%) Acc. Optdone (%) SubP.Recog. Tac. Recog. Prog. Qual.
gpt3.5-turbo 28 0 0 333 0.01 25 0 0 0.75 0.01 384 0 0.01 238 0.01
gpt-do 58 1 0.2 68.67 031 51 0 0.16 61.75 0.29 66.4 158 0.2 79.85 035
gptéd-turbo-0409 55 0 0.12 65.67 0.29 43 0 0.11 58.25 029 59.6 152 0.14 79.62 0.36
gemini-1.0-pro 40 0 0.08 19.67 0.07 25 0 0.09 225 0.09 36 0.2 0.11 314 0.11
gemini-1.5-pro 51 0 0.06 14.09 0.04 44 0 0.06 125 0.05 59.11 4 0 2442 0.09
claude-3-sonnet 35 0 0.02 7 0.01 23 0 0.02 6.25 0.01 354 0 0.01 492 0.01
command-r-plus 14 0 0.06 16 0.06 10 0 0.04 11.25 0.05 17.2 0 0.06 16.12 0.07
Tiger-PI-8b 40 2 048 95 0.32 27 1 0.46 935 033 37.6 9 052 93.7 0.38
Tiger-IPJ-8b 41 3 048 95 033 27 1 0.46 935 033 37.8 9.2 0.52 93.7 0.39

Table 6: Results of hybrid problems.

9818



Predicate Logic Tactic

### Tactic name
predicate_logic_z3

#i## Problem type and tactic

This tactic builds a formal logical model using predicate logic formalism with the help of python z3 lib.

This tactic is suitable for solving reasoning problems that involves deductive, inductive or, abductive reasoning.

To do so, the tactic will represent the problem as a self-contained first-order logic (FOL) system that consists

of Constants, Predicates, Logic Variables, Quantifiers, Functions, Logic Operators, Grounded Facts, Logic Formulas
and so on; then it will seek to perform formal reasoning with the help with z3 lib.

**Typical use cases**
The tactic is suitable for problems that can be represented by an FOL system and solved by performing the following
three types of formal reasoning

- Deductive reasoning: Given Facts and Logic Formulas, deduce new Facts from the system by applying the Formulas to the
Facts.

- Inductive reasoning: Given Facts and Potentially some Formulas, induce new Formulas that entail the given Facts and

are consistent with the preexisting Formulas.

- Abductive reasoning: Given Facts, Logic Formulas, and a consequence Fact, infer the missing Facts or Formulas, such
that the consequence Fact can be entailed by the system.

**Model and tactic outputs®*
- Model: To apply the tactic, one builds a self-contained FOL system that fully represent the problem using z3 lib

- Outputs: the z3 code should output either *Agree’, ’Contradict’, or *Uncertain’.
’Agree’ means the Facts or Formulas agree with the system

’Contradict’ means the Facts or Formulas contradict with the system

’Uncertain” means the Facts or Formulas contradict with the system

Note that the type of reasoning and the system built for the problem determine:

- How the output is interpreted.

- Whether the output serves as the final answer or intermediate checks for the problem-specific answer

For example: for a deductive reasoning task with a given hypothesis, one builds the system to determine if the
hypothesis Agree/Contradict/Uncertain to the system; for a deductive reasoning task where one wants to deduce all
possible Facts, then one should infer all Facts that Agree with the system; for inductive reasoning, one infers the
Formulas that Agree with the system; for abductive reasoning, one infers the Facts or Formulas that Agree with the
consequence and the system.

### Tactic details

You will use the following python libs to solve the problem:
Any builtin Python libs

z3

**Code template™*
You will use the following code template to solve the problem.

“‘python
import z3
from z3 import *

def check_model(solver):

res = solver.check()
if res == sat:
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return ’sat’

elif res == unsat:
return ’unsat’

else:

return ’unsolvable’

def check_constraint(solver, c):
pos_res = solver.check(c)
neg_res = solver.check(Not(c))

if (pos_res == sat) and (neg_res == unsat):

return *Agree’

elif (pos_res == unsat) and (neg_res == sat):

return ’Contradict’

elif (pos_res == unknown) or (neg_res == unknown):
return ’unsolvable’

else:

return ’Uncertain’

def main():
s = z3.Solver()
<your code>

I3

**Action space**
You will use and ONLY use the following actions to solve the problem.
You can apply actions in arbitrary order and arbitrary number of times.

#A# Plan

- Input: the problem given

- Functionality: give a plan on how to solve the question, including a sketch of the solution, libs to be used,
and code snippets

- Output: text description of the plan and potential code snippets of the form

“‘python

<your code>

e

#A# Build FOL model

- Input: the original problem given

- Functionality: build the FOL system that represents the problem; use check_constraint or check_model to produce
output

- Output: the main() function with z3 code of the FOL system of the form

“‘python

def main():

<your code>

113

#A# Revise code

- Input: z3 code built so far, with potential feedbacks from observations or users

- Functionality: reflect on the Input, specify if the tactic is good so far, and if not what are the issues;
then, revise the code to continue the problem-solving process or address the issues.

- Output: the main() function with revised z3 code of the form

“‘python

def main():

<your code>

13
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#A# Aggregate and answer

- Input: all z3 code, revisions, and observations so far

- Functionality: aggregate and summarize the outputs produced so far, and provide the problem-specific final answer
- Output: the problem-specific answer

#A# Tactic check

- Input: the original problem, all z3 code, revisions, and observations so far

- Functionality: analyze the Input, determine if the tactic can solve the problem or not

- Output: "Tactic Good" if tactic can solve the problem; "Tactic Bad" if tactic cannot solve the
problem.

Table 7: Tactic description of predicate logic.

=== Question and answer
Answer the question below by choosing the correct statement.

### Context:

In a study, pairs of trained dogs were placed side by side and given a command such as "sit. " After both obeyed
the command,

one dog was given a treat while its partner was given no reward at all. Over time, the dogs who went
unrewarded began to disobey

the command. This shows that dogs have an aversion to being treated unfairly.

### Question:
Which one of the following would be most useful to know in order to evaluate the argument?

### Statements:

1. Were dogs who were accustomed to receiving regular rewards prior to the study more inclined to obey the command?
2. How many repetitions were required before the unrewarded dogs began to disobey the command?

3. Is there a decline in obedience if rewards are withheld from both dogs in the pair?

4. Were dogs who received treats in one trial ever used as dogs that did not receive treats in other trials?

Answer: 3
=== Proposed program

“‘python
class DogBehavior:
def __init__(self, accustomed_reward, repetitions_until_disobey, responses_without_rewards, consistency_of_treatment):
self.accustomed_reward = accustomed_reward
self.repetitions_until_disobey = repetitions_until_disobey
self.responses_without_rewards = responses_without_rewards
self.consistency_of_treatment = consistency_of_treatment
def evaluate_statement_based_on_behavior(self, statement_number):
if statement_number == 1:

return self.accustomed_reward
elif statement_number == 2:

return self.repetitions_until_disobey
elif statement_number == 3:

return self.responses_without_rewards
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elif statement_number == 4:
return self.consistency_of_treatment
accustomed_reward = True
repetitions_until_disobey = 10
responses_without_rewards = False
consistency_of_treatment = False
dog_behavior = DogBehavior(accustomed_reward,
repetitions_until_disobey, responses_without_rewards, consistency_of_treatment)
outcome_1 = dog_behavior.evaluate_statement_based_on_behavior(1)
outcome_2 = dog_behavior.evaluate_statement_based_on_behavior(2)
outcome_3 = dog_behavior.evaluate_statement_based_on_behavior(3)
outcome_4 = dog_behavior.evaluate_statement_based_on_behavior(4)
print(f"Evaluation of statement 1 leads to: {outcome_1}")
print(f"Evaluation of statement 2 leads to: {outcome_2}")
print(f"Evaluation of statement 3 leads to: {outcome_3}")
print(f"Evaluation of statement 4 leads to: {outcome_4}")
This code doesn’t actually solve the problem and is intended for illustration only. It is meant to
proceed with the tactic and show how
we could evaluate the significance of statements if we had a more concrete model and data.

=== outputs

# Observer: python interpreter

# Feedback status: feedback ok

# Content:

stdout:

Evaluation of statement 1 leads to: True
Evaluation of statement 2 leads to: 10
Evaluation of statement 3 leads to: False
Evaluation of statement 4 leads to: False

### Comments

This is a trivial program that assigns answers to the statements without representing them in details
### Program good

N

=== Question and answer
Answer the question below by choosing the correct statement.

### Context:

Light is registered in the retina when photons hit molecules of the pigment rhodopsin and change the molecules’ shape.
Even when they have

not been struck by photons of light, rhodopsin molecules sometimes change shape because

of normal molecular motion, thereby

introducing error into the visual system. The amount of this molecular motion is directly proportional to

the temperature of the retina.

### Question:
Which one of the following conclusions is most strongly supported by the information above?

### Statements:

1. Molecules of rhodopsin are the only pigment molecules that occur naturally in the retina.

2. The visual systems of animals whose body temperature matches that of their surroundings are more error-prone
in hot surroundings than

in cold ones.
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3. As the temperature of the retina rises, rhodopsin molecules react more slowly to being struck by photons.
4. The temperature of an animal’s retina depends on the amount of light the retina is absorbing.

Answer: 2

=== Proposed program

“‘python
import numpy as np
def molecular_motion(temperature):
error_rate = np.poly1d([1, O])(temperature)
return error_rate
temperatures = np.array(range(0, 100))
error_rates = molecular_motion(temperatures)
consistent_statement_1 = False
consistent_statement_2 = True
consistent_statement_3 = False
consistent_statement_4 = False
print(f"Consistent with Statement 2: {consistent_statement_2}")

e

=== outputs

# Observer: python interpreter
# Feedback status: feedback ok
# Content:

stdout:

Consistent with Statement 2: True

### Comments
This program trivially represents all the statements
### Program good

N

Table 8: Examples of trivial programs.

Hybrid Problem Examples

Answer the question below.

### Question:

Becky has 50 necklaces in her jewelry collection. 3 of the necklaces have broken beads so she collects the
unbroken beads for crafting and

throws the other parts of the 3 the necklaces out. Becky buys

5 new necklaces that week. She decides to give 15 of her old necklaces to

her friends as gifts. How many necklaces does she own now?

37

Answer the question below.

### Question:

There were 15 males and 10 more girls at the party. Each attendee received 2 cans of soft drinks. If

Mary bought several boxes of soft

drinks where a box contains 8 cans and is priced at $5 for each box, how much did Mary spend on soft drinks?
50

qtype: gg, shuffle: False, label: 1
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Becky’s jewelry collection sees a variety of activity; she starts with 50 necklaces. Amid handling
3 broken necklaces, she salvages the

unbroken beads for crafting purposes. Furthermore, she expands her collection by purchasing 5
new necklaces while generously

giving 15 old necklaces to friends, continually rejuvenating her collection’s character.

At the vibrant social gathering, there were 15 males and 10 more girls, totaling an attendance of 25 individuals.
Each person at the party
was provided with 2 cans of soft drinks, ensuring everyone could enjoy their time refreshingly.

Y 1. If a box contains 8 cans and is priced at $5, Mary spent $50 on soft drinks.
N 2. Becky now owns 35 necklaces.

Answer the question below.

### Question:
Mark is 18 years old. He has a little brother, John, who is 10 years younger. If John and Mark’s parents are
currently 5 times older than John, how old were they when Mark was born?

22

Given a set of premises and a hypothesis, answer if the hypothesis
agrees with the premises [Agree],

contradicts with the premises [Contradict],

or neutral with respect to the premises [Uncertain].

### Premises:

1. Jason Kramer is an American music supervisor.

2. Some American radio personalities are also music supervisors.

3. Anyone who hosts a show on a public radio station is a radio personality.
4. Joe Rogan is a radio personality.

5. Jason Kramer hosted a show on a public radio station.

### Hypotheses:
Joe Rogan is American.

Uncertain

Answer the question below by choosing the correct statement.

### Context:

Editorial: The threat of harsh punishment for a transgression usually decreases one’ s tendency to feel guilt
or shame for committing that transgression, and the tendency to feel guilt or shame for committing a
transgression reduces a person’ s tendency to commit transgressions. Thus, increasing the severity of the
legal penalties for transgressions may amplify people’ s tendency to ignore the welfare of others.

### Question:
Which one of the following is an assumption required by the editorial’s argument?

### Statements:

1. The threat of harsh punishment deters people from committing transgressions only if this threat is at least
sometimes carried out.

2. Everyone has at least some tendency to feel guilt or shame for committing extremely severe transgressions.
3. People who are concerned about threats to their own well-being tend to be less concerned about the
welfare of others.

4. At least some actions that involve ignoring the welfare of others are transgressions.
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4

qtype: gfr, shuffle: True, label: 1

Jason Kramer, an American music supervisor, shares a fascinating linkage with Joe Rogan, both existing in the
dynamic sphere of radio personalities. While Joe Rogan is widely recognized for his engaging shows, Kramer

is known for his music supervision but also hosted a show on a public radio station, making him a radio
personality by definition. This interconnection reflects on others in the industry, as it’s noted that some American
radio personalities double up as music supervisors, enriching their careers with versatility.

In a different setting, Mark, now 18 years old, grows through life’s stages, standing ten years above his younger
brother, John. Their family dynamics are captivating as their parents are currently aged at a remarkable five
times older than John, placing the parents in a stage of life filled with experience and wisdom.

Amid these personal stories, an intriguing discussion surfaces regarding the justice system’s approach to
transgressions. An editorial suggests that the threat of harsh punishment, rather than cultivating a sense of remorse
or deterring wrongdoing, might actually reduce feelings of guilt or shame associated with transgressions.
Consequently, it posits that escalating legal penalties could unintentionally promote neglect for the welfare of
others, pointing to a complex interplay between law, emotion, and societal behavior. This narrative weaves
through the lives of individuals, questioning how societal structures influence personal and professional lives.

Y 1. "Joe Rogan is American." is Uncertain to the passage above

N 2. When Mark was born, John and Mark’s parents were 21 years old.

N 3. The assumption "The threat of harsh punishment deters people from committing transgressions only if
this threat is at least sometimes carried out." is required by the editorial’s argument.

Table 9: Example hybrid problems. The first problem is blended without shuffling and interleaving, and the second
is blended with shuffling and interleaving.

Routing trajectory Examples

below are example questions and the steps that solve them
=== Example question
Read the context and choose the correct statement.

### Context:

Fluoride’s journey into groundwater commences when rain interacts with soil, dissolving minerals rich in fluoride.
Amidst this scientific realm, a fascinating study revealed that when variables such as rainfall and mineral concentrations
are stable, areas with high sodium levels in the groundwater portrayed significantly increased fluoride concentrations.
This distinct geological scenario interlaces with an academic setting where logical structures hold sway.

If someone secures a job at a school, they find themselves on the payroll, a fundamental link established within educational
employment regulations. Building on this, all faculty members definitely have a job at a school, thus securing their position

on the payroll. It’s from here that the dual possibilities for Nancy emerge: if she’s a teacher, naturally, she is paid by the school;
if not, she remains unpaid. This dichotomy resonates with the vehicular debates in sports cars, known for their loud presence —
every sports car defies the silence.

Switching focus to specific automotive brands, all cars fashioned in Maranello are indeed Ferraris, embedding a mark of luxury
and speed wherein being a Ferrari defaults to being a loud sports car, contrasting sharply with the Prius which is neither a
sports car nor inherently loud, suggesting that it might be a Maranello-made model or perhaps, ironically, a loud car under
different conditions.

Meanwhile, a high school bowling team, engaging in a sport of precision and teamwork, accumulated a total of 810 points
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in their first competitive outing. The scoring dynamics were intriguing: the first bowler earned 1/3 the points of the second,
who in turn scored three times higher than the third. In these educational and recreational settings, logical sequences and
dependencies manifest vividly, drawing parallels to the environmental phenomenon of fluoride transmission through nature’s
unassuming actions.

### Statements:

1. "Nancy is paid by the school and has students." Contradicts the passage above

2. "If Prius is a Ferrari or a loud car, then Prius is an electric car." Contradicts the passage above

3. The third bowler scored 159 points.

4. The statement "Fluoride-bearing minerals are not the primary source of fluoride found in groundwater." can most
reasonably be concluded on the basis of the researchers’ findings.

=== Final answer is one of the following
1,2,3,4
=== Example steps

### Thought

Option 1 is a logic problem. I will use formal logic tactic to solve it.
### Action

## Name

Call tactic: formal logic z3

## Input

The main problem, and the past results

## Output

### option

1

### subproblem

Given a set of premises and a hypothesis, answer if the hypothesis
agrees with the premises [Agree],

contradicts with the premises [Contradict],

or neutral with respect to the premises [Uncertain].

### Premises:

. If you are on the payroll, then you are being paid by the school.
. If someone has a job at a school, then they are on the payroll.

. All faculty members have a job at a school.

. One can either be a faculty member or a teacher.

. Every teacher has students.

. If Nancy is a teacher, then they are on the payroll.

. If Nancy is not a teacher, then they are not paid by the school.

NN AW —

### Hypotheses:
Nancy is paid by the school and has students.

=== observations ===

# Observer: Action parser

# Feedback status: feedback ok

# Content:

Solving subproblem with tactic predicate_logic_z3

# Observer: Runner

# Feedback status: feedback ok
# Content:
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Tactic execution successful. Tactic output:
Agree

===TeSponse ===

### Thought

Option 2 is a logic problem. I will use formal logic tactic to solve it.
### Action

## Name

Call tactic: formal logic z3

## Input

The main problem, and the past results

## Output

### option

2

### subproblem

Given a set of premises and a hypothesis, answer if the hypothesis
agrees with the premises [Agree],

contradicts with the premises [Contradict],

or neutral with respect to the premises [Uncertain].

### Premises:

1. All sports cars are loud.

2. No loud cars are electric.

3. If a car is a Ferrari, then it is a sports car.

4. All cars made in Maranello are Ferrari

5. If Prius is neither a sports car nor a loud car, then Prius is a Maranello-made car or a loud car.

### Hypotheses:
If Prius is a Ferrari or a loud car, then Prius is an electric car.

=== observations ===

# Observer: Action parser

# Feedback status: feedback ok

# Content:

Solving subproblem with tactic predicate_logic_z3

# Observer: Runner

# Feedback status: feedback ok

# Content:

Tactic execution successful. Tactic output:
Contradict

=== T1esponse ===

### Thought

Option 3 is a math problem. I will use math tactic to solve it.
### Action

## Name

Call tactic: math

## Input

The main problem, and the past results

## Output

### option

3
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### subproblem
Answer the question below.

### Question:

A high school bowling team’s 3 members scored a total of 810 points in their first match. The first bowler scored
1/3 as many points as the second, and the second bowler scored 3 times as high as the third bowler. How many
points did the third bowler score?

=== observations ===

# Observer: Action parser

# Feedback status: feedback ok

# Content:

Solving subproblem with tactic math

# Observer: Runner

# Feedback status: feedback ok

# Content:

Tactic execution successful. Tactic output:
162

=== Tresponse ===

### Thought

Option 4 is a commonsense reasoning problem. I will use general program tactic to solve it.
### Action

## Name

Call tactic: general program

## Input

The main problem, and the past results

## Output

### option

4

### subproblem

Answer the question below by choosing the correct statement.

### Context:

Delta green ground beetles sometimes remain motionless for hours at a stretch, although they are more active in
wet years than in dry years. In 1989 an observer spotted ten delta green ground beetles in nine hours; in 1985 the
same observer at the same location had counted 38 in about two hours. This difference probably does not reflect
a drop in the population of these rare beetles over this period, however, because 1985 was a wet year and 1989
was relatively dry.

### Question:
Which one of the following, if true, most strongly supports the conclusion drawn above?

### Statements:
1. Fluoride-bearing minerals are not the primary source of fluoride found in groundwater.
2. None of the above

=== observations ===
# Observer: Action parser
# Feedback status: feedback ok

# Content:
Solving subproblem with tactic any_program
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# Observer: Runner

# Feedback status: feedback ok

# Content:

Tactic execution successful. Tactic output:
2

=== IeSponse ===

### Thought

I have solved all the subproblems, I will aggregate the results and produce the answer
### Action

## Name

Aggregate and answer

## Input

all thoughts, actions, and observations so far

## Output

2

Table 10: An example routing trajectory.
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