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Abstract

Detecting and answering ambiguous questions
has been a challenging task in open-domain
question answering. Ambiguous questions
have different answers depending on their inter-
pretation and can take diverse forms. Tempo-
rally ambiguous questions are one of the most
common types of such questions. In this paper,
we introduce TEMPAMBIQA, a manually anno-
tated temporally ambiguous QA dataset1 con-
sisting of 8,162 open-domain questions derived
from existing datasets. Our annotations focus
on capturing temporal ambiguity to study the
task of detecting temporally ambiguous ques-
tions. We propose a novel approach by using di-
verse search strategies based on disambiguated
versions of the questions. We also introduce
and test non-search, competitive baselines for
detecting temporal ambiguity using zero-shot
and few-shot approaches.

1 Introduction

In the field of open-domain question answering
(ODQA) detecting and avoiding ambiguous ques-
tions is quite important (Min et al., 2020). Min
et al. (2020) found that over 50% of the questions
in Google search queries are ambiguous. Current
ODQA systems, however, usually operate under an
implicit assumption that there is a single correct
answer for every question.

Temporal ambiguity, in particular, occurs when
a question involves unclear or unspecified time
frames, leading to different answers depending on
the assumed temporal context (Jia et al., 2024).
Temporal ambiguity is then a specific type of ambi-
guity where the interpretation of a question depends
on the time frame being referred to. For example,
the question "Who was the president of NBC Uni-
versal?" is temporally ambiguous as the answer

*Equal contribution.
1The dataset is freely available at https://github.com/

DataScienceUIBK/TempAmbiQA.

depends on the specific time frame. Temporal am-
biguity poses unique challenges for QA systems, as
these need to understand the temporal context of a
question to provide the correct answer (Harabagiu
and Bejan, 2005). However, its detection should be
useful for improving temporal IR and QA systems
(Kawai et al., 2010; Joho et al., 2015; Jia et al.,
2024).

The objective of our work is to stimulate the
design of ODQA systems that are able to dis-
tinguish between temporally ambiguous and non-
ambiguous questions. This involves understanding
the temporal context of a question, a challenge that
is particularly prevalent in open-domain question-
answering systems. Our work, therefore, extends
the existing research in the field of ambiguity in
open-domain questions, with a specific focus on
temporal aspects.

To foster the research in temporal ambiguity de-
tection, we construct a dataset called TEMPAM-
BIQA having 8,162 questions (3,879 Ambiguous
Questions and 4,283 Unambiguous Questions) us-
ing an open-domain version of SituatedQA (Zhang
and Choi, 2021), ArchivalQA (Wang et al., 2022)
and AmbigQA (Min et al., 2020) datasets. For
each question, we manually identify its temporal
context, and label the question as ambiguous or un-
ambiguous. If a question has multiple answers due
to temporal ambiguity, we annotate the question
as ambiguous. For example, consider the ques-
tion “Who won the World Cup when it was held
in South America?”. This is a temporally ambigu-
ous question because the answer depends on the
specific time frame. A person reading this ques-
tion would note that it could refer to different time
frames (1970, 1978, 1986, etc.), each with a dif-
ferent winner. The question could have multiple
answers depending on temporal context.

We establish initial performance benchmarks on
TEMPAMBIQA by introducing a comprehensive
set of strong baseline methods. (1) Zero-Shot Ques-
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 for Long Beach California?
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Figure 1: Overview of different search strategies for detecting temporally ambiguous Questions. The Disambiguation
Component generates questions DQ1 and DQk, referred to as Q1 and Q2 in the prompts, respectively. The Answer
Equivalence Testing Component compares them, classifying Q as temporally ambiguous if the answer equivalence
(Ak) is "No". If "Yes", the search proceeds to find the next valid year k’ within the defined time range, generating
the next disambiguation question DQk’ to continue the classification process. If no valid k’ is found, the question Q
is classified as temporally unambiguous. A valid year k’ is the one that falls within the specified time range (e.g.,
2000-2024).

tion Classification enables the model to classify
questions into categories for which it has not seen
any examples, thereby increasing its ability to han-
dle novel temporal contexts. (2) Few-shot Ques-
tion Classification allows the model to learn from a
small number of examples, making it adaptable to
a variety of temporal contexts with limited training
data. (3) Fine-Tuned BERT (Devlin et al., 2019)
base Model for Question Classification: We fine-
tune a BERT base model specifically for the task
of question classification.

Our contributions can be summarised as follows:

• We present and release TEMPAMBIQA
dataset.

• We propose and test diverse search strategies
to assess the temporal ambiguity of questions.

2 Related Work

The development of datasets that explicitly con-
sider temporal and ambiguous aspects remains lim-
ited. While datasets like AmbigQA (Min et al.,
2020) and others (Kwiatkowski et al., 2019) in-
corporate certain elements of ambiguity, they do
not focus on the temporal dimension. AmbigQA
highlights the prevalence of ambiguities in natural
questions and studies the disambiguation of ques-
tions to address them. However, it does not focus
specifically on temporal ambiguities.

ArchivalQA (Wang et al., 2022) is a temporal
ODQA dataset featuring questions derived from
the New York Times news collection (Sandhaus,
2008) spanning 1987-2007. Zhang and Choi (2021)
propose a QA dataset that focuses on temporal and
geographical context-dependent questions. Other
works (Xu et al., 2019; Aliannejadi et al., 2019; Za-

mani et al., 2020) use clarification questions to han-
dle ambiguities, but these approaches primarily re-
fine user intents rather than directly resolving tem-
poral confusion. Self-calibrating models (Kumar
and Sarawagi, 2019; Cole et al., 2023) have been
proposed to estimate confidence and handle ambi-
guities, but these methods have not been specifi-
cally tailored to address the temporal aspect in QA,
indicating a potential area for future research.

To the best of our knowledge, we are the first to
introduce a dataset specifically focused on tempo-
rally ambiguous questions and propose approaches
for detecting temporal ambiguity in questions.

3 Data Collection

TEMPAMBIQA is constructed by incorporating
questions from different QA datasets, ArchivalQA,
SituatedQA, and AmbigQA. To create TEMPAM-
BIQA, we combined a subset of ArchivalQA that
were designated by its authors as containing tem-
poral ambiguous questions, a test set of time-
dependent questions from SituatedQA, and the de-
velopment set of AmbigQA. We then manually
labeled all the questions as temporally ambiguous
or unambiguous by carefully checking if answers
vary over time or the questions can be reformulated
into multiple unambiguous variants. This process
resulted in a dataset comprising in total 8,162 ques-
tions, with 3,879 labeled as ambiguous and 4,283
as unambiguous. Further details about the statistics
of TEMPAMBIQA dataset and its few examples
can be found in Appendix A.

4 Search Methods

Answers to temporally ambiguous questions
change based on the time period they refer to. For
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Model Parameters Linear Search Skip List (2) Search Random (5) Search Divide And Conquer

ACC PR RC F1 ACC PR RC F1 ACC PR RC F1 ACC PR RC F1

T5 770m 0.524 0.499 0.326 0.394 0.524 0.499 0.304 0.378 0.531 0.512 0.281 0.363 0.524 0.499 0.326 0.394
3b 0.52 0.309 0.007 0.015 0.522 0.324 0.006 0.012 0.521 0.282 0.005 0.01 0.52 0.309 0.007 0.015

LLaMa3 8b 0.509 0.492 0.968 0.652 0.519 0.497 0.958 0.654 0.528 0.502 0.94 0.654 0.509 0.492 0.968 0.652
70b 0.638 0.584 0.821 0.683 0.641 0.589 0.807 0.681 0.643 0.594 0.784 0.676 0.638 0.584 0.821 0.683

Qwen 72b 0.593 0.541 0.941 0.687 0.6 0.547 0.933 0.689 0.61 0.554 0.922 0.692 0.593 0.541 0.941 0.687
110b 0.641 0.581 0.873 0.698 0.647 0.587 0.864 0.699 0.652 0.594 0.848 0.698 0.641 0.581 0.873 0.698

Mixtral 7b 0.561 0.521 0.95 0.673 0.571 0.528 0.94 0.676 0.58 0.534 0.92 0.675 0.561 0.521 0.95 0.673
22b 0.628 0.57 0.886 0.693 0.634 0.576 0.875 0.694 0.646 0.587 0.86 0.698 0.628 0.57 0.886 0.693

Table 1: Performance of different LLMs on TEMPAMBIQA dataset using different search approaches. Underlined
values represent the best performance across all LLMs for a particular search strategy. Values that are bold indicate
the best-performing search strategy across all LLMs.

example, "Who was the first female Governor of In-
dia?" has a single answer, making it unambiguous.
But, "Who was a Governor of India?" is tempo-
rally ambiguous, as the answer varies over time. To
detect such ambiguity, we employ various search
strategies by explicitly specifying the relevant year
in the question.

To identify a question as ambiguous, we need
to find at least two different answers for the same
question, each from a different time frame. We do
this by disambiguating the question by adding a
specific year such as "as of 2001?" at the end of the
question. For the TEMPAMBIQA, we use two time
frames based on the original datasets. For questions
from ArchivalQA, the time frame spans from 1987-
2007 to match the news collection period. For ques-
tions from SituatedQA and AmbigQA, which are
not tied to a specific time range, we set a time frame
to span 2000 - 2024. Figure 1 provides an overview
of the framework based on a search method used
for the classification. The framework consists of
three main components described below: Disam-
biguation Component, Answer Equivalence Testing
Component, and Search Component.

4.1 Disambiguation Component
Given a question Q, we generate a disambiguated
question DQk by appending a specific year from
the time frame T = {t1, t2, . . . , tk} to Q.

4.2 Answer Equivalence Testing Component
For each pair of disambiguated questions DQ1 and
DQk, we generate answers A1 and Ak. We then
check for semantic equivalence between these an-
swers. If the answers differ, the question is marked
as ambiguous. Otherwise, it is passed on to the
Search Component. Formally, we compute:

AE(A1, Ak) =

{
Yes if A1 = Ak

No if A1 ̸= Ak

4.3 Search Component

The search component employs various search
strategies to efficiently determine temporal ambi-
guity by finding a pair of differing answers.

Linear Search: The naive approach involves se-
quentially disambiguating the question for each
year in the time frame T :{t1, t2, . . . , tk}. Answers
for each pair of disambiguated questions DQ1 and
DQk are then compared. However, such a linear
search method is impractical as it requires compar-
ing answers for every single year with answer for
DQ1, resulting in a large number of comparisons.

Skip-List Search: To improve the search effi-
ciency, we employ a different search approach, i.e.,
Skip-List search strategy. Unlike the linear search,
where the answer to disambiguated question for
each consecutive year is compared with DQ1, the
skip-list search compares answers for years at s
intervals. For example, in the Skip-list 2 approach,
we compare answers for every second year. We
implement three different skip-list strategies: Skip-
List (2), Skip-List (5), and Skip-List (10), each
increasing the gap size of 2, 5, and 10 years. This
method reduces the number of comparisons while
still effectively identifying temporal ambiguity.

Random Search: Another search strategy we
consider is random search. In this approach, we
randomly select years from the time frame T
:{t1, t2, . . . , tk} and compare the answer for the
disambiguated question from these randomly cho-
sen years with the answer for the first disam-
biguated question DQ1. We apply different strate-
gies for random search such as finding answers for
5 or 10 randomly selected years and then compar-
ing them to classify the question.

Divide and Conquer (DAC): The final strategy
we consider is the divide and conquer approach.
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Figure 2: Efficiency of various search strategies.

In this strategy, we initially find the answer for
the disambiguated question DQ1.Then, we divide
the remaining time frame in half and compare the
answer for DQ1 with the answer for the disam-
biguated question at the midpoint year of the time
frame T . If the answers are the same, we continue
the search by dividing the left half of the time frame
and comparing the midpoint of this segment with
the DQ1 answer. This process is repeated until we
find different answer and identify the question as
ambiguous. We apply the divide and conquer strat-
egy in two ways: first, by searching from left to
right, or second, by searching from right to left. In
the right-to-left strategy, the search starts by com-
paring answers from the right part of the time frame
and then moves to the left half.

5 Experimental Setup

We analyze different search strategies against Zero-
Shot, Few-Shot approaches using diverse models,
such as T5 (Raffel et al., 2020), LLaMA3 (Tou-
vron et al., 2023), Qwen (Bai et al., 2023), Mixtral
(Jiang et al., 2024), GPT-3.5 (Brown et al., 2020),
and GPT-4 (Achiam et al., 2023), with different
parameter values. Prompts used for the analyzed
approaches are given in Appendix C. Addition-
ally, we also analyze search strategies against a
fine-tuned BERT (Devlin et al., 2019) model. We
utilize standard evaluation metrics, such as Accu-
racy (ACC), Precision (PR), Recall (RC), and F1
score (F1).

6 Results

Table 1 shows the performance of different search
methods using diverse LLMs. The model Qwen-

110B consistently outperforms other LLMs in all
strategies. In the Linear Search strategy, it achieves
an F1 score of 0.698 and a recall of 0.873, but this
method is the most computationally intensive. The
Skip List-2 Search method improves efficiency and
maintains similar performance over different mod-
els. The Random (5) Search strategy also shows
promising results, suggesting that random sampling
can effectively detect temporal ambiguous question.
The DAC method achieves the same results as the
linear search but with improved efficiency.

In Figure 2 we illustrate the number of compar-
isons for all search strategies. The best-case sce-
nario occurs when temporal ambiguity is detected
after the first comparison, while the worst-case sce-
nario happens when it is identified only after the
final comparison. The average case lies between
the extremes but tends to be much closer to the
best case regarding efficiency. The efficiency in the
average case scenario is more similar to the best-
case than worst-case scenarios. Comparing Figure
2 and Table 1, we can conclude that Skip List (2)
performs best, both in terms of efficiency and F1
score.

Table 2 summarizes the performance of different
models in Zero-Shot and Few-Shot settings. In the
Zero-Shot setting, GPT-4 demonstrates high recall
but moderate precision, indicating a tendency to
overestimate ambiguity. LLaMA3-70B offers a
more balanced performance with a recall of 0.741
and an F1 score of 0.616. The T5 model is less
effective with low precision and recall. In the Few-
Shot scenario, the Mixtral-7B model achieves the
highest recall and F1 score, showing that minimal
targeted training can enhance performance for tem-
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Model Parameters ACC PR RC F1

Zero-Shot

T5 770m 0.519 0.442 0.046 0.083
3b 0.524 0.422 0.005 0.01

LLaMA3 8b 0.507 0.463 0.242 0.318
70b 0.561 0.527 0.741 0.616

Qwen 72b 0.585 0.607 0.356 0.449
110b 0.593 0.597 0.445 0.51

Mixtral 7b 0.522 0.498 0.746 0.597
22b 0.537 0.509 0.715 0.595

GPT 3.5 - 0.551 0.517 0.837 0.639
GPT 4 - 0.48 0.477 0.998 0.646

Few-shot

T5 770m 0.449 0.443 0.617 0.516
3b 0.506 0.482 0.543 0.511

LLaMA3 8b 0.523 0.498 0.558 0.527
70b 0.574 0.598 0.314 0.412

Qwen 72b 0.612 0.634 0.437 0.517
110b 0.584 0.556 0.623 0.588

Mixtral 7b 0.525 0.5 0.856 0.631
22b 0.606 0.631 0.412 0.499

GPT 3.5 - 0.542 0.515 0.629 0.566
GPT 4 - 0.563 0.556 0.397 0.463

Fine-tuned Model

BERT 110m 0.597 0.69 0.276 0.394

Search Method

Qwen (Linear) 110b 0.641 0.581 0.873 0.698
Qwen (Skip List (2) 110b 0.647 0.587 0.864 0.699
Qwen (Random (5) 110b 0.652 0.594 0.848 0.698
Qwen (DAC) 110b 0.641 0.581 0.873 0.698

Table 2: Performance of various LLMs on the TEMPAM-
BIQA dataset using different approaches. Underlined
values represent the best performance across all LLMs
for a particular method. Values that are bold indicate
the result for the best approach.

poral ambiguity detection. However, Few-Shot set-
tings does not enhance the performance of models
with large number of parameters. The Fine-Tuned
BERT model achieves high precision but lower re-
call, highlighting a trade-off between precision and
recall in fine-tuned models.

7 Conclusion

In this paper, we address the novel task of de-
tecting temporally ambiguous questions in ODQA
by introducing TEMPAMBIQA, a manually anno-
tated dataset of 8,162 temporally ambiguous and
unambiguous questions. We perform several exper-
iments using different search strategies to classify
the question as temporally ambiguous. Our ex-
periments demonstrate the effectiveness of search-
based methods in detecting temporally ambigu-
ous questions. For future work, we plan to ex-
plore more dynamic strategies for determining time
ranges, such as identifying the timing of recurring
events mentioned in the questions and generating

disambiguation questions based on those timelines.
Additionally, we aim to refine the granularity of
the timelines, moving beyond yearly intervals to
include finer distinctions, such as months.

Limitations

While our search strategies aid in detecting tempo-
rally ambiguous questions, several limitations must
be considered:

1. The effectiveness of the search strategy relies
heavily on the time frame considered to create
unambiguous questions. Since the time frame
for a given question is often unknown, detect-
ing ambiguous questions can be challenging.

2. Ambiguity detection depends entirely on the
knowledge embedded in the large language
model (LLM) used. Larger models might have
a better understanding of ambiguous questions
compared to smaller models with fewer pa-
rameters.

Ethical Considerations and Licensing

Our research leverages the GPT models, licensed
under both the OpenAI License and the Apache-
2.0 license, as well as the LLaMA models, dis-
tributed under Meta’s LLAMA 2 Community Li-
cense Agreement. We strictly adhere to the con-
ditions set forth by these licenses. The datasets
we use are sourced from repositories that permit
academic use. To encourage ease of use and modi-
fication by the research community, we are releas-
ing the artifacts developed during our study under
the MIT license. Throughout the project, we have
ensured that data handling, model training, and
dissemination of results comply with all relevant
ethical guidelines and legal requirements.
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A Dataset Details

Table 3 presents the details about the statistics of
TEMPAMBIQA. Table 4 shows a few examples of
different questions collected from various datasets
and included in TEMPAMBIQA dataset.

No. of Questions
#Questions 8,162

Ambiguous Questions 3,879
Unambiguous Questions 4,283

Average question length (words) 8.55

Table 3: Basis statistics of TEMPAMBIQA.

Dataset Example Label

ArchivalQA
Q: How many family houses are in Brooklyn? Ambiguous
Q: Who bought Soap Opera Digest in 1989? Unambiguous
Q: How much gasoline does the Peykan get? Ambiguous

SituatedQA
Q: What films has Scarlett Johansson been in? Ambiguous
Q: Who coaches the Carolina Panthers? Ambiguous
Q: What are some ancient Egypt names? Unambiguous

AmbigQA
Q: Who lived to be the oldest person in the world? Ambiguous
Q: Who is the first woman governor in India? Unambiguous
Q: What Olympic sport is also known as ice chess? Unambiguous

Table 4: Examples of different questions collected from
different datasets to create TEMPAMBIQA.

B Additional Experimental Results

In this section, we provide a detailed presentation
of the results from our experiments across various
scenarios. We will explore how different search
strategies perform over questions from individual
datasets. Table 5 and Table 6 present results for
the variations of Skip-List and Random search over
TEMPAMBIQA.

C Case Studies

In this section, we delve into several case studies
that illustrate the prompts we have chosen, along
with examples from our experiments and their re-
spective outcomes. These case studies are designed
to illustrate the working of different methods for
detecting temporal ambiguity.
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Model Parameters Skip List (2) Skip List (5) Skip List (10)

Acc PR RC F1 Acc PR RC F1 Acc PR RC F1

T5 770m 0.524 0.499 0.304 0.378 0.525 0.5 0.279 0.358 0.524 0.498 0.262 0.344
3b 0.522 0.324 0.006 0.012 0.521 0.299 0.005 0.01 0.523 0.353 0.005 0.009

LLaMA3 8b 0.519 0.497 0.958 0.654 0.528 0.502 0.935 0.653 0.537 0.507 0.904 0.65
70b 0.641 0.589 0.807 0.681 0.647 0.599 0.779 0.677 0.644 0.605 0.72 0.657

Qwen 72b 0.6 0.547 0.933 0.689 0.613 0.556 0.918 0.692 0.626 0.567 0.897 0.695
110b 0.647 0.587 0.864 0.699 0.66 0.602 0.839 0.701 0.665 0.617 0.778 0.688

Mixtral 7b 0.571 0.528 0.94 0.676 0.583 0.536 0.909 0.675 0.592 0.545 0.849 0.664
22b 0.634 0.576 0.875 0.694 0.646 0.589 0.848 0.695 0.654 0.603 0.801 0.688

Table 5: Performance of different LLMs on TEMPAMBIQA using a different variations of Skip-List search.
Underlined values represent the best performance across all LLMs for a particular search strategy. Values that are
both bold and underlined indicate the best-performing search strategy across all models.

Model Parameters Random (1) Search Random (2) Search Random (5) Search

ACC PR RC F1 ACC PR RC F1 ACC PR RC F1

T5 770m 0.537 0.529 0.239 0.329 0.535 0.521 0.258 0.345 0.531 0.512 0.281 0.363
3b 0.524 0.361 0.003 0.007 0.523 0.34 0.004 0.009 0.521 0.282 0.005 0.01

LLaMA3 8b 0.551 0.518 0.807 0.631 0.541 0.51 0.899 0.651 0.528 0.502 0.94 0.654
70b 0.637 0.617 0.623 0.62 0.641 0.603 0.715 0.654 0.643 0.594 0.784 0.676

Qwen 72b 0.635 0.582 0.825 0.682 0.629 0.57 0.898 0.697 0.61 0.554 0.922 0.692
110b 0.653 0.621 0.693 0.655 0.663 0.612 0.8 0.693 0.652 0.594 0.848 0.698

Mixtral 7b 0.596 0.557 0.727 0.631 0.597 0.548 0.859 0.669 0.58 0.534 0.92 0.675
22b 0.66 0.625 0.713 0.666 0.657 0.604 0.808 0.691 0.646 0.587 0.86 0.698

Table 6: Performance of different LLMs on TEMPAMBIQA using a different variations of Random search.
Underlined values represent the best performance across all LLMs for a particular search strategy. Values that are
both bold and underlined indicate the best-performing search strategy across all models.

Model Parameters Skip List (2) Skip List (5) Skip List (10)

Acc PR RC F1 Acc PR RC F1 Acc PR RC F1

T5 770m 0.500 0.589 0.251 0.352 0.499 0.601 0.221 0.323 0.498 0.610 0.201 0.302
3b 0.459 0.615 0.003 0.005 0.459 0.600 0.002 0.004 0.459 0.600 0.002 0.004

LLaMA3 8b 0.563 0.555 0.962 0.704 0.564 0.558 0.936 0.699 0.570 0.564 0.901 0.694
70b 0.639 0.630 0.806 0.707 0.643 0.642 0.773 0.701 0.635 0.650 0.703 0.676

Qwen 72b 0.607 0.584 0.953 0.724 0.614 0.590 0.941 0.725 0.626 0.601 0.919 0.727
110b 0.640 0.617 0.885 0.727 0.652 0.631 0.858 0.727 0.657 0.652 0.787 0.713

Mixtral 7b 0.574 0.562 0.963 0.71 0 0.579 0.568 0.930 0.705 0.584 0.578 0.862 0.692
22b 0.620 0.600 0.896 0.719 0.629 0.610 0.868 0.717 0.635 0.626 0.811 0.706

Table 7: Performance of different LLMs on questions from ArchivalQA included in TEMPAMBIQA using a
different variations of Skip-List search. Underlined values represent the best performance across all LLMs for a
particular search strategy. Values that are bold indicate the best-performing search strategy across LLMs.

Model Parameters Skip List (2) Skip List (5) Skip List (10)

Acc PR RC F1 Acc PR RC F1 Acc PR RC F1

T5 770m 0.609 0.38 0.593 0.463 0.615 0.383 0.585 0.463 0.613 0.381 0.580 0.460
3b 0.700 0.262 0.031 0.055 0.700 0.246 0.027 0.048 0.707 0.293 0.023 0.043

LLaMA3 8b 0.400 0.316 0.956 0.475 0.429 0.326 0.944 0.484 0.451 0.334 0.935 0.492
70b 0.689 0.476 0.929 0.629 0.702 0.487 0.921 0.637 0.707 0.491 0.894 0.634

Qwen 72b 0.614 0.422 0.969 0.588 0.644 0.441 0.954 0.604 0.664 0.456 0.944 0.615
110b 0.711 0.495 0.923 0.645 0.733 0.517 0.910 0.659 0.741 0.526 0.885 0.660

Mixtral 7b 0.573 0.393 0.929 0.553 0.611 0.417 0.921 0.574 0.631 0.428 0.891 0.578
22b 0.715 0.499 0.948 0.654 0.740 0.524 0.931 0.671 0.751 0.537 0.916 0.677

Table 8: Performance of different LLMs on questions from SituatedQA using a different variations of Skip-List
search. Underlined values represent the best performance across all LLMs for a particular search strategy. Values
that are bold indicate the best-performing search strategy across LLMs.
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Model Parameters Skip List (2) Skip List (5) Skip List (10)

Acc PR RC F1 Acc PR RC F1 Acc PR RC F1

T5 770m 0.500 0.440 0.320 0.371 0.500 0.439 0.312 0.365 0.499 0.437 0.31 0.363
3b 0.540 0 0 0 0.54 0 0 0 0.54 0 0 0

LLaMA3 8b 0.492 0.473 0.932 0.628 0.514 0.485 0.916 0.635 0.508 0.482 0.890 0.625
70b 0.546 0.505 0.654 0.570 0.550 0.509 0.627 0.562 0.563 0.521 0.612 0.563

Qwen 72b 0.527 0.490 0.727 0.586 0.534 0.495 0.685 0.575 0.541 0.501 0.661 0.57
110b 0.550 0.509 0.619 0.559 0.553 0.512 0.596 0.551 0.547 0.507 0.562 0.533

Mixtral 7b 0.552 0.509 0.774 0.614 0.548 0.506 0.732 0.599 0.556 0.513 0.696 0.59
22b 0.546 0.505 0.612 0.553 0.557 0.517 0.575 0.544 0.569 0.529 0.570 0.549

Table 9: Performance of different LLMs on questions from AmbigQA using a different variations of Skip-List
search. Underlined values represent the best performance across all LLMs for a particular search strategy. Values
that are bold indicate the best-performing search strategy across LLMs.

Model Parameters Random (1) Search Random (2) Search Random (5) Search

ACC PR RC F1 ACC PR RC F1 ACC PR RC F1

T5
770m 0.499 0.613 0.204 0.306 0.501 0.608 0.219 0.322 0.501 0.597 0.241 0.343

3b 0.459 0.667 0.001 0.003 0.459 0.625 0.002 0.003 0.459 0.700 0.002 0.005

LLaMA3 8b 0.563 0.568 0.801 0.665 0.567 0.563 0.899 0.692 0.563 0.557 0.948 0.701
70b 0.615 0.660 0.594 0.625 0.640 0.653 0.717 0.683 0.643 0.638 0.784 0.704

Qwen 72b 0.629 0.613 0.853 0.714 0.625 0.600 0.924 0.727 0.614 0.589 0.950 0.727
110b 0.647 0.659 0.721 0.689 0.651 0.638 0.818 0.717 0.643 0.622 0.867 0.725

Mixtral 7b 0.568 0.579 0.744 0.651 0.582 0.575 0.879 0.695 0.578 0.566 0.945 0.708
22b 0.627 0.636 0.726 0.678 0.636 0.623 0.831 0.712 0.626 0.606 0.880 0.718

Table 10: Performance of different LLMs on questions from ArchivalQA using a different variations of Random
search. Underlined values represent the best performance across all LLMs for a particular search strategy. Values
that are bold indicate the best-performing search strategy across LLMs.

Model Parameters Random (1) Search Random (2) Search Random (5) Search

ACC PR RC F1 ACC PR RC F1 ACC PR RC F1

T5 770m 0.669 0.426 0.474 0.449 0.660 0.419 0.514 0.462 0.643 0.405 0.545 0.464
3b 0.708 0.222 0.012 0.022 0.704 0.225 0.017 0.032 0.704 0.261 0.023 0.042

LLaMA3 8b 0.503 0.346 0.843 0.491 0.463 0.337 0.919 0.493 0.424 0.323 0.935 0.480
70b 0.730 0.516 0.810 0.630 0.714 0.498 0.885 0.638 0.699 0.484 0.912 0.632

Qwen 72b 0.703 0.487 0.856 0.621 0.671 0.461 0.933 0.617 0.643 0.441 0.958 0.604
110b 0.763 0.558 0.802 0.658 0.743 0.530 0.860 0.655 0.726 0.510 0.912 0.654

Mixtral 7b 0.688 0.469 0.758 0.58 0.657 0.446 0.858 0.587 0.607 0.413 0.908 0.567
22b 0.784 0.585 0.821 0.684 0.773 0.562 0.908 0.695 0.748 0.532 0.944 0.680

Table 11: Performance of different LLMs on questions from SituatedQA using a different variations of Random
search. Underlined values represent the best performance across all LLMs for a particular search strategy. Values
that are bold indicate the best-performing search strategy across LLMs.

Model Parameters Random (1) Search Random (2) Search Random (5) Search

ACC PR RC F1 ACC PR RC F1 ACC PR RC F1

T5 770m 0.506 0.426 0.213 0.284 0.507 0.437 0.244 0.313 0.501 0.429 0.255 0.32
3b 0.54 0 0 0 0.54 0 0 0 0.54 0 0 0

LLaMA3 8b 0.524 0.489 0.787 0.604 0.523 0.49 0.879 0.629 0.51 0.483 0.921 0.634
70b 0.572 0.536 0.533 0.534 0.554 0.514 0.593 0.551 0.55 0.508 0.64 0.567

Qwen 72b 0.55 0.509 0.575 0.54 0.542 0.502 0.646 0.565 0.533 0.494 0.693 0.577
110b 0.539 0.499 0.444 0.469 0.55 0.51 0.533 0.521 0.554 0.513 0.609 0.557

Mixtral 7b 0.574 0.534 0.58 0.556 0.562 0.518 0.664 0.582 0.562 0.516 0.748 0.611
22b 0.579 0.549 0.467 0.505 0.563 0.525 0.53 0.527 0.566 0.525 0.596 0.558

Table 12: Performance of different LLMs on questions from AmbigQA using a different variations of Random
search. Underlined values represent the best performance across all LLMs for a particular search strategy. Values
that are bold indicate the best-performing search strategy across LLMs.
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Model Parameters Linear Search Skip List (2) Random (5) Search Divide and Conquer

ACC PR RC F1 ACC PR RC F1 ACC PR RC F1 ACC PR RC F1

T5 770m 0.500 0.579 0.279 0.377 0.5 0.589 0.251 0.352 0.501 0.597 0.241 0.343 0.5 0.579 0.279 0.377
3b 0.46 0.667 0.003 0.007 0.459 0.615 0.003 0.005 0.459 0.700 0.002 0.005 0.46 0.667 0.003 0.007

LLaMA3 8b 0.557 0.552 0.970 0.703 0.563 0.555 0.962 0.704 0.563 0.557 0.948 0.701 0.557 0.552 0.970 0.703
70b 0.636 0.624 0.821 0.709 0.639 0.630 0.806 0.707 0.643 0.638 0.784 0.704 0.636 0.624 0.821 0.709

Qwen 72b 0.603 0.581 0.958 0.723 0.607 0.584 0.953 0.724 0.614 0.589 0.950 0.727 0.603 0.581 0.958 0.723
110b 0.635 0.612 0.893 0.726 0.640 0.617 0.885 0.727 0.643 0.622 0.867 0.725 0.635 0.612 0.893 0.726

Mixtral 7b 0.566 0.557 0.969 0.707 0.574 0.562 0.963 0.71 0.578 0.566 0.945 0.708 0.566 0.557 0.969 0.707
22b 0.615 0.595 0.908 0.719 0.62 0.6 0.896 0.719 0.626 0.606 0.88 0.718 0.615 0.595 0.908 0.719

Table 13: Performance of different LLMs on questions from ArchivalQA dataset using different search approaches.
Underlined values represent the best performance across all LLMs for a particular search strategy. Values that are
bold indicate the best-performing search strategy across LLMs.

Model Parameters Linear Search Skip List (2) Random (5) Search Divide and Conquer

ACC PR RC F1 ACC PR RC F1 ACC PR RC F1 ACC PR RC F1

T5 770m 0.608 0.379 0.595 0.463 0.613 0.381 0.58 0.46 0.66 0.419 0.514 0.462 0.608 0.379 0.595 0.463
3b 0.694 0.241 0.036 0.063 0.707 0.293 0.023 0.043 0.704 0.225 0.017 0.032 0.694 0.241 0.036 0.063

LLaMA3 8b 0.378 0.309 0.964 0.468 0.451 0.334 0.935 0.492 0.463 0.337 0.919 0.493 0.378 0.309 0.964 0.468
70b 0.682 0.470 0.931 0.625 0.707 0.491 0.894 0.634 0.714 0.498 0.885 0.638 0.682 0.47 0.931 0.625

Qwen 72b 0.592 0.409 0.983 0.578 0.664 0.456 0.944 0.615 0.671 0.461 0.933 0.617 0.592 0.409 0.983 0.578
110b 0.7 0.486 0.933 0.639 0.741 0.526 0.885 0.66 0.743 0.53 0.86 0.655 0.700 0.486 0.933 0.639

Mixtral 7b 0.55 0.383 0.95 0.545 0.631 0.428 0.891 0.578 0.657 0.446 0.858 0.587 0.55 0.383 0.95 0.545
22b 0.701 0.486 0.95 0.643 0.751 0.537 0.916 0.677 0.773 0.562 0.908 0.695 0.701 0.486 0.95 0.643

Table 14: Performance of different LLMs on questions from SituatedQA dataset using different search approaches.
Underlined values represent the best performance across all LLMs for a particular search strategy. Values that are
bold indicate the best-performing search strategy across LLMs.

Model Parameters Linear Search Skip List (2) Random (5) Search Divide and Conquer

ACC PR RC F1 ACC PR RC F1 ACC PR RC F1 ACC PR RC F1

T5 770m 0.5 0.441 0.323 0.373 0.5 0.44 0.32 0.371 0.501 0.429 0.255 0.32 0.5 0.441 0.323 0.373
3b 0.54 0 0 0 0.54 0 0 0 0.54 0 0 0 0.54 0 0 0

LLaMA3 8b 0.483 0.47 0.953 0.629 0.492 0.473 0.932 0.628 0.51 0.483 0.921 0.634 0.483 0.47 0.953 0.629
70b 0.552 0.510 0.675 0.581 0.546 0.505 0.654 0.57 0.55 0.508 0.64 0.567 0.552 0.510 0.675 0.581

Qwen 72b 0.525 0.49 0.751 0.593 0.527 0.49 0.727 0.586 0.533 0.494 0.693 0.577 0.525 0.49 0.751 0.593
110b 0.542 0.502 0.635 0.561 0.550 0.509 0.619 0.559 0.554 0.513 0.609 0.557 0.542 0.502 0.635 0.561

Mixtral 7b 0.55 0.507 0.798 0.62 0.552 0.509 0.774 0.614 0.562 0.516 0.748 0.611 0.55 0.507 0.798 0.62
22b 0.547 0.506 0.625 0.559 0.546 0.505 0.612 0.553 0.566 0.525 0.596 0.558 0.547 0.506 0.625 0.559

Table 15: Performance of different LLMs on questions from AmbigQA dataset using different search approaches.
Underlined values represent the best performance across all LLMs for a particular search strategy. Values that are
bold indicate the best-performing search strategy across LLMs.
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Model Parameters ACC PR RC F1

Zero-Shot

T5
770m 0.467 0.685 0.03 0.057
3b 0.460 1 0.002 0.004

LLaMA3 8b 0.485 0.559 0.229 0.325
70b 0.570 0.577 0.775 0.661

Qwen 72b 0.560 0.643 0.42 0.508
110b 0.577 0.644 0.486 0.554

Mixtral 7b 0.549 0.559 0.792 0.655
22b 0.540 0.553 0.779 0.647

GPT 3.5 - 0.576 0.571 0.873 0.690
GPT 4 - 0.543 0.542 1 0.703

Few-shot

T5 770m 0.5 0.536 0.563 0.549
3b 0.511 0.546 0.577 0.561

LLaMA3 8b 0.548 0.589 0.545 0.566
70b 0.559 0.695 0.330 0.448

Qwen 72b 0.602 0.67 0.522 0.587
110b 0.606 0.63 0.659 0.644

Mixtral 7b 0.575 0.567 0.910 0.699
22b 0.593 0.671 0.488 0.565

GPT 3.5 - 0.579 0.612 0.608 0.610
GPT 4 - 0.550 0.638 0.390 0.484

Fine-tuned Model

BERT 110m 0.539 0.711 0.252 0.372

Search Method

Qwen (Linear) 110b 0.635 0.612 0.893 0.726
Qwen (Skip List) 110b 0.640 0.617 0.885 0.727
Qwen (Random) 72b 0.614 0.589 0.950 0.727
Qwen (DAC) 110b 0.635 0.612 0.893 0.726

Table 16: Performance of various LLMs on questions
from ArchivalQA dataset using different approaches.
Underlined values represent the best performance across
all LLMs for a particular method. Values that are bold
indicate the result for the best approach.

Model Parameters ACC PR RC F1

Zero-Shot

T5
770m 0.666 0.29 0.121 0.171
3b 0.709 0.324 0.021 0.04

LLaMA3 8b 0.577 0.285 0.324 0.303
70b 0.543 0.346 0.683 0.459

Qwen 72b 0.681 0.363 0.163 0.225
110b 0.661 0.4 0.386 0.393

Mixtral 7b 0.453 0.307 0.737 0.433
22b 0.553 0.326 0.539 0.407

GPT 3.5 - 0.487 0.332 0.793 0.468
GPT 4 - 0.296 0.287 0.998 0.446

Few-Shot

T5 770m 0.297 0.258 0.787 0.389
3b 0.51 0.173 0.192 0.182

LLaMA3 8b 0.467 0.318 0.762 0.448
70b 0.635 0.354 0.345 0.35

Qwen 72b 0.68 0.376 0.192 0.254
110b 0.533 0.313 0.537 0.395

Mixtral 7b 0.411 0.29 0.743 0.417
22b 0.674 0.363 0.196 0.254

GPT 3.5 - 0.448 0.322 0.856 0.468
GPT 4 - 0.601 0.358 0.507 0.419

Fine-tuned Model

BERT 110m 0.764 0.716 0.28 0.403

Search Method

Mixtral (Linear) 22b 0.701 0.486 0.95 0.643
Mixtral (Skip list) 22b 0.751 0.537 0.916 0.677
Mixtral (Random) 22b 0.773 0.562 0.908 0.695
Mixtral (DAC) 22b 0.701 0.486 0.95 0.643

Table 17: Performance of various LLMs on the subset
of SituatedQA dataset using different approaches. Un-
derlined values represent the best performance across
all LLMs for a particular method. Values that are bold
indicate the result for the best approach.
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Model Parameters ACC PR RC F1

Zero-Shot

T5 770m 0.536 0.472 0.066 0.115
3b 0.539 0.4 0.005 0.01

LLaMA3 8b 0.495 0.414 0.234 0.299
70b 0.537 0.498 0.556 0.525

qwen 72b 0.535 0.478 0.113 0.183
110b 0.553 0.538 0.205 0.297

Mixtral 7b 0.496 0.447 0.402 0.423
22b 0.484 0.441 0.454 0.448

GPT 3.5 - 0.525 0.488 0.619 0.546
GPT 4 - 0.467 0.463 0.987 0.630

Few-Shot

t5 770m 0.452 0.447 0.803 0.574
3b 0.459 0.448 0.761 0.564

llama3 8b 0.481 0.429 0.386 0.406
70b 0.537 0.491 0.144 0.223

qwen 72b 0.534 0.472 0.11 0.179
110b 0.554 0.518 0.462 0.488

Mixtral 7b 0.441 0.423 0.591 0.493
22b 0.542 0.512 0.113 0.185

GPT 3.5 - 0.505 0.463 0.480 0.472
GPT 4 - 0.563 0.545 0.302 0.389

Fine-tuned Model

BERT 110m 0.609 0.597 0.462 0.521

Search Method

LLaMA3 (Linear) 8b 0.483 0.47 0.953 0.629
LLaMA3 (Skip List) 8b 0.492 0.473 0.932 0.628
LLaMA3 (Random) 8b 0.51 0.483 0.921 0.634
LLaMA3 (DAC) 8b 0.483 0.47 0.953 0.629

Table 18: Performance of various LLMs on questions
from AmbigQA dataset using different approaches. Un-
derlined values represent the best performance across
all LLMs for a particular method. Values that are bold
indicate the result for the best approach.
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Zero-Shot setting Actual Label

Is the following question ambiguous? Just give answer as ’YES’ or ’NO’.
Question: Who won the last olympic men’s hockey?
Answer: YES Ambiguous

Is the following question ambiguous? Just give answer as ’YES’ or ’NO’.
Question: Who is the first woman governor in india?
Answer: NO Unambiguous

Table 19: Case study of detecting temporally ambiguous questions in Zero-Shot setting. Words in blue indicate the
correct answer. Words in red indicate the answer by LLM.

Few-Shot setting

Is the following question ambiguous? Just give answer as ’YES’ or ’NO’.
Question: How many dominant racecars did Harvick drive?
Answer: No

Is the following question ambiguous? Just give answer as ’YES’ or ’NO’.
Question: Where is the Maya Hieroglyphics Conference held?
Answer: Yes

Is the following question ambiguous? Just give answer as ’YES’ or ’NO’.
Question: What is Brian Deletka’s job title?
Answer: Yes

Is the following question ambiguous? Just give answer as ’YES’ or ’NO’.
Question: What is Jalal Talabani the leader of?
Answer: No

Is the following question ambiguous? Just give answer as ’YES’ or ’NO’.
Question: Who is Blankenship’s White House adviser?
Answer: No

Is the following question ambiguous? Just give answer as ’YES’ or ’NO’.
Question: Where was the gas giveaway in Hackensack?
Answer: Yes

Is the following question ambiguous? Just give answer as ’YES’ or ’NO’.
Question: Who is the first woman governor in india?
Answer: NO

Table 20: Case study of detecting temporally ambiguous questions in Few-Shot setting. The answer by LLM is
indicated in red. The true label for the example question is Unambiguous.
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Q1: who is president of india in present time as of 2000?
Q2: who is president of india in present time as of 2011?
Is the answer for Q1 and Q2 same? Write only one word between ’Yes’ and ’No’.
Answer: No

Q1: Who issued ashwamedha coins after performing ashvamedha sacrifice as of 2000?
Q2: Who issued ashwamedha coins after performing ashvamedha sacrifice as of 2001?
Is the answer for Q1 and Q2 same? Write only one word between ’Yes’ and ’No’.
Answer: Yes

Q1: who has the oldest team in the nba as of 2000?
Q2: who has the oldest team in the nba as of 2001?
Is the answer for Q1 and Q2 same? Write only one word between ’Yes’ and ’No’.
Answer: YES

.....

.....

Q1: who is president of india in present time as of 2000?
Q2: who is president of india in present time as of 2011?
Is the answer for Q1 and Q2 same? Write only one word between ’Yes’ and ’No’.
Answer: No

Q1: Who issued ashwamedha coins after performing ashvamedha sacrifice as of 2000?
Q2: Who issued ashwamedha coins after performing ashvamedha sacrifice as of 2001?
Is the answer for Q1 and Q2 same? Write only one word between ’Yes’ and ’No’.
Answer: Yes

Q1: who has the oldest team in the nba as of 2000?
Q2: who has the oldest team in the nba as of 2022?
Is the answer for Q1 and Q2 same? Write only one word between ’Yes’ and ’No’.
Answer: NO

.....

.....

Q1: who is president of india in present time as of 2000?
Q2: who is president of india in present time as of 2011?
Is the answer for Q1 and Q2 same? Write only one word between ’Yes’ and ’No’.
Answer: No

Q1: Who issued ashwamedha coins after performing ashvamedha sacrifice as of 2000?
Q2: Who issued ashwamedha coins after performing ashvamedha sacrifice as of 2001?
Is the answer for Q1 and Q2 same? Write only one word between ’Yes’ and ’No’.
Answer: Yes

Q1: who has the oldest team in the nba as of 2000?
Q2: who has the oldest team in the nba as of 2024?
Is the answer for Q1 and Q2 same? Write only one word between ’Yes’ and ’No’.
Answer: NO

Table 21: Case study of computing answer equivalence between two questions for various search strategies using
Few-Shot setting. Yes indicates the answers for Q1 and Q2 are same whereas NO indicates the answers for Q1 and
Q2 are different.
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Few-Shot Linear Search

Question : who has the oldest team in the NBA?

Q1: who is president of india in present time as of 2000?
Q2: who is president of india in present time as of 2011?
Is the answer for Q1 and Q2 same? Write only one word between ’Yes’ and ’No’.
Answer: No

Q1: Who issued ashwamedha coins after performing ashvamedha sacrifice as of 2000?
Q2: Who issued ashwamedha coins after performing ashvamedha sacrifice as of 2001?
Is the answer for Q1 and Q2 same? Write only one word between ’Yes’ and ’No’.
Answer: Yes

Q1: who has the oldest team in the nba as of 2000?
Q2: Question
Is the answer for Q1 and Q2 same? Write only one word between ’Yes’ and ’No’.
Answer: Answer

Diambiguated Questions Answers

who has the oldest team in the nba as of 2001? Yes
who has the oldest team in the nba as of 2002? Yes
who has the oldest team in the nba as of 2003? Yes
who has the oldest team in the nba as of 2004? Yes
who has the oldest team in the nba as of 2005? Yes
who has the oldest team in the nba as of 2006? Yes
who has the oldest team in the nba as of 2007? Yes
who has the oldest team in the nba as of 2008? Yes
who has the oldest team in the nba as of 2009? Yes
who has the oldest team in the nba as of 2010? Yes
who has the oldest team in the nba as of 2011? Yes
who has the oldest team in the nba as of 2012? Yes
who has the oldest team in the nba as of 2013? Yes
who has the oldest team in the nba as of 2014? Yes
who has the oldest team in the nba as of 2015? Yes
who has the oldest team in the nba as of 2016? Yes
who has the oldest team in the nba as of 2017? Yes
who has the oldest team in the nba as of 2018? Yes
who has the oldest team in the nba as of 2019? Yes
who has the oldest team in the nba as of 2020? Yes
who has the oldest team in the nba as of 2021? Yes
who has the oldest team in the nba as of 2022? NO
who has the oldest team in the nba as of 2023? NO
who has the oldest team in the nba as of 2024? NO

Table 22: Case study for detecting temporally ambiguous questions using different search strategies. Yes indicates
that the answers for Q1 and Q2 are same whereas No indicates the answers for Q1 and Q2 are different. The table
here shows the answer equivalence of the corresponding question with Q1 mentioned in the prompt. In the case of
linear search, the number of comparisons to classify the question as ambiguous will be 22, whereas for Skip List (2),
it will be 11.
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