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Abstract

We present Randomized Path-Integration (RPI)
- a path-integration method for explaining lan-
guage models via randomization of the inte-
gration path over the attention information in
the model. RPI employs integration on inter-
nal attention scores and their gradients along a
randomized path, which is dynamically estab-
lished between a baseline representation and
the attention scores of the model. The inherent
randomness in the integration path originates
from modeling the baseline representation as a
randomly drawn tensor from a Gaussian diffu-
sion process. As a consequence, RPI generates
diverse baselines, yielding a set of candidate
attribution maps. This set facilitates the selec-
tion of the most effective attribution map based
on the specific metric at hand. We present an
extensive evaluation, encompassing 11 expla-
nation methods and 5 language models, includ-
ing the Llama2 and Mistral models. Our re-
sults demonstrate that RPI outperforms latest
state-of-the-art methods across 4 datasets and
5 evaluation metrics. Our code is available at:
https://github.com/rpiconf/rpi

1 Introduction

Recent advancements in AI research have impacted
numerous application domains, fueling innovation
and progress in user modeling and personaliza-
tion (Barkan and Koenigstein, 2016; He et al.,
2017; Ben-Elazar et al., 2017; Wang et al., 2019;
He et al., 2020; Barkan et al., 2019a, 2020a,b,d,
2021d, 2023f; Katz et al., 2022), natural language
processing (NLP) (Mikolov et al., 2013; Vaswani
et al., 2017; Devlin et al., 2018; Brown et al.,
2020; Barkan, 2017; Barkan et al., 2020f,e, 2021b;
Ginzburg et al., 2021; Malkiel et al., 2020, 2022b),
computer vision (He et al., 2016; Dosovitskiy et al.,
2020; Liu et al., 2022; Carion et al., 2020; Assran
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et al., 2023; Barkan et al., 2023e), and sound syn-
thesis (Engel et al., 2020; Kong et al., 2020; Barkan
and Tsiris, 2019; Barkan et al., 2019b, 2023g).

Within the field of NLP, the advent of Trans-
formers (Vaswani et al., 2017; Devlin et al., 2018;
Radford et al., 2019) have ushered in a new era of
complex language model (LM) architectures (Liu
et al., 2019; Raffel et al., 2019; Brown et al., 2020;
Touvron et al., 2023). These models, with their ex-
panding size and complexity, have become integral
components across diverse applications.

This surge in model capacity and complexity has
intensified the need for a profound understanding
of the decision-making processes intrinsic to LMs.
However, the inherent complexity often shrouds the
transparency of these models’ predictions, prompt-
ing the development of explainability methods to
unveil the contributing factors influencing their out-
puts. Consequently, a multitude of explanation
methods has been devised (Ribeiro et al., 2016;
Sundararajan et al., 2017; Lundberg and Lee, 2017;
Abnar and Zuidema, 2020; Modarressi et al., 2023).

Simultaneously, with the evolution of explana-
tion methods, there has been a proliferation of vari-
ous explanation metrics designed for the quantita-
tive assessment of explainability methods (Samek
et al., 2017; DeYoung et al., 2020). However,
achieving consensus within the literature on the ul-
timate explanation metric remains elusive, as each
metric offers unique insights into different facets
of explanation quality.

Acknowledging the diversity in explanation met-
rics, we introduce Randomized Path-Integration
(RPI), a method designed to elucidate predictions
made by LMs through the integration of internal
attention scores and their gradients along a ran-
dom path. The introduction of randomness into
the integration path stems from the representation
of the baseline as a random tensor drawn from a
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specified baseline distribution. As a result, RPI
produces a variety of baselines from this distribu-
tion, forming a pool of candidate attribution maps.
The versatility afforded by multiple baselines facil-
itates the selection of the most effective attribution
map, contingent upon the evaluation metric under
consideration.

Through extensive evaluation spanning a variety
of explanations methods, LMs, and datasets, RPI
exhibits superior performance compared to current
state-of-the-art methods across multiple explana-
tion metrics.

2 Related Work

Explainable AI includes a wide array of methods,
all aimed at improving the understanding of deci-
sions made by deep learning models across mul-
tiple application domains (Fong et al., 2019; Si-
monyan et al., 2013; Fong and Vedaldi, 2017; Sel-
varaju et al., 2017; Zhou et al., 2018; Barkan et al.,
2020c, 2021c,a, 2023d,c,a,b; Gaiger et al., 2023;
Barkan et al., 2024; Malkiel et al., 2022a; Chefer
et al., 2021a,b; Sanyal et al., 2022).

Perturbation-based techniques such as
LIME (Ribeiro et al., 2016) and SHAP (Lund-
berg and Lee, 2017) introduce perturbations to
individual inputs or neurons and observe their
consequential effects on subsequent neurons in the
network.

Relevance-Decomposition methods look at the
network’s representation as vectors, each exert-
ing distinct influences on the model’s predictions.
GlobEnc (Modarressi et al., 2022) and ALTI (Fer-
rando et al., 2022) incorporate local-level decom-
position, aggregating resulting vector norms us-
ing rollout (Abnar and Zuidema, 2020) to con-
struct global-level explanations. Recently, De-
compX (Modarressi et al., 2023) was introduced,
providing state-of-the-art results by constructing
decomposed token representations and sequentially
propagating them through the model without inter-
layer mixing.

Gradient-based methods rely on the gradients of
the model’s prediction score concerning the input
tokens. Basic gradient methods, such as Vanilla
Gradients (Simonyan et al., 2013) and Gradien-
tXInput (Shrikumar et al., 2016), operate on the
principle of gradient computation. Integrated Gra-
dients (IG) (Sundararajan et al., 2017) is a path-

integration method, computing gradients on inter-
polated points along a straight line between the
data and an uninformative baseline. Additional ap-
proaches such as DeepLift (Shrikumar et al., 2017)
and GradientShap (Lundberg and Lee, 2017) can
be viewed as approximations of IG. Other path-
integration methods, such as Discretized Integrated
Gradient (DIG) (Sanyal and Ren, 2021), treat the
integration path differently. DIG replaces the con-
tinuous straight path with a discretized one, where
interpolated points are words. Another innovative
path-integration approach comes in the form of Se-
quential Integrated Gradients (SIG) (Enguehard,
2023). SIG addresses concerns about altered sen-
tence meaning by computing the importance of
each word while keeping other words fixed and cre-
ating interpolations between the baseline and the
word of interest. Notably, SIG has demonstrated
superior performance when compared to several
existing methods, including DIG, IG, and Gradi-
entShap.

RPI complements this line of path-integration
methods by modeling the baseline representation as
a random tensor sampled from a Gaussian diffusion
process (Sohl-Dickstein et al., 2015), and integrat-
ing the attention scores and their gradients along a
randomized path between a randomly drawn base-
line and the attention scores to form an attribution
map. By baseline resampling from the baseline
distribution, RPI establishes a pool of candidate
attribution maps that facilitates the selection of the
most effective attribution map based on the metric
under consideration. Our evaluation indicates that
this unique feature of RPI leads to state-of-the-art
results and can be further incorporated to existing
path-integration to enhance their performance.

3 Randomized Path-Integration

Let V denote the vocabulary, and let u = (ui)
k
i=1

represent a sequence of k tokens constituting the
input text, where each ui ∈ V . We further define
xu = [xu1 , ...,xuk

] as a 2D tensor in Rd×k ac-
commodating k embeddings, with each xui ∈ Rd

representing the token ui.
In the context of this work, our emphasis lies in

the domain of classification tasks. Hence, we in-
troduce a model denoted as F , designed to take an
input xu and yield an output F (xu) ∈ [0, 1]c. Here,
Fi(xu) denotes the probability assigned to class i,
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and c signifies the total number of available classes.
The model F can assume the form of a LM utiliz-
ing a classification head, producing probabilities
for each class within the specific task. This process
involves either finetuning the LM or utilizing it as
a foundational component for the transfer learning
of a specific task.

Recent LM architectures, often referred to as
large language models (LLMs), are predominantly
decoder-based, tasked with completing sequences
of tokens in the output (Brown et al., 2020). Al-
though these LLMs can be finetuned using classi-
fication heads, a more prevalent approach is clas-
sification via completion (Raffel et al., 2019). In
this method, the LLM is prompted with the specific
task, either in a few-shot or zero-shot scenario, and
instructed to generate a token that signifies the cor-
rect class. For instance, in sentiment analysis, if the
relevant classes are communicated to the LLM (via
prompt) as ’positive’ and ’negative’, logit scores for
the tokens ’positive’ and ’negative’ are computed,
and softmax is applied to obtain the probabilities
associated with each class. It is noteworthy that
this approach can be implemented either before or
after finetuning the LLM on the relevant dataset in
a completion manner.

In this work, we conduct experiments in various
settings, including finetuning with classification
heads on top of the LLM as well as classification
via completion (decoder-based models).

3.1 Integrated Gradients

IG (Sundararajan et al., 2017) enables the creation
of an attribution map by defining a linear path be-
tween a baseline representation b ∈ Rd×k and xu

via the parameterization:

vu = b+ a(xu − b) with a ∈ [0, 1], (1)

and accumulating the gradients along this path as
follows:

mIG =

∫ 1

0

∂Fy

∂vu
◦ ∂vu

∂a
da

≈ xu − b

n
◦

n∑

j=1

∂Fy

∂vu
,

(2)

where ◦ denotes the Hadamard product, y denotes
the class receiving the highest score in the predic-
tion, and the approximation in the last transition is

obtained by setting a = j
n in Eq. 1. The resulting

attribution map mIG can be manipulated in various
ways to form attribution scores for each individual
element in xu.

3.2 The RPI method

RPI facilitates two distinctive features that set it
apart from IG. Firstly, RPI integrates on the inter-
nal attention scores (rather than the token represen-
tation themselves), computed in the intermediate
layers of F , and their gradients. This design allows
for the aggregation of information from various
attention heads and model layers w.r.t. each indi-
vidual token in the input. Secondly, RPI models
the baseline representation1 b as a random ten-
sor drawn from a distribution B. This approach
facilitates the sampling of multiple baselines, re-
sulting in various integration paths, each leading
to a distinct attribution map. Subsequently, one
can select the attribution map associated with the
integration path that yields the best results on the
specific explanation metric under consideration. In
what follows, we describe RPI in detail.

Let alu ∈ Rh×k×k denote the attention scores
tensor accommodating the h attention matrices pro-
duced by the l-th layer in the model F (when ap-
plied to a specific input xu). With a budget of trials
R, the RPI process unfolds as follows: First, we
sample R baselines Bl = {blr}Rr=1 from the base-
line distribution B, where blr ∈ Rh×k×k. Accord-
ingly, we redefine the interpolant for the attention
tensor as:

vlr
u = blr + a(alu − blr) with a ∈ [0, 1]. (3)

Using B, we compute corresponding set of attribu-
tion maps M l = {mlr}Rr=1, where

mlr = ϕ


alu − blr

n
◦

n∑

j=1

∂Fy

∂vlr
◦ vlr


 , (4)

and ϕ is a function that takes the resulting tensor
from the integration process, performs mean re-
duction on its first dimension (the attention heads
dimension), and extracts a specific row from the
resulting 2D matrix, producing the d-dimensional
attribution map mlr. In encoder-based models, the

1Note that now the baseline representation b should match
the dimensions of the attention tensor, which differ from di-
mensions of the input tensor dimensions.
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extracted row is typically the one corresponding
to the attention scores of the first token (e.g., in
BERT, it is associated with the CLS). In decoder-
based models, the extracted row is the last one
corresponding to the last token used to generate the
next token predicted by the model as part of the
completion task2.

We further note that the integrand in Eq.4 in-
volves the Hadamard product of the interpolated
attention tensor with its gradient. This is another
difference from IG (Eq.2) that integrates the gradi-
ents only. We found that the multiplication by the
interpolated attention tensor further improves the
results, as it allows the amplification of elements in
which both the gradient and the interpolated atten-
tion score are high. This design choice is further
supported by the findings from (Selvaraju et al.,
2017).

Finally, in the resulting attribution map mlr ∈
Rd (Eq. 4), the i-th entry mlr

i represents the attri-
bution score assigned to the token ui (which is the
i-th token in the input u).

Next, we describe the attribution map selection
process. Let J be a set containing the indexes
of layers in F participating the RPI process, and
define the unified set of the resulting attribution
maps by MJ = ∪l∈JM l. Consequently, the RPI
attribution map is determined by:

mRPI = argmax
m∈MJ

ψ(m), (5)

where ψ represents the metric under consideration3,
and ψ(m) denotes the metric score on the attribu-
tion map m. Ultimately, for simplicity, in this work,
we opt for applying RPI with J = {L}, denotes
the index of the last layer in F . As demonstrated
in Sec. 4.2, this setup consistently produces state-
of-the-art results. This setup further aligns with
established explanation methodologies (Selvaraju
et al., 2017; Caron et al., 2021) that predominantly
utilize the final layer of the model for explanation
generation. However, it is essential to note that
RPI offers the flexibility to utilize all model layers
and their combinations (Eq. 5). Therefore, in the

2Recall that in this work, decoder-based models are cus-
tomized for a classification task by expecting them to predict
the correct class with the first predicted token in the comple-
tion.

3For a metric that favors lower scores, the operator in Eq. 5
should be changed to argmin.

Appendix (SectionA.1), we conduct an exhaustive
ablation study, exploring the application of RPI
across various layers and their aggregations.

3.2.1 The baseline distribution
In their study (Sturmfels et al., 2020), the authors
investigated various baseline representations, with-
out establishing a clear preference for any spe-
cific method. Consequently, a reasonable approach
would be to define B as a mixture of distribu-
tions accommodating diverse baseline represen-
tations, each with its associated weight. In this
work, we propose a more simple approach where
the baseline is drawn from a Gaussian diffusion
process (Sohl-Dickstein et al., 2015). Specifically,
we define the baseline distribution at timestamp t as
Bt = N (

√
αta

l
u, (1−αt)I), where αt =

∏t
j=1 αj ,

αt = 1− βt, and {βt}Tt=1 are parameters defining
the variance schedule over T timesteps. Subse-
quently, each baseline of the R baselines in Bl is
sampled by uniformly selecting timestamp t from
{1, .., T} and then drawing a baseline blr from Bt.

The rationale for employing the Gaussian diffu-
sion process to model the baseline as a random ten-
sor is to establish a baseline distribution capable of
accommodating diverse levels of noise, contingent
upon the timestamp t. Specifically, this approach
enables the introduction of small Gaussian noise
for smaller values of t, gradually transitioning to
higher levels of noise that ultimately converge to
the standard normal noise as t increases.

Complexity The computational complexity of IG
grows linearly with n (number of interpolations),
while RPI introduces an additional factor, the num-
ber of sampled baselinesR, as each baseline entails
a different integration path. Fortunately, both IG
and RPI are embarrassingly parallel. Therefore,
given a GPU capable of accommodating a batch
size of nR examples, IG and RPI are anticipated to
exhibit comparable runtime performance in practi-
cal scenarios. Moreover, our empirical evaluation
indicates that, even with a relatively small R, RPI
consistently outperforms the latest state-of-the-art
explanation methods across a variety of metrics,
models, and datasets. Lastly, it is crucial to recog-
nize that explanations serve primarily for debug-
ging and auditing purposes, rather than real-time
decision-making. In these contexts, prioritizing
the generation of a higher-quality explanation over
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speed is often considered advantageous.

4 Experimental Setup and Results

All experiments were conducted on a high-
performance NVIDIA DGX server, equipped with
8 A100 GPUs, utilizing the PyTorch platform.

4.1 Experimental setup

Datasets and Models In our comprehensive eval-
uation, we assess various explanation methods
across four distinct datasets, aiming to provide
a thorough understanding of their efficacy in di-
verse scenarios characterized by different classifi-
cation tasks and text lengths. SST2 (Socher et al.,
2013): Binary sentiment classification focusing on
short texts. Rotten Tomatoes (RTN) (Pang and Lee,
2005): Binary sentiment classification in medium-
sized texts. Emotion Recognition (EMR) (Saravia
et al., 2018): Emotion classification with six classes
(Sadness, Joy, Love, Anger, Fear, and Surprise) pre-
dominantly in short texts. AG News (AGN) (Zhang
et al., 2015): Topic classification with four classes
(World, Sports, Business, Sci/Tech) across texts of
varying lengths.

Our evaluation involves five distinct model archi-
tectures: BERT-Base (Devlin et al., 2018), BERT-
Base (Devlin et al., 2018), DistilBERT-Base (Sanh
et al., 2019), Llama2 7B (Touvron et al., 2023) and
Mistral 7B (Albert Q. Jiang, 2023). For the first
three models, we utilize their finetuned versions
tailored to each dataset. On the other hand, Llama2
and Mistral were evaluated in few-shot prompting
mode without fine-tuning for the RTN and SST2
tasks, which aligns with their typical application
in large language models (LLMs), as detailed in
Sec. 3. For the AGN and EMR tasks, we finetuned
the models using LoRA due to their limited per-
formance in the few-shot prompting scenario. The
prompts utilized in this research are presented in
the Appendix. The processing of datasets, as well
as the retrieval of both pretrained and finetuned
versions of models for each dataset, was conducted
using the HuggingFace library (Wolf et al., 2019).
Our data processing approach closely follows the
methodology outlined in (Enguehard, 2023). The
complete code for data processing, along with links
to access all models, is available in our GitHub
repository, ensuring transparency and reproducibil-
ity of our research.

Evaluation metrics For quantitative assessment
of the explanation methods, we followed the evalua-
tion protocol from recent works (Enguehard, 2023;
Ferrando et al., 2022) and report results for the fol-
lowing set of metrics: Log-Odds (LO) (Shrikumar
et al., 2017), Sufficiency (Suff), Comprehensive-
ness (Comp) and Area Over the Perturbation Curve
(AOPC) for Sufficiency (A-S) and Comprehensive-
ness (A-C) (DeYoung et al., 2020). For Suff, LO
and A-S the lower the better, while for Comp and
A-C the higher the better. Unless specified other-
wise, we use the same metric settings as detailed
in the referenced papers. A detailed description of
the metrics appears in the Appendix (Sec. A.3).

Explanation methods Our evaluation encom-
passes 9 explanation methods, representing var-
ious approaches in the landscape of model ex-
plainability. These methods include: Gra-
dientXInput (GXI) (Shrikumar et al., 2016),
GradientShap (SHAP) (Lundberg and Lee,
2017), LIME (Ribeiro et al., 2016), DeepLift
(LIFT) (Shrikumar et al., 2017), Integrated Gra-
dients (IG) (Sundararajan et al., 2017), Sequen-
tial Integrated Gradients (SIG) (Enguehard, 2023),
GlobEnc (GLOB) (Modarressi et al., 2022),
ALTI (Ferrando et al., 2022), and DecompX
(DCMP) (Modarressi et al., 2023). The evalua-
tion adhered to the codebase and hyperparameter
search settings provided by the original works for
each respective method.

Furthermore, we introduce an explanation
method based on the LLM Instruct version (LLM).
In this approach, we prompt the finetuned, open-
source versions of Llama-Instruct and Mistral-
Instruct with the task and input, instructing the
models to explain the prediction by ranking the
importance of each token in the input example. De-
tailed prompts can be found in our GitHub reposi-
tory for transparency.

Finally, our RPI method was executed with
R = 24 and n = 30. It is worth noting that
the results were observed to be robust as long as
n > 30. Additionally, the computation of attribu-
tion maps mlr (Eq. 4) utilizes the first row of the
attention matrices in the case of BERT, DistilBERT
and RoBERTa, and the last row of the attention
matrices in Llama2 and Mistral. For the exact im-
plementation details, the reader is referred to our
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Metric Prediction Attribution

Suff
Negative

a hideous , confusing spectacle , one that may well put the nail in the
coffin of any future rice adaptations.

Positive a well-made and often lovely depiction of the mysteries of friendship

Comp
Negative

a hideous , confusing spectacle , one that may well put the nail in the
coffin of any future rice adaptations.

Positive a well-made and often lovely depiction of the mysteries of friendship

Table 1: Examples of RPI attributions on several sentences of the SST2 dataset (using the BERT model). The
underlined bold words represent the most important tokens in the sentence, while bold words are based on the
most important tokens in the sentence, according to the RPI attribution method. The first two and last two rows
correspond to the RPI attribution maps that produced the best results for the Suff and Comp metrics, respectively.

GitHub repository.

4.2 Results

We commence with an illustrative example demon-
strating that different metrics favor different attri-
butions. Table 1 presents two examples from the
SST2 dataset. The first two rows and last two rows
visualizes the RPI attribution maps that yielded the
best results for the Suff and Comp metrics, respec-
tively, using BERT. In each example, we boldface
the top 3 attributed words (according to the gener-
ated attribution map), with the word assigned the
highest attribution score further underlined. As
observed, the best attribution map for each metric
differs for the same example. Table 1 illustrates
the rationale behind the RPI mechanism, allowing
the selection of the most suitable attribution map
for each metric. Table 2 presents results for all
combinations of encoder-based model, explanation
method, dataset, and metric. The findings in Tab 2
consistently highlight the superior performance of
RPI across all scenarios, with DCMP and SIG al-
ternating for the second place.

Table 3 illustrates the effectiveness of RPI com-
pared to runner-ups SIG and DCMP from Table 2
on the SST2 dataset using BERT and RoBERTa.
The top three attributioned words are extracted for
each example based on the explanation method.
It is evident that RPI produces attributions that
align most closely with the predictions. Additional
qualitative examples are provided in the Appendix
(Sec. A.2).

Table 4 presents quantitative results for the
Llama2 and Mistral models. It is important to
note that the ALTI and DCMP methods are not

compatible with these models and are therefore ex-
cluded from comparison. Similar trends to Tab. 2
emerge, with RPI consistently outperforming other
methods by a significant margin in all cases. The
runner-up is typically SIG. We also observe that the
LLM-based explanation method consistently un-
derperforms compared to the leading explanation
methods. This underperformance can be attributed
to frequent hallucinations, where the model out-
puts a ranked token list which includes tokens that
are not present in the original input. Overall, the
results in Tabs. 2 and 4 establish RPI as the new
state-of-the-art method.

4.3 Ablation study

In what follows, we present an ablation study for
different configuration choices in RPI. Unless spec-
ified otherwise, we used R = 24, n = 30 and the
baselines are drawn from a Gaussian diffusion pro-
cess. The study was conducted on the RTN dataset,
utilizing a finetuned BERT model. Table 6 com-
pares various ablated versions of RPI and explores
the impact of applying the RPI baseline resampling
procedure to other path-integration methods (IG
and SIG). First, we evaluate RPI-G, where atten-
tion gradients are used without multiplication in
the attention scores (omitting the multiplication
in vlr in Eq.4). Second, we assess RPI-IG and
RPI-SIG, which incorporate the RPI baseline re-
sampling procedure into IG and SIG methods, re-
spectively. Here, we replace the fixed <MASK>
baseline (Enguehard, 2023) with a random base-
line drawn from the Gaussian diffusion process (as
described in Sec. 3.2.1), while setting alu to the
<MASK> token.
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RoBERTa DistilBERT BERT

Suff↓ LO↓ Comp↑ A-S↓ A-C↑ Suff↓ LO↓ Comp↑ A-S↓ A-C↑ Suff↓ LO↓ Comp↑ A-S↓ A-C↑

SST2

RPI -0.007 -1.691 0.491 0.008 0.250 -0.010 -2.200 0.524 0.004 0.266 -0.019 -1.743 0.549 -0.003 0.282
SIG 0.097 -1.340 0.381 0.066 0.205 0.064 -1.920 0.453 0.051 0.242 0.083 -1.133 0.378 0.063 0.208
ALTI 0.116 -1.043 0.305 0.070 0.166 0.059 -1.407 0.368 0.047 0.205 0.093 -0.816 0.320 0.064 0.175
DCMP 0.086 -1.366 0.393 0.057 0.216 0.359 -0.321 0.089 0.201 0.063 0.037 -1.450 0.467 0.030 0.253
LIFT 0.331 -0.300 0.098 0.189 0.060 0.234 -0.605 0.162 0.140 0.098 0.289 -0.314 0.118 0.168 0.071
GLOB 0.227 -0.489 0.166 0.136 0.100 0.357 -0.262 0.073 0.199 0.060 0.233 -0.388 0.153 0.140 0.104
SHAP 0.227 -0.788 0.226 0.135 0.131 0.207 -1.264 0.291 0.122 0.167 0.250 -0.534 0.191 0.145 0.111
GXI 0.359 -0.245 0.077 0.200 0.049 0.305 -0.415 0.111 0.179 0.066 0.237 -0.401 0.153 0.140 0.094
IG 0.116 -1.249 0.360 0.073 0.200 0.100 -1.823 0.415 0.065 0.229 0.110 -0.936 0.334 0.075 0.187
LIME 0.050 -1.180 0.356 0.035 0.194 0.150 -1.281 0.298 0.104 0.162 0.134 -0.713 0.273 0.093 0.149

RTN

RPI -0.029 -0.961 0.449 0.035 0.218 -0.034 -0.559 0.390 0.033 0.186 -0.019 -2.675 0.622 0.002 0.319
SIG 0.114 -0.752 0.324 0.088 0.178 0.087 -0.520 0.316 0.065 0.169 0.157 -1.524 0.353 0.109 0.190
ALTI 0.146 -0.489 0.228 0.103 0.131 0.119 -0.428 0.206 0.084 0.117 0.111 -1.266 0.334 0.079 0.193
DCMP 0.072 -0.695 0.314 0.062 0.181 0.294 -0.291 0.068 0.169 0.045 0.045 -2.058 0.471 0.042 0.263
LIFT 0.374 -0.142 0.059 0.209 0.040 0.232 -0.322 0.095 0.145 0.060 0.310 -0.523 0.155 0.183 0.092
GLOB 0.229 -0.277 0.139 0.138 0.088 0.309 -0.273 0.046 0.174 0.035 0.269 -0.589 0.179 0.170 0.112
SHAP 0.218 -0.418 0.188 0.139 0.111 0.171 -0.431 0.213 0.105 0.123 0.310 -0.744 0.181 0.185 0.111
GXI 0.384 -0.096 0.051 0.215 0.034 0.290 -0.283 0.060 0.172 0.037 0.265 -0.652 0.173 0.163 0.102
IG 0.121 -0.700 0.316 0.092 0.177 0.095 -0.523 0.322 0.068 0.173 0.183 -1.117 0.278 0.123 0.169
LIME 0.117 -0.471 0.242 0.086 0.137 0.099 -0.469 0.269 0.072 0.145 0.186 -1.023 0.261 0.124 0.146

AGN

RPI -0.015 -0.814 0.197 0.026 0.117 -0.008 -1.480 0.266 0.007 0.150 -0.006 -1.357 0.231 0.009 0.146
SIG 0.066 -0.664 0.173 0.105 0.110 0.088 -1.089 0.179 0.111 0.107 0.041 -1.422 0.265 0.070 0.163
ALTI 0.058 -0.724 0.171 0.080 0.126 0.048 -1.076 0.191 0.063 0.143 0.039 -1.443 0.273 0.059 0.192
DCMP 0.008 -1.762 0.388 0.023 0.243 0.300 -0.216 0.043 0.232 0.037 0.002 -2.656 0.445 0.027 0.268
LIFT 0.221 -0.186 0.047 0.205 0.036 0.202 -0.327 0.062 0.175 0.039 0.308 -0.592 0.110 0.241 0.067
GLOB 0.110 -0.356 0.086 0.120 0.065 0.167 -0.285 0.054 0.205 0.047 0.074 -0.824 0.161 0.087 0.126
SHAP 0.201 -0.418 0.098 0.174 0.068 0.212 -0.710 0.115 0.166 0.079 0.223 -0.927 0.159 0.180 0.111
GXI 0.347 -0.079 0.014 0.268 0.013 0.233 -0.229 0.042 0.208 0.028 0.085 -1.143 0.222 0.101 0.141
IG 0.088 -0.543 0.144 0.090 0.100 0.085 -1.179 0.190 0.070 0.129 0.060 -1.537 0.264 0.069 0.177
LIME 0.105 -0.483 0.119 0.114 0.075 0.096 -0.527 0.096 0.119 0.062 0.136 -0.347 0.066 0.147 0.044

EMR

RPI 0.163 -4.449 0.668 0.133 0.350 0.007 -2.400 0.683 0.017 0.359 -0.003 -4.151 0.764 0.010 0.408
SIG 0.347 -2.006 0.438 0.214 0.239 0.147 -1.398 0.494 0.091 0.269 0.190 -2.063 0.512 0.116 0.279
ALTI 0.172 -3.144 0.608 0.129 0.338 0.051 -1.635 0.562 0.036 0.307 0.044 -2.592 0.631 0.030 0.350
DCMP 0.172 -3.326 0.622 0.129 0.337 0.537 -0.370 0.118 0.278 0.082 0.060 -2.763 0.625 0.044 0.346
LIFT 0.514 -2.020 0.332 0.282 0.183 0.362 -0.891 0.287 0.198 0.157 0.380 -1.422 0.311 0.207 0.174
GLOB 0.211 -3.106 0.581 0.146 0.322 0.543 -0.369 0.120 0.278 0.084 0.094 -2.423 0.583 0.061 0.322
SHAP 0.525 -1.293 0.254 0.288 0.151 0.307 -1.024 0.337 0.169 0.186 0.426 -1.157 0.278 0.228 0.167
GXI 0.541 -1.510 0.258 0.294 0.147 0.415 -0.754 0.237 0.233 0.127 0.354 -1.472 0.330 0.197 0.187
IG 0.328 -1.917 0.431 0.205 0.237 0.139 -1.396 0.498 0.086 0.269 0.190 -2.106 0.523 0.113 0.285
LIME 0.198 -3.814 0.647 0.143 0.351 0.059 -1.911 0.593 0.041 0.320 0.104 -2.897 0.586 0.065 0.322

Table 2: Evaluation results for all combinations of encoder-based model, dataset, explanation method, and metric.
See the notations in Sec. 4.

The results in Tab. 6 indicate that each compo-
nent in RPI plays a vital yet complementary role,
with the baseline resampling procedure showing
potential to enhance other path-integration meth-
ods. First, RPI-G outperforms RPI-IG, indicating
that integration on attention gradients is preferable
to integration on the input (as done in IG). Sec-
ondly, RPI outperforms RPI-G, demonstrating the
benefit of multiplying attention gradients in the at-
tention scores, validating the specific construction
of the attribution map in Eq.4. Third, RPI-SIG
and RPI-IG outperform SIG and IG, respectively,

showcasing the effectiveness of incorporating the
RPI baseline resampling procedure. However, both
RPI-SIG and RPI-IG fall short compared to RPI,
emphasizing the effectiveness of our proposed RPI
and the complementary contribution of the RPI
baseline resampling procedure along with the atten-
tion level integration and the attention scores mul-
tiplication. Overall, these findings underscore the
efficacy of the RPI baseline resampling procedure
as a meta-method to improve performance when
applied on top of path-integration methods, and the
superiority of the specific RPI implementation pro-
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Dataset Prediction Model Method Attribution

SST2 Positive BERT
RPI a modest pleasure that accomplishes its goals with ease and confidence .
SIG a modest pleasure that accomplishes its goals with ease and confidence .
DCMP a modest pleasure that accomplishes its goals with ease and confidence .

SST2 Negative BERT

RPI
apallingly absurd ... the chemistry or lack thereof between newton and

wahlberg could turn an imax theater into a 9 ” black and white portable tv .

SIG
apallingly absurd ... the chemistry or lack thereof between newton and

wahlberg could turn an imax theater into a 9 ” black and white portable tv .

DCMP
apallingly absurd ... the chemistry or lack thereof between newton and

wahlberg could turn an imax theater into a 9 ” black and white portable tv .

SST2 Positive RoBERTa

RPI
not ‘ terrible filmmaking ’ bad , but more like ,

’ i once had a nightmare like this , and it ’s now coming true ’ bad .

SIG
not ‘ terrible filmmaking ’ bad , but more like ,

’ i once had a nightmare like this , and it ’s now coming true ’ bad .

DCMP
not ‘ terrible filmmaking ’ bad , but more like ,

’ i once had a nightmare like this , and it ’s now coming true ’ bad .

Table 3: Examples of attributions on sentences from the SST2 dataset. The bold words represent the top 3 words in
the sentence, according to each attribution method.

Llama2 Mistral

Suff↓ LO↓ Comp↑ A-S↓ A-C↑ Suff↓ LO↓ Comp↑ A-S↓ A-C↑

SST2

RPI 0.137 -0.104 0.069 0.083 0.041 0.205 -0.299 0.208 0.139 0.105
SIG 0.157 -0.098 0.065 0.090 0.041 0.281 -0.256 0.176 0.160 0.100

LIFT 0.159 -0.056 0.033 0.093 0.023 0.319 -0.139 0.100 0.184 0.067
SHAP 0.152 -0.072 0.048 0.088 0.032 0.308 -0.125 0.090 0.177 0.061
GXI 0.159 -0.054 0.033 0.092 0.023 0.319 -0.142 0.102 0.184 0.067
LLM 0.119 -0.101 0.069 0.069 0.042 0.257 -0.115 0.082 0.151 0.062

RTN

RPI 0.177 -0.176 0.103 0.112 0.061 0.189 -0.458 0.275 0.150 0.138
SIG 0.219 -0.146 0.088 0.126 0.054 0.312 -0.323 0.215 0.184 0.121

LIFT 0.211 -0.115 0.068 0.124 0.040 0.375 -0.156 0.103 0.220 0.077
SHAP 0.216 -0.103 0.059 0.124 0.043 0.365 -0.140 0.097 0.213 0.068
GXI 0.212 -0.114 0.066 0.125 0.040 0.375 -0.161 0.105 0.220 0.077
LLM 0.172 -0.152 0.091 0.104 0.056 0.323 -0.129 0.083 0.191 0.065

AGN

RPI 0.008 -1.375 0.242 0.115 0.142 -0.008 -2.384 0.305 0.069 0.185
SIG 0.386 -0.367 0.081 0.298 0.054 0.365 -0.750 0.123 0.295 0.077

LIFT 0.414 -0.561 0.059 0.312 0.041 0.447 -0.487 0.070 0.334 0.048
SHAP 0.361 -0.447 0.055 0.291 0.041 0.401 -0.396 0.063 0.311 0.046
GXI 0.423 -0.564 0.058 0.314 0.040 0.447 -0.489 0.067 0.335 0.048
LLM 0.252 -0.643 0.047 0.246 0.039 0.359 -0.226 0.042 0.295 0.040

EMR

RPI 0.259 -4.272 0.803 0.195 0.425 0.130 -5.679 0.766 0.117 0.396
SIG 0.469 -1.879 0.584 0.272 0.302 0.273 -2.572 0.620 0.174 0.336

LIFT 0.661 -1.563 0.456 0.370 0.252 0.629 -1.697 0.367 0.344 0.204
SHAP 0.632 -1.316 0.386 0.344 0.216 0.451 -2.001 0.452 0.255 0.251
GXI 0.663 -1.566 0.457 0.369 0.252 0.629 -1.683 0.367 0.344 0.205
LLM 0.701 -0.773 0.204 0.364 0.124 0.561 -1.306 0.303 0.281 0.185

Table 4: Evaluation results on the Llama2 and Mistral models.
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R Suff↓ LO↓ Comp↑ A-S↓ A-C↑

R=1 0.254 -0.885 0.239 0.154 0.135
R=2 0.097 -1.270 0.342 0.078 0.181
R=4 0.020 -1.725 0.447 0.037 0.233
R=8 -0.008 -2.232 0.534 0.017 0.277
R=16 -0.016 -2.487 0.600 0.007 0.304
R=24 -0.019 -2.675 0.622 0.002 0.319
R=32 -0.019 -2.820 0.636 0.000 0.329

Table 5: Ablation Study: results for different values of
R (the number of sampled baselines in RPI) on RTN
using the BERT model.

Suff↓ LO↓ Comp↑ A-S↓ A-C↑

RTN

RPI -0.019 -2.675 0.622 0.002 0.319
RPI-G 0.000 -2.642 0.584 0.017 0.319
RPI-SIG -0.013 -2.584 0.600 0.011 0.323
RPI-IG -0.017 -2.703 0.614 0.004 0.329
IG 0.183 -1.117 0.278 0.123 0.169
SIG 0.157 -1.524 0.353 0.109 0.190

Table 6: This ablation study highlights significant and
complementary contributions of the components in the
RPI method. These include integrating at the attention
level (RPI) vs. input level (RPI-IG), the benefit from
applying the RPI baseline resampling procedure for
other path-integration methods (RPI-SIG vs. SIG, RPI-
IG vs. IG), and from multiplying the attention scores
in their gradients vs. using the plain gradients (RPI
vs. RPI-G). The results show that each component in
the our proposed RPI method plays a vital role, with
the baseline resampling procedure showing potential to
enhance other path-integration methods as well.

posed in this work. Table 5 investigates the impact
of varying the number of sampled baselines for
R ∈ {1, 2, 4, 8, 16, 24, 32} on RPI’s performance.
We observe a slight improvement when increasing
the number of trials from 24 to 32, demonstrating
that the settings ofR = 24 are sufficient for achiev-
ing state-of-the-art performance while maintaining
acceptable runtime. It is noteworthy that although
the number of interpolation steps n is also a config-
urable parameter, increasing it beyond n = 30 did
not result in a significant improvement.

Lastly, recall that in the general case, RPI sup-
ports the inclusion of attribution maps from all
layers in the model (Eq. 5). Therefore, in Ap-
pendix A.1, we provide a thorough ablation study
assessing the performance of RPI when applied to
individual layers and when aggregating attribution

maps from multiple layers. Our findings show that
performance tends to improve with deeper layers,
and top-down layer aggregation performs the best.

5 Conclusion

This work responds to the diversity inherent in ex-
planation metrics, recognizing that different met-
rics may promote different attribution maps. RPI
effectively addresses this challenge by introduc-
ing randomness into the integration path through
random baseline sampling, thereby generating a
pool of candidate attribution maps. The adaptabil-
ity provided by multiple baselines enables RPI to
select the most effective attribution map tailored
to the specific evaluation metric. Through an ex-
tensive evaluation encompassing 11 explanation
methods, 5 language models, and 4 datasets, our
work establishes the superiority of RPI over current
state-of-the-art methods across a diverse range of
explanation metrics. These findings highlight the
effectiveness of RPI as a machinery for explaining
LMs.

6 Limitations and Future Work

While our RPI method has demonstrated its effec-
tiveness in providing state-of-the-art results by sam-
pling baselines from a Gaussian diffusion process,
there exist certain limitations that merit considera-
tion and avenues for future research.

Firstly, to enhance the variety of drawn baselines
and, consequently, the resulting attribution maps,
an exploration of additional baseline distributions
is warranted. One potential avenue is to model
the baseline distribution B using a more diverse
distribution, such as a mixture of distributions, as
suggested in Section 3.

Another limitation lies in the non-adaptive na-
ture of the sampling process in RPI. Adaptive sam-
pling techniques can leverage information from
already drawn baselines to intelligently decide the
next region in space from which to draw base-
lines, thereby potentially improving performance
on the metric of interest. Exploration-exploitation
approaches, updating the baseline distribution in an
online manner as sampling process evolves, could
be explored to address this limitation.

9438



References
Samira Abnar and Willem Zuidema. 2020. Quantify-

ing attention flow in transformers. arXiv preprint
arXiv:2005.00928.

Arthur Mensch Chris Bamford Devendra Singh Chap-
lot Diego de las Casas Florian Bressand Gianna
Lengyel Guillaume Lample Lucile Saulnier Lélio
Renard Lavaud Marie-Anne Lachaux Pierre Stock
Teven Le Scao Thibaut Lavril Thomas Wang Tim-
othée Lacroix William El Sayed Albert Q. Jiang,
Alexandre Sablayrolles. 2023. Mistral 7b. arXiv
preprint arXiv:2310.06825.

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr
Bojanowski, Pascal Vincent, Michael Rabbat, Yann
LeCun, and Nicolas Ballas. 2023. Self-supervised
learning from images with a joint-embedding predic-
tive architecture. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 15619–15629.

Oren Barkan. 2017. Bayesian neural word embedding.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31.

Oren Barkan, Omri Armstrong, Amir Hertz, Avi Caciu-
laru, Ori Katz, Itzik Malkiel, and Noam Koenigstein.
2021a. Gam: Explainable visual similarity and classi-
fication via gradient activation maps. In Proceedings
of the 30th ACM International Conference on Infor-
mation & Knowledge Management, pages 68–77.

Oren Barkan, Yuval Asher, Amit Eshel, Yehonatan El-
isha, and Noam Koenigstein. 2023a. Learning to
explain: A model-agnostic framework for explain-
ing black box models. In 2023 IEEE International
Conference on Data Mining (ICDM), pages 944–949.
IEEE.

Oren Barkan, Veronika Bogina, Liya Gurevitch, Yuval
Asher, and Noam Koenigstein. 2024. A counterfac-
tual framework for learning and evaluating explana-
tions for recommender systems. In Proceedings of
the ACM on Web Conference 2024, pages 3723–3733.

Oren Barkan, Avi Caciularu, Ori Katz, and Noam
Koenigstein. 2020a. Attentive item2vec: Neural at-
tentive user representations. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 3377–3381.
IEEE.

Oren Barkan, Avi Caciularu, Idan Rejwan, Ori Katz,
Jonathan Weill, Itzik Malkiel, and Noam Koenigstein.
2020b. Cold item recommendations via hierarchical
item2vec. In 2020 IEEE International Conference
on Data Mining (ICDM), pages 912–917. IEEE.

Oren Barkan, Avi Caciularu, Idan Rejwan, Ori Katz,
Jonathan Weill, Itzik Malkiel, and Noam Koenig-
stein. 2021b. Representation learning via variational
bayesian networks. In Proceedings of the 30th ACM
International Conference on Information & Knowl-
edge Management, pages 78–88.

Oren Barkan, Yehonatan Elisha, Yuval Asher, Amit
Eshel, and Noam Koenigstein. 2023b. Visual expla-
nations via iterated integrated attributions. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 2073–2084.

Oren Barkan, Yehonatan Elisha, Jonathan Weill, Yuval
Asher, Amit Eshel, and Noam Koenigstein. 2023c.
Deep integrated explanations. In Proceedings of the
32nd ACM International Conference on Information
and Knowledge Management, pages 57–67.

Oren Barkan, Yehonatan Elisha, Jonathan Weill, Yuval
Asher, Amit Eshel, and Noam Koenigstein. 2023d.
Stochastic integrated explanations for vision mod-
els. In 2023 IEEE International Conference on Data
Mining (ICDM). IEEE.

Oren Barkan, Yonatan Fuchs, Avi Caciularu, and Noam
Koenigstein. 2020c. Explainable recommendations
via attentive multi-persona collaborative filtering. In
Proceedings of the 14th ACM Conference on Recom-
mender Systems, pages 468–473.

Oren Barkan, Edan Hauon, Avi Caciularu, Ori Katz,
Itzik Malkiel, Omri Armstrong, and Noam Koenig-
stein. 2021c. Grad-sam: Explaining transformers via
gradient self-attention maps. In Proceedings of the
30th ACM International Conference on Information
& Knowledge Management, pages 2882–2887.

Oren Barkan, Roy Hirsch, Ori Katz, Avi Caciularu, and
Noam Koenigstein. 2021d. Anchor-based collabora-
tive filtering. In Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge
Management, pages 2877–2881.

Oren Barkan, Ori Katz, and Noam Koenigstein. 2020d.
Neural attentive multiview machines. In ICASSP
2020-2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
3357–3361. IEEE.

Oren Barkan and Noam Koenigstein. 2016. Item2vec:
neural item embedding for collaborative filtering. In
2016 IEEE 26th International Workshop on Machine
Learning for Signal Processing (MLSP), pages 1–6.
IEEE.

Oren Barkan, Noam Koenigstein, Eylon Yogev, and
Ori Katz. 2019a. Cb2cf: a neural multiview content-
to-collaborative filtering model for completely cold
item recommendations. In Proceedings of the 13th
ACM Conference on Recommender Systems, pages
228–236.

Oren Barkan, Noam Razin, Itzik Malkiel, Ori Katz, Avi
Caciularu, and Noam Koenigstein. 2020e. Scalable
attentive sentence pair modeling via distilled sentence
embedding. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 3235–
3242.

Oren Barkan, Tal Reiss, Jonathan Weill, Ori Katz, Roy
Hirsch, Itzik Malkiel, and Noam Koenigstein. 2023e.

9439



Efficient discovery and effective evaluation of vi-
sual perceptual similarity: A benchmark and beyond.
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 20007–
20018.

Oren Barkan, Idan Rejwan, Avi Caciularu, and Noam
Koenigstein. 2020f. Bayesian hierarchical words
representation learning. In "Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics", pages 3871–3877.

Oren Barkan, Tom Shaked, Yonatan Fuchs, and Noam
Koenigstein. 2023f. Modeling users’ heterogeneous
taste with diversified attentive user profiles. User
Modeling and User-Adapted Interaction, pages 1–31.

Oren Barkan, Shlomi Shvartzman, Noy Uzrad, Al-
mog Elharar, Moshe Laufer, and Noam Koenigstein.
2023g. Inversynth ii: Sound matching via self-
supervised synthesizer-proxy and inference-time fine-
tuning. ISMIR.

Oren Barkan and David Tsiris. 2019. Deep synthe-
sizer parameter estimation. In ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 3887–3891.
IEEE.

Oren Barkan, David Tsiris, Ori Katz, and Noam Koenig-
stein. 2019b. Inversynth: Deep estimation of syn-
thesizer parameter configurations from audio signals.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 27(12):2385–2396.

Shay Ben-Elazar, Gal Lavee, Noam Koenigstein, Oren
Barkan, Hilik Berezin, Ulrich Paquet, and Tal Zaccai.
2017. Groove radio: A bayesian hierarchical model
for personalized playlist generation. In Proceedings
of the Tenth ACM International Conference on Web
Search and Data Mining, pages 445–453.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. In European conference on computer
vision, pages 213–229. Springer.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé
Jégou, Julien Mairal, Piotr Bojanowski, and Armand

Joulin. 2021. Emerging properties in self-supervised
vision transformers. In Proceedings of the IEEE/CVF
international conference on computer vision, pages
9650–9660.

Hila Chefer, Shir Gur, and Lior Wolf. 2021a. Generic
attention-model explainability for interpreting bi-
modal and encoder-decoder transformers. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 397–406.

Hila Chefer, Shir Gur, and Lior Wolf. 2021b. Trans-
former interpretability beyond attention visualization.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 782–
791.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C. Wallace. 2020. ERASER: A benchmark to
evaluate rationalized NLP models. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4443–4458, Online.
Association for Computational Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Jesse Engel, Lamtharn Hantrakul, Chenjie Gu, and
Adam Roberts. 2020. Ddsp: Differentiable digital
signal processing. arXiv preprint arXiv:2001.04643.

Joseph Enguehard. 2023. Sequential integrated gradi-
ents: a simple but effective method for explaining
language models. arXiv preprint arXiv:2305.15853.

Javier Ferrando, Gerard I Gállego, and Marta R Costa-
jussà. 2022. Measuring the mixing of contextual
information in the transformer. arXiv preprint
arXiv:2203.04212.

Ruth Fong, Mandela Patrick, and Andrea Vedaldi. 2019.
Understanding deep networks via extremal perturba-
tions and smooth masks. In Proceedings of the IEEE
International Conference on Computer Vision, pages
2950–2958.

Ruth C Fong and Andrea Vedaldi. 2017. Interpretable
explanations of black boxes by meaningful pertur-
bation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3429–3437.

Keren Gaiger, Oren Barkan, Shir Tsipory-Samuel, and
Noam Koenigstein. 2023. Not all memories created
equal: Dynamic user representations for collaborative
filtering. IEEE Access, 11:34746–34763.

9440

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408


Dvir Ginzburg, Itzik Malkiel, Oren Barkan, Avi Caciu-
laru, and Noam Koenigstein. 2021. Self-supervised
document similarity ranking via contextualized lan-
guage models and hierarchical inference. arXiv
preprint arXiv:2106.01186.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 770–
778.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-
dong Zhang, and Meng Wang. 2020. Lightgcn: Sim-
plifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd Inter-
national ACM SIGIR conference on research and de-
velopment in Information Retrieval, pages 639–648.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,
Xia Hu, and Tat-Seng Chua. 2017. Neural collabora-
tive filtering. In Proceedings of the 26th international
conference on world wide web, pages 173–182.

Ori Katz, Oren Barkan, Noam Koenigstein, and Nir
Zabari. 2022. Learning to ride a buy-cycle: A hyper-
convolutional model for next basket repurchase rec-
ommendation. In Proceedings of the 16th ACM Con-
ference on Recommender Systems, pages 316–326.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro. 2020. Diffwave: A versatile dif-
fusion model for audio synthesis. arXiv preprint
arXiv:2009.09761.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Zhuang Liu, Hanzi Mao, Chaozheng Wu, Christoph Fe-
ichtenhofer, Trevor Darrell, and Saining Xie. 2022.
A convnet for the 2020s. 2022 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 11966–11976.

Scott M Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. Advances
in neural information processing systems, 30.

Itzik Malkiel, Oren Barkan, Avi Caciularu, Noam Razin,
Ori Katz, and Noam Koenigstein. 2020. Recobert: A
catalog language model for text-based recommenda-
tions. arXiv preprint arXiv:2009.13292.

Itzik Malkiel, Dvir Ginzburg, Oren Barkan, Avi Caciu-
laru, Jonathan Weill, and Noam Koenigstein. 2022a.
Interpreting bert-based text similarity via activation
and saliency maps. In Proceedings of the ACM Web
Conference 2022, pages 3259–3268.

Itzik Malkiel, Dvir Ginzburg, Oren Barkan, Avi Caci-
ularu, Yoni Weill, and Noam Koenigstein. 2022b.
Metricbert: Text representation learning via self-
supervised triplet training. In ICASSP 2022-2022

IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1–5. IEEE.

Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In NAACL-HLT.

Ali Modarressi, Mohsen Fayyaz, Ehsan Aghazadeh,
Yadollah Yaghoobzadeh, and Mohammad Taher Pile-
hvar. 2023. Decompx: Explaining transformers de-
cisions by propagating token decomposition. arXiv
preprint arXiv:2306.02873.

Ali Modarressi, Mohsen Fayyaz, Yadollah
Yaghoobzadeh, and Mohammad Taher Pile-
hvar. 2022. Globenc: Quantifying global token
attribution by incorporating the whole encoder layer
in transformers. arXiv preprint arXiv:2205.03286.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. arXiv preprint cs/0506075.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "why should I trust you?": Explain-
ing the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Fran-
cisco, CA, USA, August 13-17, 2016, pages 1135–
1144.

Wojciech Samek, Alexander Binder, Grégoire Mon-
tavon, Sebastian Lapuschkin, and Klaus-Robert
Müller. 2017. Evaluating the visualization of what
a deep neural network has learned. IEEE trans-
actions on neural networks and learning systems,
28(11):2660–2673.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Soumya Sanyal and Xiang Ren. 2021. Discretized in-
tegrated gradients for explaining language models.
arXiv preprint arXiv:2108.13654.

Soumya Sanyal, Harman Singh, and Xiang Ren. 2022.
FaiRR: Faithful and robust deductive reasoning over
natural language. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1075–1093,
Dublin, Ireland. Association for Computational Lin-
guistics.

9441

https://doi.org/10.18653/v1/2022.acl-long.77
https://doi.org/10.18653/v1/2022.acl-long.77


Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang,
Junlin Wu, and Yi-Shin Chen. 2018. Carer: Con-
textualized affect representations for emotion recog-
nition. In Proceedings of the 2018 conference on
empirical methods in natural language processing,
pages 3687–3697.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. 2017. Grad-cam: Visual explanations
from deep networks via gradient-based localization.
In Proceedings of the IEEE international conference
on computer vision, pages 618–626.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In International
conference on machine learning, pages 3145–3153.
PMLR.

Avanti Shrikumar, Peyton Greenside, Anna Shcherbina,
and Anshul Kundaje. 2016. Not just a black box:
Learning important features through propagating acti-
vation differences. arXiv preprint arXiv:1605.01713.

Karen Simonyan, Andrea Vedaldi, and Andrew Zis-
serman. 2013. Deep inside convolutional networks:
Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. 2015. Deep un-
supervised learning using nonequilibrium thermo-
dynamics. In International conference on machine
learning, pages 2256–2265. PMLR.

Pascal Sturmfels, Scott Lundberg, and Su-In Lee. 2020.
Visualizing the impact of feature attribution base-
lines. Distill. Https://distill.pub/2020/attribution-
baselines.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319–
3328. PMLR.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and
Tat-Seng Chua. 2019. Neural graph collaborative fil-
tering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in
Information Retrieval, pages 165–174.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

Bolei Zhou, David Bau, Aude Oliva, and Antonio Tor-
ralba. 2018. Interpreting deep visual representations
via network dissection. IEEE transactions on pattern
analysis and machine intelligence.

9442

https://doi.org/10.23915/distill.00022
https://doi.org/10.23915/distill.00022


A Appendix

A.1 Layer ablation study

The evaluation results in Sec. 4.2 indicate that
applying RPI solely to the last layer consistently
yields state-of-the-art results. While this approach
aligns with previous seminal explanation meth-
ods (Selvaraju et al., 2017; Caron et al., 2021) that
predominantly utilize the final layer of the model
for explanation generation, the general formulation
of RPI, as described in Eq. 5, allows for the utiliza-
tion of any arbitrary layer in the model and their
combinations. Therefore, for the sake of complete-
ness, in this section, we present an ablation study
investigating the performance of RPI when applied
to each individual layer in the model separately, as
well as the benefits of aggregating attribution maps
from multiple layers in the model.

To this end, we ablate over the layers in three
different ways:

1. Individual Layers: We assess RPI’s perfor-
mance when applied to each layer separately.
This is achieved by setting J (Eq. 5) to a set
containing the individual layer of interest each
time.

2. Top-down Aggregation: RPI’s performance is
evaluated when applied to a set of consecutive
layers in a top-down manner. This involves
combining the attribution maps produced start-
ing from the top layer L (the last layer) down-
wards to layer L − i, with i ∈ {0, 1, ..., 9}.
Specifically, this is obtained by setting J =

{L,L− 1, ..., L− i} in Eq. 5.

3. Bottom-up Aggregation: We assess RPI’s per-
formance in a bottom-up manner, starting
from the first layer and up to layer L− i. This
is achieved by setting J = 1, 2, ..., L− i in
Eq. 5.

Table 7 presents the results obtained based on the
RTN dataset using an RTN finetuned BERT model
(L stands for the last layer in the model). The
Individual Layers section presents RPI results when
applied to each individual layer L − i separately,
for i ∈ {0, 1, ..., 11}. The Top-down Aggregation
section presents RPI results for the combination of
attribution maps produced by multiple consecutive
layers in a top-down manner. Specifically, the row

associated with the layer L− i corresponds to the
application of Eq. 5 with J = {L,L−1, ..., L− i}.
Conversely, in the Bottom-up Aggregation section,
RPI is applied with J = {1, 2, ..., L − i} for the
layer L− i.

It is important to clarify that the results in the
’Top-down Aggregation’ and ’Bottom-up Aggre-
gation’ sections are derived from aggregating the
attribution maps produced from each individual
layer. Specifically, the RPI procedure was applied
once for each individual layer, and the resulting
attribution maps were then used for both top-down
and bottom-up aggregations. Consequently, the re-
sults for full aggregation across all layers are iden-
tical for both top-down and bottom-up approaches
(found in the first and last rows of the ’Top-down
Aggregation’ and ’Bottom-up Aggregation’ sec-
tions, respectively). However, in all other cases,
top-down aggregation outperforms bottom-up ag-
gregation. For instance, aggregating the attribution
maps from last 3 layers (corresponding to the row
for L− 2 in the ’Top-down Aggregation’ section)
demonstrates superior performance compared to
the aggregation of the attribution maps from the
first 3 layers (corresponding to the row for L − 7

in the ’Bottom-up Aggregation’ section).
Overall, the results in Tab. 7 indicate that perfor-

mance tends to improve with deeper layers when
applied individually, and as a result, it is preferred
to aggregate attribution maps from the layers in a
top-down manner.

A.2 Additional qualitative results

Table 8 showcases various RPI attributions ob-
tained from multiple instances in the SST2 and
EMR datasets, employing the RoBERTa model.
The ’Prediction’ column denotes the class with the
highest prediction score by the model. In each
example, the top three ranked words according to
RPI attribution are highlighted in bold. Notably,
the highlighted words exhibit semantic similarity
to the predicted class, thereby offering a plausible
explanation that supports the model’s prediction.

A.3 Evaluation metrics

For quantitative assessment of the explanation
methods, we consider the following set of metrics:

1. Log-Odds (LO) (Shrikumar et al., 2017) score
is defined as the average difference of the
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Individual Layers Bottom-up Aggregation Top-down Aggregation

Suff↓ LO↓ Comp↑ A-S↓ A-C↑ Suff↓ LO↓ Comp↑ A-S↓ A-C↑ Suff↓ LO↓ Comp↑ A-S↓ A-C↑

L -0.018 -2.583 0.610 0.005 0.309 -0.021 -3.357 0.725 -0.010 0.369 -0.018 -2.583 0.610 0.005 0.309
L− 1 -0.019 -2.573 0.609 0.003 0.314 -0.021 -3.301 0.718 -0.010 0.367 -0.019 -2.909 0.657 -0.002 0.335
L− 2 -0.019 -2.675 0.622 0.002 0.319 -0.021 -3.233 0.713 -0.009 0.363 -0.020 -3.108 0.686 -0.004 0.350
L− 3 -0.018 -2.662 0.617 0.003 0.315 -0.021 -3.113 0.700 -0.009 0.355 -0.020 -3.221 0.699 -0.006 0.358
L− 4 -0.018 -2.306 0.574 0.010 0.284 -0.021 -2.945 0.681 -0.009 0.344 -0.021 -3.263 0.708 -0.007 0.361
L− 5 -0.018 -2.138 0.538 0.010 0.274 -0.021 -2.816 0.658 -0.008 0.336 -0.021 -3.290 0.710 -0.008 0.363
L− 6 -0.018 -2.093 0.537 0.004 0.278 -0.021 -2.700 0.645 -0.007 0.329 -0.021 -3.313 0.714 -0.008 0.365
L− 7 -0.018 -1.881 0.500 0.009 0.253 -0.021 -2.555 0.621 -0.006 0.317 -0.021 -3.324 0.718 -0.009 0.366
L− 8 -0.018 -1.919 0.516 0.009 0.261 -0.020 -2.444 0.600 -0.004 0.309 -0.021 -3.336 0.722 -0.009 0.367
L− 9 -0.017 -1.814 0.479 0.008 0.254 -0.020 -2.216 0.560 -0.001 0.290 -0.021 -3.347 0.723 -0.009 0.368
L− 10 -0.017 -1.615 0.447 0.023 0.237 -0.019 -1.887 0.508 0.014 0.263 -0.021 -3.352 0.725 -0.010 0.369
L− 11 -0.013 -1.421 0.411 0.047 0.216 -0.013 -1.421 0.411 0.047 0.216 -0.021 -3.357 0.725 -0.010 0.369

Table 7: RPI layer ablation study using a finetuned version of BERT on the RTN dataset. L stands for the last
layer in the model. The Individual Layers section presents RPI results when applied each individual layer in the
model separately. This is achieved by setting J (Eq. 5) to a set containing the individual layer of interest each time.
The Top-down Aggregation section presents RPI results when applied to multiple consecutive layers starting from
the top layer L (the last layer) downwards. Specifically, the row associated with the layer L − i corresponds to
the application of RPI with J = {L,L− 1, ..., L− i}. Conversely, in the Bottom-up Aggregation section, RPI is
applied with J = {1, 2, ..., L− i} for the layer L− i. The results indicate that performance tends to improve with
deeper layers when applied to a single layer, and therefore, it is preferred to aggregate attribution maps from the
layers in a top-down manner.

Dataset Prediction Attribution

EMR

Joy i continue to feel so content about our decision to move here
Fear i have to take jenny in to be spayed so of course im feeling nervous and guilty
Sadness im feeling sentimental or in need of reassurance
Fear i was feeling a little fearful of trying to eat this damn thing
Anger i remember feeling so hellip furious with the shooter
Anger i just feel really violent right now
Joy i feel so tranquil right now its great
Fear i couldn t turn my head away even when i feel frightened
Surprise i feel so deeply shocked and saddened
Fear im feeling a combination of terrified and relieved

SST2

Negative first , for a movie that tries to be smart , it ’s kinda dumb
Negative tedious norwegian offering which somehow snagged an oscar nomination
Positive the film retains ambiguities that make it well worth watching
Negative makes piecing the story together frustrating difficult
Negative doubtful this listless feature will win him any new viewers
Positive to emerge as an exquisite motion picture in its own right
Positive one of the most interesting writer/directors working today
Positive would be forgettable if it were n’t such a clever adaptation of the bard ’s tragic play

Table 8: Examples of RPI attributions for multiple examples from the SST2 and EMR datasets (utilizing the
RoBERTa model). The ’Prediction’ column indicates the class associated with the highest prediction score by
the model. In each example, the top three ranked words according to RPI attribution are marked in bold. The
highlighted words demonstrate semantic similarity to the predicted class, thereby providing a reasonable explanation
that supports the model’s prediction.

negative logarithmic probabilities on the pre-
dicted class before and after masking the top
k% words with <MASK> padding (Encoder-

based models) and <UNK> padding (Llama2).
Lower scores are better. In this work, we used
LO with k = 20.
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2. Comprehensiveness (Comp) (DeYoung et al.,
2020) score is defined as the average differ-
ence of the change in predicted class proba-
bility before and after removing the top k%
features. Similar to Log-odds, this measures
the influence of the top-attributed tokens on
the model’s prediction. For a single example
Comp is computed as:

p(y′|xi)− p(y′|x(k)i ),

where y′ is the predicted class, x is the input
sequence of tokens, and x(k) denotes the mod-
ified sequence with the top k% attributed to-
kens deleted from the sequence. Higher scores
are better. In this work, we used Comp with
k = 20.

3. Sufficiency (Suff) (DeYoung et al., 2020)
score is defined as the average difference of
the change in predicted class probability be-
fore and after keeping only the top k% tokens.
This measures the adequacy of the top k% at-
tributions for model’s prediction. It is defined
in a similar fashion as comprehensiveness, ex-
cept the x(k) is defined as the sequence con-
taining only the top k% tokens. Lower scores
are better. In this work, we used Suff with
k = 20.

4. Area Over the Perturbation Curves (AOPC):
AOPC-Sufficiency (A-S) and AOPC-
Comprehensiveness (A-C) (DeYoung et al.,
2020) - are the average differences of the
change in predicted class probability before
and after keeping and removing the top k% to-
kens for Sufficiency and Comprehensiveness,
respectively:

AOPC-S =
1

|B|
∑

k∈B
Suff(k),

AOPC-C =
1

|B|
∑

k∈B
Comp(k).

Here, we evaluate Comp and Suff for 5 differ-
ent values of k, setting B = {1, 5, 10, 20, 50}
as suggested by (DeYoung et al., 2020). A-S
and A-C measure how well a specific token
ordering is scored under a model from two
complementary perspectives and across the k

axis.

A.4 LLM prompts

This section outlines the prompts used by the
Llama2 and Mistral models for each dataset in
a few-shot context. Utilizing these prompts led
to classification accuracy exceeding 90% for the
SST2 and RTN tasks, which is also true for the
LoRA-based finetuned models for the AGN and
EMR tasks. It is noteworthy that in a zero-shot
mode, the results experience a significant degrada-
tion.

A.4.1 SST2 prompt
Classify the sentiment of sentences. for each
sentence the label is positive (P) or negative (N)

Text: hide new secretions from the parental
units
Label:N

Text: the greatest musicians
Label:P

Text:are more deeply thought through than
in most ‘ right-thinking ’ films
Label:P

Text: on the worst revenge-of-the-nerds clichés the
filmmakers could dredge up
Label:0

Text:[text]
Label:

A.4.2 RTN prompt
Classify the sentiment of sentences. for each
sentence the label is positive (P) or negative (N)

Text: the film desperately sinks further and
further into comedy futility.
Label:N

Text: if you sometimes like to go to the
movies to have fun , wasabi is a good place to start
.
Label:P

Text: plays like the old disease-of-the-week
small-screen melodramas .
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Label:N

Text: hip-hop has a history , and it’s a metaphor
for this love story .
Label:P

Text: spiderman rocks
Label:P

Text:so exaggerated and broad that it comes
off as annoying rather than charming .
Label:N

Text:[text]
Label:
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