
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 8986–8999
November 12-16, 2024 ©2024 Association for Computational Linguistics

Achieving Stronger Generation via Simple Contrastive Tuning

Zhimeng Wang1, Pinzheng Wang1, Juntao Li1*, Yibin Chen2, Min Zhang1

1Harbin Institute of Technology, Shenzhen, China
2Huawei Technologies

zmwang03@gmail.com; chenyibin4@huawei.com;
zhangmin2021@hit.edu.cn;

Abstract

Instruction tuning is widely used to unlock the
abilities of Large Language Models (LLMs)
in following human instructions, resulting in
substantial performance improvements across
various downstream tasks. Furthermore, con-
trastive decoding methods are employed to en-
hance instruction-tuned models. To further ex-
plore the potential of contrastive decoding, we
introduce the Contrastive Tuning and Decod-
ing (CTD) framework, which enhances model
performance without requiring additional data
or significant computational resources. When
performing Contrastive Tuning, we optimize
a correction model by targeting discrepancies
between the original outputs and labels. During
Contrastive Decoding, the correction model ad-
justs the logits of the SFT model using the same
input to ensure better adherence to instructions.
With the lightweight CTD framework, we re-
fine the behavior of instruction-tuned models,
improving their performance on the challeng-
ing SUPNATINST dataset with unfamiliar data
distributions across various models and prompt
formats.

1 Introduction

Recent years (Zhang et al., 2023b) have witnessed
remarkable progress in large language models
(LLMs). Some LLMs, such as LLaMA (Touvron
et al., 2023a), GPT-3 (Brown et al., 2020), and
Mistral (Jiang et al., 2023), have acquired gen-
eral abilities for solving various tasks. Instruc-
tion tuning is a crucial technique to enhance the
capabilities and controllability of LLMs (Zhang
et al., 2023b) by further fine-tuning LLMs with
instruction-formatted data, resulting in better per-
formance on downstream tasks.

However, there is a concern that instruction-
tuned models show significant improvements
mainly on tasks related to the instruction datasets

* Corresponding author.

and may not perform as well on others (Gudibande
et al., 2023). This limitation indicates that
instruction-tuned models struggle to effectively
generalize to tasks with entirely different data dis-
tributions. Additionally, in practical scenarios, in-
struction tuning often faces challenges with limited
data and tends to overfit, leading to performance
degradation after multiple training epochs (Xue
et al., 2024; Muennighoff et al., 2024).

To further enhance the performance of LLMs
on text generation tasks, some researchers have
explored decoding methods in a contrastive man-
ner (Chuang et al., 2023; Kim et al., 2023; Shi
et al., 2024; Li et al., 2022). These methods focus
on modifying the model’s initial output distribution
with a specific distracted distribution. Although ex-
isting contrastive decoding methods do not require
additional training, they lack robustness across var-
ious models and scenarios and are sensitive to spe-
cific hyperparameters (Kim et al., 2023).

To address this issue and further explore the po-
tential of instruction-tuned models, we propose
a novel Contrastive Tuning and Decoding (CTD)
framework to achieve stronger generation without
additional data or much computational resource, as
shown in Figure 1. With a Supervised Fine-Tuned
(SFT) model derived from a pre-trained model
as the original model, we initialize the correction
model using the SFT model and fine-tune it with
parameter-efficient methods, utilizing data sampled
from the SFT dataset to obtain additional parame-
ters for correction. Finally, we apply Contrastive
Decoding, which leverages the differences between
the original and correction model’s outputs. This
process results in significant performance improve-
ments with minimal resource requirements, as we
use prompt tuning for contrastive tuning, which is
lightweight. We are the first to explore employ-
ing contrastive tuning before contrastive decod-
ing, which optimizes the correction model from
a unique perspective, resulting in more reliable im-

8986

Pretrained
Model

SFT
Model

SFT

Contrastive
Tuning

Contrastive
Decoding

Correction Model

Stronger
Outputs+

Original Model

SFT
Model

SFT
Data

sample

Additional
parameters

Figure 1: Overview of the Contrastive Tuning and Decoding (CTD) framework. Given an instruction-tuned model
as the original model, we employ low-cost Contrastive Tuning with data sampled from the SFT dataset to obtain
additional parameters for the correction model. Then, we use Contrastive Decoding to refine the original model’s
predictions, resulting in stronger outputs.

provements on challenge tasks with unfamiliar data
distribution.

In summary, our contributions are as follows:
(1) We introduce Contrastive Tuning, which de-
velops a specific correction model for the original
SFT model. (2) We propose Contrastive Decod-
ing with a tunable prefix, which is efficient as it
introduces almost no inference latency. (3) Our
method achieves stronger generation by integrating
Contrastive Tuning and Contrastive Decoding into
the CTD framework.

2 Related Work

Instruction Tuning Instruction tuning is a
method for fine-tuning pre-trained LLMs on a col-
lection of formatted instances presented in natural
language (Wei et al., 2021). This approach enables
LLMs to follow human instructions (Wei et al.,
2022) and perform specific tasks without requir-
ing demonstrations, even for unseen tasks (Chung
et al., 2024). However, in a data-constrained sce-
nario, many prior works on LLM (Chung et al.,
2024; Brown et al., 2020) show that training an
LLM with multiple epochs of repeated data leads
to overfitting. Our work also employs multiple
rounds of tuning with repeated data and achieves
better performance.

Contrastive Decoding & Instructive Decoding
The idea of using contrast to improve the text gen-
eration performance of LLMs has been studied in
various way (Yona et al., 2023; Li et al., 2022; Kim
et al., 2023; Liu et al., 2021a; Shi et al., 2024). Our
work is mainly motivated by Contrastive Decod-
ing (CD) (Li et al., 2022) and Instructive Decod-

ing (ID) (Kim et al., 2023). CD contrasts expert
LLMs with amateur LLMs by taking the difference
of model log probabilities to improve generation
quality without training. It uses larger LLMs as
experts and smaller LLMs as amateurs. However,
Instructive Decoding is based on the effect of differ-
ent instructions. They contrast normal instructions
with noise instructions to adjust the logits of the
next token prediction and achieve considerable per-
formance.

Prompt-tuning Prompt-tuning (Lester et al.,
2021) is a Parameter-Efficient Fine-Tuning (PEFT)
method that can efficiently adapt large models over
various downstream tasks (Han et al., 2024). It adds
a learnable soft prompt (also called a continuous
prompt) before the input of models. During train-
ing, only soft prompts are updated, and the model
parameters are frozen. Prompt-tuning works well
on many tasks, but it doesn’t perform as effectively
as fine-tuning (Liu et al., 2021b) and has been re-
placed by other PEFT methods such as Lora (Hu
et al., 2021), Qlora (Dettmers et al., 2024), Llama
adapter (Zhang et al., 2023a), etc. In our work, we
use prompt tuning to show the feasibility of tuning
in a contrastive way, as this approach is sufficiently
straightforward.

3 Motivation

We draw inspiration from Instructive Decoding,
which suggests that distracted logits from the SFT
model itself can be used to refine its original out-
put (Kim et al., 2023). However, this approach
is based on intuition, and the improvement is not
stable (Kim et al., 2023). It has been observed that

8987

prefix

Input Tokens Original
 Logits

𝝓𝒑

Distracted
 Logits

𝝓𝒒

Final
Logits

𝝓𝒑 − 𝜶 $ 𝝓𝒒

Training:

SFT
Model

Inference: Generate next token

labels

+

Figure 2: Illustration of Contrastive Tuning and Contrastive Decoding with a soft prefix. The instruction-tuned
model serves as the original model, with the soft prefix added to create the correction model. Both models receive
the same input. During training and inference, we leverage the differences between the original and corrected logits,
optimizing the soft prefix throughout the training process.

Instructive Decoding has misaligned training and
decoding objectives. Therefore, we design a novel
optimization objective to align the language mod-
eling objectives between training and decoding,
enhancing the model’s ability to correct its own out-
puts more effectively. So Contrastive Tuning and
Decoding framework can correct high-confidence
errors, which Instructive Decoding alone cannot
achieve. By incorporating prompt tuning, we avoid
storing two sets of model parameters, reducing
memory requirements.

4 Methodology

4.1 Overall Framework
We start from the idea that the model can correct
its output with just a specific instruction motivated
by Instructive Decoding (Kim et al., 2023). In our
exploration setting, the correction model is devel-
oped from the Supervised Fine-Tuned (SFT) mod-
els. Our target is to efficiently construct a correc-
tion model based on the given SFT model and lever-
age these two models to achieve stronger model
predictions. Specifically, given a pre-trained auto-
regressive language model, we treat its SFT version
MΦ on the instruction dataset D as the original
model, where Φ denotes model parameters. The
Contrastive Tuning and Decoding (CTD) frame-
work first performs low-cost contrastive tuning on
the instruction-tuned model MΦ to obtain a correc-
tion model MΦ+θ using an instruction dataset D′

sampled from D. Then, CTD utilizes Contrastive
Decoding to achieve stronger model predictions
based on the given original and correction model.
It refines the behavior of LLMs, achieving stable
improvements without extra data through low-cost
training. We further introduce the Contrastive Tun-
ing and Instructive Decoding in Section 4.2 and 4.3,
as illustrated in Figure 2.

4.2 Contrastive-Tuning
Given a text sequence t of length N , t<i =
(t1, t2, . . . , ti−1) denotes the sequences proceding
the ith token (i < N). The causal language model-
ing (CLM) objective for tuning a language model
parameterized by Φ is defined as minimizing the
negative log-likelihood:

pΦ(ti|t<i) = SOFTMAX[zi],

LCLM = −Et∼C

[∑

i

log pΦ(ti|t<i)

]
,

where pΦ(ti|t<i) is the predicted probability for to-
ken ti derived from output logits zi by SOFTMAX
function.

For Contrastive Tuning, we employ prompt tun-
ing (Lester et al., 2021; Liu et al., 2021b) by intro-
ducing a tunable prefix denoted as θ while keeping
the main model frozen. The original model gen-
erates logits zi without θ, and a modified logits
z−i with θ. We consider the original model with
θ as the correction model and treat the logits z−i
as learnable noise. In order to minimize the noise
in the original outputs, we compute the difference
between zi and z−i . To optimize the parameter θ
for correction, we modify the conventional CLM
loss as follows:

pΦ,Φ+θ(ti|t<i) = SOFTMAX[zi − α · z−i],

LCLM−CTD = −Et∼C

[∑

i

log pΦ,Φ+θ(ti|t<i)

]
,

where α represents the contrast intensity, as shown
in the logits subtraction part of Figure 2. Specifi-
cally, θ is a tunable prefix for contrast, making this
process lightweight and easy to perform.

8988

By learning to refine the original output with
learnable noise, we obtain a correction model that
can be used to adjust the original model’s predic-
tions. In Section 7.3, we also conduct a pilot exper-
iment with LoRA to obtain the parameter θ, demon-
strating the generalization of Contrastive Tuning.

4.3 Contrastive Decoding

Motivated by Instructive Decoding (Kim et al.,
2023) and Contrastive Decoding (Li et al., 2022),
we propose Contrastive Decoding with soft pre-
fix. We develop a correction model based on the
soft prefix θ after Contrastive Tuning. During gen-
eration with Contrastive Decoding, we still take
the difference between the original model and the
correction model with the same input, resulting in
stronger model predictions, as described in Algo-
rithm 1. Unlike other methods that only decode in a
contrasting manner, our approach achieves stronger
predictions by aligning the CLM objective between
training and contrastive decoding.

5 Experiments

5.1 Experiment Settings

Models Our approach focuses primarily on
instruction-tuned models. In this study, we eval-
uate our method on Alpaca-7B (Taori et al.,
2023), Mistral-7B-SlimOrca (Lian et al., 2023b),
DeciLM-7B-instruct (Team, 2023), Llama3-8b-
alpaca, claude2-alpaca-7B and claude2-alpaca-
13B (Chen et al., 2023).

The Alpaca-7B and Llama3-8b-alpaca are
trained from Llama-7B and Llama-3-8B on the Al-
paca dataset (Taori et al., 2023). claude2-alpaca-7B
and claude2-alpaca-13B is trained from Llama-2-
7B (Touvron et al., 2023a) and Llama-2-13B (Tou-
vron et al., 2023b) on claude2_alpaca dataset (Chen
et al., 2023). Mistral-7B-SlimOrca and DeciLM-

Algorithm 1 Contrastive Decoding with Soft Prefix

Input: Original model MΦ, correction model
MΦ+θ, input text sequence I , target sequence
length T and intensity coefficient β.

1: Initialize t← 1
2: while t < T do
3: zt ←MΦ(yt|I, y<t)
4: z̃t ←MΦ+θ(yt|I, y<t)
5: yt = argmax(SOFTMAX[zt − β ∗ z̃t])
6: set t← t+ 1
7: end while

7B-instruct are trained from Mistral-7B-v0.1 (Jiang
et al., 2023) and DeciLM-7B (Team, 2023) on the
SlimOrca dataset (Lian et al., 2023c), a subset of
OpenOrca dataset (Mukherjee et al., 2023; Lian
et al., 2023a). All the models mentioned above
are derived from publicly available checkpoints on
Huggingface. These instruction-tuned models en-
compass three different prompt formats: Alpaca
format (Taori et al., 2023), ChatML format, and
another commonly used format, detailed in Ap-
pendix C. In our experiments, greedy decoding is
primarily employed for these models.

Evaluation and Baselines We examine the mod-
els and compare the Contrastive Tuning and Decod-
ing (CDT) framework with two baselines: 1) Orig-
inal decoding (OD) using greedy decoding strat-
egy and 2) Instructive Decoding (ID). We choose
the opposite as the noisy instructions, as it con-
sistently outperforms other Instructive Decoding
settings (Kim et al., 2023).

Following Instructive Decoding (Kim et al.,
2023), we also utilize SUPNATINST (Wang et al.,
2022) to assess the model’s performance on unseen
task generalization using Rouge-L metrics (Lin,
2004). We evaluate the model on 119 tasks from
SUPNATINST, categorized into 12 groups, as out-
lined in Appendix B.

Additionally, DROP (Discrete Reasoning Over
Paragraphs) (Dua et al., 2019) and AlpacaEval (Li
et al., 2023) are also used for further evaluations.

DROP is a benchmark where models need to
extract relevant information from English text para-
graphs and then perform discrete reasoning steps
on them. We use the exact match as the metric for
DROP, and the results are shown in Appendix E.

AlpacaEval is a widely used benchmark for eval-
uating large language models (LLMs) on their abil-
ity to follow instructions and align with human
preferences (Li et al., 2023). It assesses the prefer-
ence likelihood of an LLM-based evaluator favor-
ing a model’s output compared to a GPT-4 baseline,
offering a cost-effective alternative to manual hu-
man preference annotations. In our evaluation, we
utilize the gpt-4-1106-preview version as the auto-
mated evaluator.

Training We perform Contrastive Tuning on the
above models for 3 epochs using 4 A100-40G
GPUs. We use 20 tokens to initialize the soft
contrastive prefix. The intensity coefficient α is
set to 0.3 for training. The data for Contrastive
Tuning is sampled from the same dataset used

8989

Table 1: Zero-shot Rouge-L scores on unseen tasks from a subset of the SUPNATINST dataset are evaluated
with different models using Original Decoding (OD), Instructive Decoding (ID), and our Contrastive Tuning and
Decoding (CTD) framework.

Model Methods Rouge-L
Overall TG CR TE QR CEC DAR AC KT DT WA OE GEC

Alpaca-7b
OD 35.97 23.13 26.22 43.37 51.10 50.52 30.32 38.74 32.41 39.07 21.55 29.11 79.89
ID 37.01 25.09 26.60 42.34 58.67 50.89 30.43 39.48 33.03 39.01 22.78 28.82 79.52

CTD 38.73 26.49 28.59 42.84 60.19 50.62 32.21 46.93 36.09 39.13 22.24 29.60 80.30

Mistral-7B-SlimOrca
OD 53.58 32.38 53.72 66.43 58.02 70.47 64.23 54.96 41.54 41.44 44.21 58.63 87.66
ID 54.10 33.44 53.79 66.65 58.00 70.87 65.42 56.76 42.18 41.62 43.89 58.10 88.35

CTD 56.57 34.46 56.49 69.38 57.81 71.92 71.85 61.26 46.36 41.17 47.48 66.35 87.72

DeciLM-6b-instruct
OD 53.41 34.23 43.87 70.03 62.90 69.20 68.25 36.38 42.84 46.58 56.91 67.35 86.47
ID 54.49 34.44 45.81 71.15 63.17 69.91 69.36 39.67 41.74 46.75 58.40 68.77 85.98

CTD 60.46 35.84 60.30 76.65 61.25 73.38 74.45 57.61 51.67 46.13 61.72 70.36 86.25

Llama3-8b-alpaca
OD 32.38 25.88 18.98 35.76 57.85 45.32 21.06 23.95 24.77 40.31 27.17 31.54 88.56
ID 32.55 26.07 18.73 36.01 58.27 44.76 21.91 23.97 24.78 40.24 27.73 33.54 88.62

CTD 36.05 27.93 23.75 39.74 58.12 50.36 29.01 33.09 25.96 40.56 27.35 37.97 88.64

claude2-alpaca-7B
OD 34.46 28.23 25.31 33.19 58.96 52.47 23.46 35.80 27.07 40.51 21.42 21.01 86.44
ID 35.08 28.80 25.57 34.80 59.37 54.69 24.07 35.78 27.92 39.98 21.14 20.69 86.07

CTD 35.72 28.88 24.97 33.77 60.07 55.17 26.33 39.97 30.91 40.53 21.50 22.71 85.92

claude2-alpaca-13B
OD 40.36 33.07 28.65 37.43 59.66 59.99 34.03 45.28 39.09 43.87 34.34 26.63 88.81
ID 40.14 33.09 31.06 34.85 61.44 60.34 34.20 44.16 38.87 43.68 34.09 26.17 87.45

CTD 45.11 35.35 34.67 45.11 63.53 62.10 37.88 55.97 41.64 44.13 33.98 35.38 87.26

by the instruction-tuned model. The batch size
is set as 4×8. We optimize the prefix using the
AdamW (Loshchilov and Hutter, 2017) optimizer
with a learning rate of 9e-4.

5.2 Performance on Unseen Task
generalization

Result Overview Table 1 displays the results
of applying the Contrastive Tuning and Decod-
ing (CTD) framework to these instruction-tuned
models. CTD consistently outperforms the origi-
nal decoding and the Instructive Decoding meth-
ods, particularly for the DeciLM-7b-instruct and
claude2-alpaca-13B models. CTD achieves remark-
able performance in adhering to instructions when
facing these unseen, challenging tasks.

Winning Rate We also assess the tasks in
which CTD outperformed the baseline in the SUP-
NATINST dataset, measured by the Rouge-L score,
as depicted in Figure 3. CTD consistently outper-

54.6%

24.1%

21.3%

Alpaca-7B

55.6%

29.6%
14.8%

Mistral-7B-SlimOrca

61.3%

19.8%
18.9%

CTD

ID

OD

DeciLM-7B-instruct

65.7%

20.0%14.3%

Llama3-8b-alpaca

48.6%

34.3%

17.1%

claude2-alpaca-7B

63.4%

20.5%
16.1%

CTD

ID

OD

claude2-alpaca-13B

Figure 3: Comparative winning rates among Original
Decoding (OD), Instructive Decoding (ID), and Con-
trastive Tuning and Decoding (CTD) across 119 tasks
in the SUPNATINST dataset.

forms original decoding and Instructive Decoding
methods across various tasks, model sizes, and
prompt formats.

Text Generation Quality We evaluate our CTD
framework on the AlpacaEval dataset with gpt-4-
1106-preview as the evaluator, and the results are
shown in Figure 4. The CTD framework performs

Alpaca-7b claude2-alpaca-7B Mistral-7B-SlimOrca
10

30

50

70

90

W
in

 r
at

e

-3.38

-13.88

-8.73

0.78

0.87

1.78

OD
ID
CTD

Figure 4: Winning rates of Original Decoding (OD),
Instructive Decoding (ID), and Contrastive Tuning and
Decoding (CTD) compared to baseline in the AlpacaE-
val dataset.

better than both Original Decoding (OD) and In-
structive Decoding (ID) on this benchmark, high-
lighting its robustness and effectiveness in improv-
ing text generation quality. While ID performs
reasonably well on the SUPNATINST tasks, its
question-answering quality deteriorates. In con-
trast, CTD consistently enhances generation qual-
ity, making it suitable for real-world applications.

5.3 Implementation Details
Training Epochs and Dataset Proportion The
choice of epochs for Contrastive Tuning is critical,
as excessive training can lead to overfitting. As
shown in Figure 5, one or two epochs of contrastive

8990

0.1 0.3 0.7 1.0
Dataset Proportion

0.0

0.5

1.0

1.5

2.0

2.5

 Im
pr

ov
em

en
t

Alpaca-7B
Epoch 1
Epoch 2
Epoch 3

0.01 0.03 0.07 0.1
Dataset Proportion

0.0

0.5

1.0

1.5

2.0

2.5

 Im
pr

ov
em

en
t

Mistral-7B-SlimOrca
Epoch 1
Epoch 2
Epoch 3

0.1 0.3 0.7 1.0
Dataset Proportion

0

1

2

3

4

 Im
pr

ov
em

en
t

claude2-alpaca-13B
Epoch 1
Epoch 2
Epoch 3

0.01 0.03 0.07 0.1
Dataset Proportion

2

0

2

4

6

 Im
pr

ov
em

en
t

DeciLM-7B-instruct
Epoch 1
Epoch 2
Epoch 3

0.1 0.3 0.7 1.0
Dataset Proportion

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

 Im
pr

ov
em

en
t

claude2-alpaca-7B
Epoch 1
Epoch 2
Epoch 3

0.1 0.3 0.7 1.0
Dataset Proportion

1

0

1

2

3

 Im
pr

ov
em

en
t

Llama3-8b-alpaca
Epoch 1
Epoch 2
Epoch 3

Figure 5: Improvement of Contrastive Tuning and Decoding (CTD) framework compared to Original Decoding
(OD) for different models on the SUPNATINST dataset across various sampled data proportions and training epochs.

tuning yield the best results for most models, with
performance dropping after the third epoch.

Contrastive Tuning is efficient due to its minimal
training epochs and parameters, as well as the re-
quirement for only a small amount of data sampled
from the original SFT dataset, shown in Figure 5.
We sample data proportions ranging from 0.1 to
1.0 for Alpaca-7B, claude2-alpaca-13B, claude2-
alpaca-7B, and llama3-8b-alpaca. For Mistral-7B-
SlimOrca and DeciLM-7B-instruct, data propor-
tions of 0.01 to 0.1 are sampled. Typically, using
data proportions of 0.1 or 0.01 leads to significant
improvements. It’s important to note that over-
fitting can occur with excessive data due to our
limited tunable parameters.

The Coefficient α The coefficient α controls the
intensity of contrast in both training and decoding.
The relationship between the coefficient α in Con-
trastive Tuning and Decoding is significant. We
train all models with α = 0.3, and during decoding,
larger α values initially show better performance,
shown in Appendix D. As α continues to increase,
performance improves until α reaches 0.5, after
which performance begins to decline.

However, there are some exceptions. The perfor-
mance of claude2-alpaca-7B does not decline with
larger α values, and DeciLM-7B-instruct achieves
its best performance at α = 0.3. Theoretically, the
performance should be optimal when the training
and inference α values are the same. We believe
these anomalies arise due to differences between
the initial SFT and our Contrastive Tuning settings

(as we do not have access to the original training
code), leading to some discrepancies. Neverthe-
less, this also demonstrates the robustness of our
method.

5.4 Analysis

To further illustrate the impact of the correction
model on the original instruction-tuned model, we
analyze the prediction tokens that are changed or
unchanged by the correction model. Figure 6
shows the density of the maximum probability
from the token distribution of original predictions
on SUPNATINST tasks, highlighting tokens that
are changed or remain unchanged by the correc-
tion model. We notice that confident base pre-
dictions typically stay unchanged, whereas those
lacking confidence are frequently modified through
Contrastive Decoding. This tendency is consis-
tent with Instructive Decoding (ID) (Kim et al.,
2023), demonstrating how Contrastive Decoding
influences the original outputs.

However, the Contrastive Tuning and Decod-
ing (CTD) framework performs significantly better
than Instructive Decoding. We compare the density
of the original probabilities of the changed tokens
between CTD and ID. The KDE plot for ID shows
that the maximum probabilities of the changed to-
kens are confined to a narrower range, whereas the
KDE plot for CTD spans a wider range of proba-
bilities. When it comes to high-confidence false
predictions, Instructive Decoding fails to correct
them, whereas CTD effectively adjusts these predic-
tions, leading to stronger generation. This indicates

8991

0.0 0.2 0.4 0.6 0.8 1.0
Maximum Probability

0

2

4

6

8

10

12

D
en

si
ty

KDE of claude2-alpaca-13B with CTD
Unchanged
changed

0.0 0.2 0.4 0.6 0.8 1.0
Maximum Probability

0

2

4

6

8

10

12

D
en

si
ty

KDE of claude2-alpaca-13B with ID
Unchanged
changed

(a) CTD and ID: Unchanged vs. Changed

0.0 0.2 0.4 0.6 0.8 1.0
Maximum Probability

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

KDE of claude2-alpaca-13B Changed
CTD Changed
ID Changed

(b) Changed Maximum Probability: CTD vs. ID

Figure 6: Kernel density estimation (KDE) of predictions from the original model (claude2-alpaca-13B) on the
SUPNATINST dataset. ‘Maximum Probability’ refers to the highest value in the token distribution derived from the
original model. ‘Changed’ denotes tokens changed by the correction model, while ‘Unchanged’ represents tokens
that remain unchanged after the correction.

a greater correction ability of the CTD framework,
which we attribute to Contrastive Tuning.

Claude2-alpaca-13B

Method Corrections
Times

Number of
tokens

Tokens
>10 times

ID-before 6063 1318 70

CTD-before 11154 1411 116

ID-after 6063 1746 89

CTD-after 11154 2976 131

Alpaca-7B

Method Corrections
Times

Number of
tokens

Tokens
>10 times

ID-before 3710 1081 48

CTD-before 7073 1326 96

ID-after 3710 1404 50

CTD-after 7073 2233 67

Figure 7: Token correction frequency and variety
for Claude2-alpaca-13B on the SUPNATINST dataset.
ID/CTD-before and ID/CTD-after represent corrections
before and after contrastive decoding, where Correction
Times indicates the total number of corrected tokens,
and Number of Tokens refers to the distinct tokens af-
fected.

Figure 7 shows the frequency of token changes
and the variety of tokens corrected for Claude2-
alpaca-13B on the SUPNATINST task. ID changes
the original prediction 6063 times, correcting 1318
unique tokens to 1746 unique tokens. In contrast,
CTD makes 11154 corrections, adjusting 1411
unique tokens to 2976 unique tokens. This demon-
strates that CTD not only performs more changes
on token predictions but also covers a wider range
of token types.

6 Ablation Study

6.1 Processed by Two sets of Model
Parameters

The CTD framework processes the input using two
sets of main model parameters (the original model
and the correction model), achieving better outputs
than vanilla decoding, which uses only one set of

model parameters. Although CTD employs an ad-
ditional process with two sets of model parameters,
it significantly outperforms Instructive Decoding,
which also uses two sets of model parameters but
shows less improvement and even degradation, as
shown in Figure 1. This demonstrates that the ef-
fectiveness of CTD is not merely due to the addi-
tional process with two sets of model parameters
but rather the strength of Contrastive Tuning.

6.2 Impact of the Additional Prefix

We compare Prompt Tuning (Liu et al., 2021b;
Lester et al., 2021) with the CTD framework, both
using a tunable 20-token prefix, to explore the im-
pact of the additional prefix on the model’s perfor-
mance.

As shown in Figure 8, prompt tuning with a 20-
token prefix tends to either overfit or underfit, re-
sulting in poor performance on the SUPNATINST
dataset. However, our CTD framework, which
employs a 20-token prefix for Contrastive Tuning,
consistently improves performance with minimal
training data.

In summary, the combination of Contrastive
Decoding and Contrastive Tuning is essential for
achieving optimal results. Simply using contrastive
decoding or adding a tunable prefix alone does not
yield significant improvements.

6.3 Training Data

Contrastive Tuning does not inject new knowledge
into the model; rather, it teaches the model to cor-
rect its own outputs with learnable noise. This
process can be viewed as aligning the original lan-
guage modeling objective with Contrastive Decod-
ing methods.

We use data sampled from the original SFT

8992

1 2 3
Epochs

34

35

36

37

38

39

40

R
ou

ge
-L

Alpaca-7B CTD
PT
OD

1 2 3
Epochs

50

52

54

56

58

60

R
ou

ge
-L

Mistral-7B-SlimOrca CTD
PT
OD

1 2 3
Epochs

20

30

40

50

60

70

R
ou

ge
-L

DeciLM-7B-instruct CTD
PT
OD

1 2 3
Epochs

26

28

30

32

34

36

38

40

R
ou

ge
-L

Llama3-8b-alpaca CTD
PT
OD

1 2 3
Epochs

30

32

34

36

38

40

R
ou

ge
-L

claude2-alpaca-7B CTD
PT
OD

1 2 3
Epochs

10

15

20

25

30

35

40

45

50

R
ou

ge
-L

claude2-alpaca-13B CTD
PT
OD

Figure 8: Impact of the tunable 20-token prefix for Prompt Tuning (PT) and the Contrastive Tuning and Decoding
(CTD) framework on the SUPNATINST dataset, with Original Decoding (OD) as the baseline. The same data
proportion and training settings are used across methods.

dataset for Contrastive Tuning to avoid introducing
unfamiliar data that may hinder optimization.

To illustrate this, we conducted an experiment
using additional data for Contrastive Tuning on the
Alpaca-7B. The results, shown in Figure 9, indi-
cate that attempting to introduce new knowledge
through contrastive tuning leads to performance
degradation.

1 2 3
Epochs

33.0

34.0

35.0

36.0

37.0

38.0

39.0

40.0

R
ou

ge
-L

Alpaca-7B SFT Data
Other Data
Vanilla Decoding

1 2 3
Epochs

31.0

32.0

33.0

34.0

35.0

36.0

37.0

R
ou

ge
-L

Llama3-8b-alpaca SFT Data
Other Data
Vanilla Decoding

1 2 3
Epochs

24.0

26.0

28.0

30.0

32.0

34.0

36.0

38.0

R
ou

ge
-L

claude2-alpaca-7B SFT Data
Other Data
Vanilla Decoding

1 2 3
Epochs

38.0

40.0

42.0

44.0

46.0

48.0

R
ou

ge
-L

claude2-alpaca-13B SFT Data
Other Data
Vanilla Decoding

Figure 9: Different datasets used for contrastive tun-
ing. SFT Data refers to tuning with previous SFT data,
while Other Data refers to tuning with unknown out-of-
distribution data.

7 Discussion

7.1 Training Cost & Inference Latency

Although our CDT framework is effective, the
training cost is critical for its practical application.
Firstly, we achieve data efficiency by sampling a
small amount of data from the SFT data. Secondly,
we are committed to finding the most parameter-
efficient methods that use the least amount of mem-
ory. Therefore, we employ prompt tuning for
Contrastive Tuning, which uses the least memory

among parameter-efficient methods. When per-
forming Contrastive Decoding, we just double the
input batch and put the tunable prefix before half of
the input, which only need one set of main model
parameters in the GPU memory. In contrast, other
PEFT methods, such as LoRA (Hu et al., 2021),
require storing two sets of model parameters in
memory simultaneously.

We use 20 tokens to initialize the input prefix for
both 7B, 8B, and 13B models, which tunes about
0.0012%, 0.0009%, and 0.0008% of the model
parameters.

Compared to the original decoding method, Con-
trastive Decoding introduces only 20 tokens of la-
tency and memory that doubles the input batch
sizes, which is equal to Instructive Decoding (Kim
et al., 2023) and affordable.

7.2 Difference between Contrastive-Tuning
and Contrastive learning

To further understand Contrastive Tuning, it is
necessary to discuss the differences between Con-
trastive Tuning and Contrastive learning (Gao et al.,
2021).

Contrastive learning enables models to map sim-
ilar instances close together in a latent space while
pushing apart those that are dissimilar by the Con-
trastive learning loss (Gao et al., 2021). Both su-
pervised and self-supervised contrast learning need
designed tasks for similar and dissimilar data.

In contrast, Contrastive Tuning aims to create
a correction model that modifies the instruction-
tuned model’s output from the same input and com-
putes the cross-entropy loss with the labels.

8993

7.3 LoRA for Contrastive Tuning

To further demonstrate the effectiveness of the Cor-
rector Framework, we employ LoRA (Hu et al.,
2021) for Contrastive Tuning, with the results pre-
sented in Table 2.

CTD-LoRA also performs well on
MMLU (Hendrycks et al., 2021) and SUP-
NATINST, showing the potential of our CTD
framework. However, CTD-LoRA requires more
memory because LoRA Contrastive Tuning needs
two sets of main model parameters compared to
the prompt tuning CTD, making it not as efficient
as our Contrastive prompt tuning.

MMLU SUPNATINST
OD 33.25 35.46

CTD-LoRA 35.60 37.29

Table 2: Performance of CTD-LoRA on MMLU and
SUPNATINST

8 Conclusion

In this paper, we propose the Contrast Tuning
and Decoding (CTD) framework for instruction-
tuned models to achieve stronger generation with
minimal cost and ensure better generalization on
challenging tasks with unfamiliar data distribution.
Compared to Instructive Decoding, we demonstrate
the necessity of Contrastive Tuning. Through our
CTD framework, instruction-tuned models with
different models, prompt formats and SFT data
show stable improvement on various text genera-
tion tasks.

Limitations Our experiments show the feasibil-
ity of the Contrastive Tuning and Decoding (CTD)
framework. However, there is much more to do,
given our limited time and resources. Firstly, the
impact of the intensity parameter α for contrastive
tuning is not clear, nor is how it influences the op-
timization process. Secondly, we do not yet know
the minimum data required for contrastive tuning
sampled from SFT data to further simplify the CTD
framework. Finally, we have only tried prompt
tuning and LoRA for contrastive tuning. Other
parameter-efficient tuning methods may have more
potential.

Acknowledgments

We want to thank all the anonymous reviewers for
their valuable comments. This work was supported

by the National Science Foundation of China
(NSFC No. 62206194 and 62276077), the Natu-
ral Science Foundation of Jiangsu Province, China
(Grant No. BK20220488), Young Elite Scientists
Sponsorship Program by CAST (2023QNRC001),
and Huawei Technologies.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Lichang Chen, Khalid Saifullah, Ming Li, Tianyi Zhou,
and Heng Huang. 2023. Claude2-alpaca: Instruc-
tion tuning datasets distilled from claude. https:
//github.com/Lichang-Chen/claude2-alpaca.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon
Kim, James Glass, and Pengcheng He. 2023. Dola:
Decoding by contrasting layers improves factu-
ality in large language models. arXiv preprint
arXiv:2309.03883.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proc. of
NAACL.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang
Geng, Hao Liu, Pieter Abbeel, Sergey Levine, and
Dawn Song. 2023. The false promise of imitating
proprietary llms. arXiv preprint arXiv:2305.15717.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang,
et al. 2024. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint
arXiv:2403.14608.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

8994

https://github.com/Lichang-Chen/claude2-alpaca
https://github.com/Lichang-Chen/claude2-alpaca

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Taehyeon Kim, Joonkee Kim, Gihun Lee, and Se-Young
Yun. 2023. Distort, distract, decode: Instruction-
tuned model can refine its response from noisy in-
structions. arXiv preprint arXiv:2311.00233.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang,
Jason Eisner, Tatsunori Hashimoto, Luke Zettle-
moyer, and Mike Lewis. 2022. Contrastive decoding:
Open-ended text generation as optimization. arXiv
preprint arXiv:2210.15097.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-
tomatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Wing Lian, Bleys Goodson, Eugene Pentland, Austin
Cook, Chanvichet Vong, and "Teknium". 2023a.
Openorca: An open dataset of gpt augmented flan
reasoning traces. https://https://huggingface.
co/Open-Orca/OpenOrca.

Wing Lian, Bleys Goodson, Guan Wang, Eugene
Pentland, Austin Cook, Chanvichet Vong, and
"Teknium". 2023b. Mistralslimorca: Mistral-7b
model instruct-tuned on filtered, corrected, openor-
cav1 gpt-4 dataset.

Wing Lian, Guan Wang, Bleys Goodson, Eugene Pent-
land, Austin Cook, Chanvichet Vong, and "Teknium".
2023c. Slimorca: An open dataset of gpt-4 aug-
mented flan reasoning traces, with verification.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A Smith,
and Yejin Choi. 2021a. Dexperts: Decoding-time
controlled text generation with experts and anti-
experts. arXiv preprint arXiv:2105.03023.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2021b.
P-tuning v2: Prompt tuning can be comparable to
fine-tuning universally across scales and tasks. arXiv
preprint arXiv:2110.07602.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Niklas Muennighoff, Alexander Rush, Boaz Barak,
Teven Le Scao, Nouamane Tazi, Aleksandra Piktus,
Sampo Pyysalo, Thomas Wolf, and Colin A Raffel.
2024. Scaling data-constrained language models.
Advances in Neural Information Processing Systems,
36.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of gpt-4. Preprint,
arXiv:2306.02707.

Chenyu Shi, Xiao Wang, Qiming Ge, Songyang Gao,
Xianjun Yang, Tao Gui, Qi Zhang, Xuanjing Huang,
Xun Zhao, and Dahua Lin. 2024. Navigating the
overkill in large language models. arXiv preprint
arXiv:2401.17633.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

DeciAI Research Team. 2023. Decilm-7b-instruct.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al. 2022.
Super-naturalinstructions: Generalization via declar-
ative instructions on 1600+ nlp tasks. arXiv preprint
arXiv:2204.07705.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

8995

https://github.com/tatsu-lab/alpaca_eval
https://https://huggingface.co/Open-Orca/OpenOrca
https://https://huggingface.co/Open-Orca/OpenOrca
https://huggingface.co/Open-Orca/Mistral-7B-SlimOrca
https://huggingface.co/Open-Orca/Mistral-7B-SlimOrca
https://huggingface.co/Open-Orca/Mistral-7B-SlimOrca
https://https://huggingface.co/Open-Orca/SlimOrca
https://https://huggingface.co/Open-Orca/SlimOrca
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2306.02707
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://huggingface.co/Deci/DeciLM-7B-instruct

Fuzhao Xue, Yao Fu, Wangchunshu Zhou, Zangwei
Zheng, and Yang You. 2024. To repeat or not to
repeat: Insights from scaling llm under token-crisis.
Advances in Neural Information Processing Systems,
36.

Gal Yona, Or Honovich, Itay Laish, and Roee Aha-
roni. 2023. Surfacing biases in large language mod-
els using contrastive input decoding. arXiv preprint
arXiv:2305.07378.

Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Ao-
jun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hong-
sheng Li, and Yu Qiao. 2023a. Llama-adapter: Effi-
cient fine-tuning of language models with zero-init
attention. arXiv preprint arXiv:2303.16199.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, et al. 2023b. Instruction tuning
for large language models: A survey. arXiv preprint
arXiv:2308.10792.

A Open-Source Models Utilized in Our
Study

We provide a list of the open-source models used
in our work, as shown in Table 3. These models are
popular checkpoints from Huggingface, instruction-
tuned on open-source datasets, and have demon-
strated strong performance on downstream tasks.
While we are unable to obtain the training code
for these models, this limitation underscores the
robustness and practicality of our approach.

B Overview of the SUPNATINST Dataset

SUPNATINST (Wang et al., 2022) is a large-scale
dataset comprising over 1,600 natural language
processing (NLP) tasks designed to enhance model
generalization through declarative instructions.

Each task in SUPNATINST includes a ‘Defini-
tion’ prompt, which serves as an instructional guide.
For zero-shot evaluations, only the ‘Definition’ is
provided. Following the approach from Instructive
Decoding (Kim et al., 2023), our experiments fo-
cus on the English portion of the dataset, evaluating
100 instances per task as outlined by (Wang et al.,
2022). This subset consists of 119 evaluation tasks,
categorized into the 12 groups shown in Table 4.

Abbreviation Task Category
AC Answerability Classification

CEC Cause-Effect Classification
DT Data-to-Text

GEC Grammar Error Correction
CR Coherence Resolution
KT Keyword Tagging

DAR Dialogue Act Recognition
OE Overlap Extraction
QR Question Rewriting
TE Textual Entailment
TG Title Generation
WA Word Analogy

Table 4: Task Categories in the SUPNATINST Dataset

C Prompt Formats

Our experiments cover three prompt formats: Al-
paca format, ChatML format, and another com-
monly used format, as shown in Table 6.

D The coefficient α

Figure 11 illustrates the impact of the coefficient α
on model performance during Contrastive Decod-
ing.

8996

Model Huggingface Model ID
Alpaca-7B chavinlo/alpaca-native

DeciLM-7B-instruct Deci/DeciLM-7B-instruct
Mistral-7B-SlimOrca Open-Orca/Mistral-7B-SlimOrca

Llama3-8b-alpaca lainshower/Llama3-8b-alpaca
claude2-alpaca-7B umd-zhou-lab/claude2-alpaca-7B
claude2-alpaca-7B umd-zhou-lab/claude2-alpaca-7B

Table 3: Open-Source Model used In Our Work

E Performance on DROP

DROP (Discrete Reasoning Over Paragraphs) (Dua
et al., 2019) is a reading comprehension benchmark
designed to challenge language models with 96,000
crowdsourced, adversarially created questions. Un-
like previous datasets, DROP requires language
models to perform discrete operations such as addi-
tion, counting, and sorting by resolving references
across multiple positions within a paragraph. This
demands a deeper and more comprehensive under-
standing of the paragraph’s content.

We evaluate the Contrastive Tuning and Decod-
ing framework on the DROP dataset, where it also
outperforms both Original Decoding and Instruc-
tive Decoding, as shown in Figure 10 and Table 5.

Model Methods DROP
Exact Match

Alpaca-7B
OD 14.01
ID 14.44

CTD 16.39

DeciLM-7B-instruct
OD 47.00
ID 46.75

CTD 49.52

claude2-alpaca-7B
OD 18.08
ID 17.88

CTD 19.10

claude2-alpaca-13B
OD 13.53
ID 12.91

CTD 14.51

Mistral-7B-SlimOrca
OD 46.11
ID 46.48

CTD 46.64

Table 5: Performance on DROP using Original Decod-
ing (OD), Instructive Decoding (ID), and Contrastive
Tuning and Decoding (CTD) framework with Exact
Match.

F Comparison and Integration of the
CTD Framework, Instructive Decoding,
and Prompt Tuning

Instructive Decoding is a variant of contrastive de-
coding that generally outperforms other contrastive

methods. All contrastive decoding approaches aim
to leverage distracting output logits to enhance the
original output. However, a significant limitation
of these methods is the lack of clear evidence ex-
plaining why distracting logits effectively influence
the original output, as the concept has mostly been
accepted based on intuition.

e1 e2 e3 e4 e5
Epoch

1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

 Im
pr

ov
em

en
t

Improvement across Training Epoch on DROP

Alpaca-Llama-3-8B
Alpaca-7b
Mistral-7B-SlimOrca
claude2-alpaca-13B
DeciLM-6b-instruct

Figure 10: Impact of Training Epochs on Model Perfor-
mance for the DROP Dataset

One key issue with contrastive decoding meth-
ods is the misalignment between language model-
ing objectives during training and decoding. To
address this, our Contrastive Tuning technique
bridges the gap between the training and decod-
ing phases.

Our approach is unique in training a correction
model with only a few parameters, based on the
source model and guided by a clear optimization
objective. This correction model refines the source
model’s output by verifying correct tokens and ad-
justing incorrect ones. Through contrastive tuning,
the model gains this corrective ability—an innova-
tion that has not been explored before. Prior meth-
ods, lacking such a well-defined objective, leave
the distracting logits ambiguous about when to cor-
rect or affirm the original outputs.

Instructive Decoding is primarily effective for
tasks that align closely with the distribution of the
SFT data, which limits its improvement potential.
By contrast, the CTD framework has been evalu-

8997

0.1 0.3 0.5 0.8 1.0
Decoding

26.0

28.0

30.0

32.0

34.0

36.0

38.0

40.0
R

ou
ge

-L
Alpaca-7B CTD

Vanilla Decoding

0.1 0.3 0.5 0.8 1.0
Decoding

50.0

51.0

52.0

53.0

54.0

55.0

56.0

57.0

58.0

R
ou

ge
-L

Mistral-7B-SlimOrca CTD
Vanilla Decoding

0.1 0.3 0.5 0.8 1.0
Decoding

40.0

45.0

50.0

55.0

60.0

R
ou

ge
-L

DeciLM-7B-instruct CTD
Vanilla Decoding

0.1 0.3 0.5 0.8 1.0
Decoding

30.0

31.0

32.0

33.0

34.0

35.0

36.0

37.0

38.0

R
ou

ge
-L

Llama3-8b-alpaca CTD
Vanilla Decoding

0.1 0.3 0.5 0.8 1.0
Decoding

32.0

33.0

34.0

35.0

36.0

37.0

38.0

39.0

40.0

R
ou

ge
-L

claude2-alpaca-7B CTD
Vanilla Decoding

0.1 0.3 0.5 0.8 1.0
Decoding

34.0

36.0

38.0

40.0

42.0

44.0

46.0

48.0

R
ou

ge
-L

claude2-alpaca-13B CTD
Vanilla Decoding

Figure 11: Impact of the coefficient α on decoding performance (measured by Rouge-L) for various models on the
SUPNATINST dataset.

ated across multiple models trained with diverse
SFT data and tested on more challenging and unfa-
miliar tasks. When applied to AlpacaEval, Instruc-
tive Decoding shows a performance drop compared
to original decoding methods, revealing its weak
generalization and limited practical value. Never-
theless, it provides useful insights by indicating
that models can potentially recognize their own er-
rors and self-correct. We are the first to unlock this
potential through contrastive tuning.

Prompt tuning, a parameter-efficient fine-tuning
(PEFT) method, is currently underutilized due to its
comparatively lower performance. Within the CTD
framework, prompt tuning serves as one method
of implementing contrastive tuning. Preliminary
experiments with LoRA in our study suggest that
other PEFT methods also show promise.

However, we believe that prompt tuning is what
makes our method stand out, as it enables con-
trastive tuning to be highly efficient. Prompt tun-
ing allows the model to store only a single set of
parameters in memory during both contrastive tun-
ing and contrastive decoding. In contrast, methods
like LoRA would require additional parameters and
would need to store two sets of model parameters
during contrastive tuning. With contrastive prompt
tuning, updating as little as 0.0012% of the parame-
ters for a 7B model leads to outstanding results. We
attribute this efficiency to the model’s inherent abil-
ity to self-correct (as demonstrated with Instructive
Decoding), combined with our clear optimization
objective that activates this capability at minimal

cost.

G Decoding Strategy and Evaluation
Metric

We employ greedy decoding due to the diverse
nature of the SUPNATINST dataset, which consists
of 119 tasks spanning generation, classification,
and question-answering. While sampling-based
decoding can enhance output diversity, its inherent
randomness makes it less suitable for tasks like
classification and question-answering.

Initially, we consider both Rouge-L and ex-
act match metrics for evaluation. However,
our research is primarily focused on out-of-
distribution text generation, classification, and
question-answering tasks. Even though some tasks
may have a constrained output space, the outputs
do not always perfectly match the reference an-
swers. As a result, the exact match is excluded as
it does not accurately reflect model performance in
this context.

8998

Prompt Format

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.
Instruction:
{instruction}
Input:
{input}
Response:
{output}

<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{user_prompt}<|im_end|>
<|im_start|>assistant
{output}<|im_end|>

System:
{system_prompt}
User:
{user_prompt}
Assistant:
{output}

Table 6: Prompt Formats Used In Our Work

8999

