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Abstract

Large language models (LLMs) sometimes
demonstrate poor performance on knowledge-
intensive tasks, commonsense reasoning is
one of them. Researchers typically address
these issues by retrieving related knowledge
from knowledge graphs or employing self-
enhancement methods to elicit knowledge in
LLMs. However, noisy knowledge and invalid
reasoning issues hamper their ability to an-
swer questions accurately. To this end, we pro-
pose a novel method named eLiciting, flltering
and iNtegrating Knowledge in large languagE
moDel (LINKED). In it, we design a reward
model to filter out the noisy knowledge and
take the marginal consistent reasoning module
to reduce invalid reasoning. With our com-
prehensive experiments on four complex com-
monsense reasoning benchmarks, our method
outperforms SOTA baselines (up to 9.0% im-
provement of accuracy). Besides, to measure
the positive and negative impact of the injected
knowledge, we propose a new metric called
effectiveness-preservation score for the knowl-
edge enhancement works. Finally, through ex-
tensive experiments, we conduct an in-depth
analysis and find many meaningful conclusions
about LLMs in commonsense reasoning tasks.

1 Introduction

Commonsense reasoning is one of the key abili-
ties for models to reach artificial general intelli-
gence (AGI). To measure it, researchers designed
commonsense reasoning tasks (Talmor et al., 2019;
Zellers et al., 2019; Sakaguchi et al., 2020; Liu
et al., 2024), which require models to answer ques-
tions based on commonsense knowledge (see Fig-
ure 1 for examples). In recent works, large lan-
guage models (LLMs) (e.g. PaLM2 (Anil et al.,
2023), GPT-4 (OpenAl, 2023), Llama2 (Touvron
et al., 2023)) have improved performances in this
task compared to small models. Nevertheless, there
is still a considerable gap between them and hu-
mans. For instance, on WinoGrande (Sakaguchi
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Figure 1: Some failed cases of traditional knowledge
enhancement methods on complex commonsense rea-
soning tasks.

et al., 2020), the accuracy of Llama2-70B is 80.2%,
lagging more than ten points behind the 94.1% ac-
curacy of humans (Touvron et al., 2023).

To further improve LLM’s commonsense rea-
soning abilities, a series of works are proposed
(Wang et al., 2023a; Wu et al., 2023; Li et al.,
2024), which can be mainly divided into two dif-
ferent lines: (1) Retrieval augmentation. As
shown in Case 1 of Figure 1, these methods re-
trieve knowledge corresponding to the question
from knowledge graphs (KGs), then integrate it
into the model’s input as supplementary informa-
tion (Chen et al., 2023; Wang et al., 2023a). (2)
Self-enhancement. As illustrated in Case 2 and
3 of Figure 1, these methods employ a chain-of-
thought (CoT) like prompting technique, empow-
ering LLMs to generate the knowledge required
for reasoning in the form of a rationale (Wei et al.,
2022; Wang et al., 2023c; Li et al., 2023b). For the
former method, considering the limited coverage of
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commonsense knowledge by KGs and the fact that
the retriever can only capture the semantic similar-
ity of entities, it struggles to recall effective infor-
mation in complex commonsense reasoning scenar-
ios (e.g. event-based reasoning). As shown in Case
1 of Figure 1, for the question in WinoGrande, mod-
els need commonsense knowledge that describes
the relation between “be a better surgeon” and
“get the easier cases”, but the most relevant knowl-
edge “(PersonX gets stitches, yEffect, PersonY will
gets more medical experience)’ from ATOMIC-
2020 (Hwang et al., 2021) is still far from what
is required. Hence, the self-enhancement method
becomes the dominant method for LLM augmenta-
tion in commonsense reasoning.

Our work follows the self-enhancement ap-
proach. Although these methods have made some
progress, they still suffer from two main challeng-
ing problems: (1) Noisy knowledge: Some works
have pointed out that the rationale generated by the
LLM itself may contain severe noise (Zhao et al.,
2023; Gao et al., 2023; Trivedi et al., 2023) that is
harmful to reasoning. For example, in Case 2 of
Figure 1, the generated knowledge indicates “To
wake up late means wake up later”, which is a piece
of noisy information and leads to LLM’s incorrect
response “Answer: Hunter”. (2) Invalid reason-
ing: Sometimes, even if reasonable knowledge is
provided to the LLM, it may still result in incor-
rect answers (Kojima et al., 2022; Lyu et al., 2023;
Lanham et al., 2023). We define this situation as
the ‘invalid reasoning’ issue. As illustrated in Case
3 of Figure 1, while the rationale “The grave is
not large enough to fully accommodate the body”
is correct for the question, LLMs still fail to draw
the correct conclusions based on it. In our pilot
experiments, the noisy knowledge issue accounts
for 34% in all of the failure cases and the invalid
reasoning issue accounts for 28%!'. Hence, these
two issues are not negligible for further improving
the LLM’s commonsense reasoning abilities.

In this paper, we propose a novel method named
LINKED (eLiciting, flltering and iNtegrating
Knowledge in large languagE moDel) to enhance
the commonsense reasoning abilities of LLMs with
effective knowledge. Firstly, we design the re-
ward model to filter out the noisy knowledge
generated by LLMs. We define the confidence
level of knowledge based on its contribution to

'In this experiment, we randomly choose 50 examples
from failed cases on different benchmarks and analyze the
corresponding error types.

question-answering and use it as a supervision sig-
nal for training the reward model. Then, we pro-
pose the marginal consistent reasoning module
to reduce invalid reasoning. Given a rationale,
the traditional CoT-like methods only perform the
reasoning process once, which may lead to wrong
outputs when the probability distribution of candi-
date answers is relatively uniform. To avoid it, we
use one effective rationale, execute multiple rounds
of reasoning based on it and select the answer with
the highest marginal probability.

We evaluate our method on extensive common-
sense reasoning benchmarks. Since the tradi-
tional metric accuracy can not measure how much
noisy knowledge the enhancement method brings,
we propose a new metric named effectiveness-
preservation score (EPS) to mitigate this gap.
This metric measures both the positive and negative
impact a knowledge augmentation method has on
the model’s reasoning. Experimental results show
that our method brings significant improvements
over baselines.

We summarize the contribution of this paper as
follows:

(1) We propose a novel method LINKED to en-
hance the performance of LLMs in commonsense
reasoning tasks. Additionally, we introduce a novel
metric EPS to evaluate both the effectiveness and
harmfulness of knowledge augmentation methods.

(2) In our method, we not only train a reward
model to mitigate noisy knowledge in LLM’s gen-
erations, but also devise the marginal consistent
reasoning module to solve invalid reasoning issues.

(3) We conduct extensive experiments on two
benchmarks, demonstrating that our method out-
performs SOTA methods. Impressively, we ob-
serve up to 9.0% accuracy improvement and
12.5% EPS improvement. Furthermore, we
get several meaningful conclusions about LLM’s
commonsense reasoning based on the exper-
imental results.  Our code is available at:
https://github.com/BugMakerzzz/linked_code

2 Related Work

2.1 Commonsense Reasoning Enhancement

Commonsense reasoning is a crucial capability that
language models must master to progress toward
AGI. However, since commonsense knowledge is
rarely explicitly expressed in texts, models perform
poorly on these tasks and require additional en-
hancement (Talmor et al., 2019; Sakaguchi et al.,
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Figure 2: The main architecture of our proposed method LINKED.

2020; Wang et al., 2022, 2024). Traditional works
usually fine-tune the model on synthetic common-
sense datasets, but they incur high costs, and the
models trained are difficult to apply to new com-
monsense reasoning tasks directly (Hwang et al.,
2021; Khashabi et al., 2020; Lourie et al., 2021).
Recently, the excellent in-context learning (ICL)
capabilities of LLMs allow us to enhance their com-
monsense reasoning abilities without extra training.
Specifically, we can supplement the additional com-
monsense knowledge through retrieval augmenta-
tion (Yu et al., 2022; Chen et al., 2023; Wang et al.,
2023a) or self-enhancement methods (Wei et al.,
2022; Wu et al., 2023; Li et al., 2023b). Our work
follows self-enhancement methods, while address-
ing the issues of noisy knowledge and invalid rea-
soning in previous methods.

2.2 Knowledge Enhancement for LLMs

LLMs have suffered from serious hallucination is-
sues (Sun et al., 2024; Wen et al., 2023; Li et al.,
2023a). To solve the problem, researchers re-
trieve related knowledge to enhance the models
(Wen et al., 2023; Lu et al., 2023; Wang et al.,
2023b). Firstly, several works get knowledge
through search engines, they finetune models to
imitate human’s searching actions (Nakano et al.,
2021) or use in-context learning to let the model
generate API calls (Gao et al., 2023; Trivedi et al.,
2023; Lu et al., 2023). Secondly, other works use
KGs (such as ConceptNet (Speer et al., 2017)) as

knowledge resources, they train a retriever, use it
to get sub-graphs or triples from the KG and em-
bed this extra information into the input prompt of
models (Yasunaga et al., 2021; Baek et al., 2023;
Chen et al., 2023). At last, researchers also elicit
the knowledge inside LLMs to enhance themselves.
They design new structures for the mid steps of
reasoning (Yao et al., 2023a; Besta et al., 2023; Li
et al., 2024) or generate higher quality rationales
by referring to external knowledge sources or tools
(Wang et al., 2023b; Yao et al., 2023b; Zhao et al.,
2023). Our work aims to get high-quality common-
sense knowledge from LLMs to further enhance
their commonsense reasoning performances.

3 Methodology

Figure 2 demonstrates the main architecture of
our LINKED method, which is divided into two
phases. In the training phase, we aim to train a
reward model to address the issue of noisy knowl-
edge. To this end, we first prepare the training data
and define the confidence level of the knowledge to
distinguish knowledge of different quality (§ 3.1).
Then, we train the reward model using a ranking
task based on the annotated data (§ 3.2). As for
mitigating the invalid reasoning issue, we propose
the marginal consistent reasoning module in the
inference phase. We prompt LLMs to conduct mul-
tiple reasoning processes on one effective rationale
and choose the final answer based on the marginal
majority vote (§ 3.3).
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3.1 Knowledge Pool Construction

Previous studies have demonstrated that LLMs in-
herently contain a vast amount of commonsense
knowledge (Wang et al., 2022; Liu et al., 2022;
Yuan et al., 2023). Thus, here we use LLM itself
as the knowledge source. When provided with a
question ¢ in the training data, we use in-context
learning to prompt the model and generate multiple
pieces of related knowledge, denoted as KCy. Then
we instruct LL.Ms to predict answers to ¢, consid-
ering two scenarios: with access to k in K, and
without it:

r(q) = M(q, Pa) (1)
T(q7 k) = M(q> Pk7 k) (2)

Here, P, is the prompt for LLMs to generate di-
rect answer 7(q), while Py, is the prompt for LLMs
to generate the answer (g, k) based on the pro-
vided knowledge k. M represents output of LLMs.
Therefore, for each knowledge piece k, we can clas-
sify it into four different confidence levels accord-
ing to the correctness of 7(¢) and (g, k), which is
defined as follows:

:a*

* Useful (Level 0): 7(q) # a* A r(q,
* Harmless (Level 1): r(q) = a*Ar(q, k) = a*
* Useless (Level 2): 7(q) # a* A1(q, k) # a*
* Harmful (Level 3): r(q) = a*Ar(q, k) # a*

Here a* is the correct answer. Table 1 shows ex-
amples for each knowledge level. Notably, for a
pair <q, k>, the effectiveness of knowledge £ in
enabling the model to answer the question ¢ cor-
rectly decreases from level O to level 3. Level O
knowledge can enhance LLMs to answer questions
correctly that they couldn’t initially handle. In con-
trast, level 3 knowledge leads to incorrect responses
to commonsense questions that LLMs typically an-
swer correctly. Hence, the knowledge level can
gauge its effectiveness and harmfulness, offering
supervised learning signals to train a reward model.

3.2 Reward Model Design

In this section, we focus on training a reward model
to filter out noisy knowledge.

Training Data We collect a set of <g,k> pairs
and the corresponding knowledge level through the
knowledge pooling module. To prepare training
data, we need to further classify them into positive

Level Question

Knowledge

The house on the hill needed some

work on the floors but not the
cabinets as the _ were ancient.
(1) floors (2) cabinets (3) None

The fact that the floors needed
work indicates that they were
in poor condition and required
attention or repairs.

Maria looked at Katrina, stretched
out a hand and then _ accepted the

handshake to introduce.
(1) Maria (2) Katrina (3) None

‘When someone stretches out
their hand, it is typically a
gesture inviting a handshake
as a form of introduction.

The woman wanted to put her
hand inside the glove but the _
was too large.

(1) hand (2) glove (3) None

The glove being too large
implies that the hand of
the woman was smaller
in comparison.

Based on the information
given, we cannot definitively
determine whether Randy or
Robert was worried.

So _ was worried because Randy
forgot to study for the upcoming
test and Robert studied.

(1) Randy (2) Robert (3) None

Table 1: Some examples for questions, knowledge, and
related knowledge level. We denote the correct option
using red marking. The options chosen by the model
before and after introducing knowledge are represented
by underlining and bold, respectively.

and negative examples with the label [. Consid-
ering the contribution of knowledge to answering
questions, here a piece of knowledge k is defined
as positive to the query ¢ when its level is 0 or
1, otherwise, it is negative. We remove questions
that related to only positive or negative knowledge
during implementation.

Training Objective Here we encourage the re-
ward model to give effective knowledge a higher
score than the noisy one through the following ob-
jective function £(6):

L(0) = —ylog(f(q, k;0)) — (1 —y)log(1 — f(q, k; 9)23)
where y represents the knowledge label and f(-; 6)
is the score predicted by the reward model. We use
the Deberta (He et al., 2023) model as a CrossEn-
coder to encode both ¢ and & simultaneously, then
produce a confidence score f between 0 and 1.
More training details and performances about our
reward model are presented in Appendix A.

3.3 Marginal Consistent Reasoning

According to Wang et al. (2023c)’s work, the ran-
domness in the model’s output sampling may cause
the invalid reasoning issue. As shown in the CoT
case of Figure 3, even with a reasonable rationale,
if we only sample the answer once, there remains
a significant possibility of generating an incorrect
option. From this perspective, to mitigate the prob-
lem, we need to adopt a more stable approach when
sampling the answer.

In previous CoT-like works (Wang et al., 2023c;
Zhao et al.,, 2023; Yao et al., 2023a), self-
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Figure 3: Comparison of different reasoning processes.
The bars represent the probability distribution of options
and the option marked in red indicates the final pre-
diction in this sampling round.

consistency is a critical method to make the final
output more stable by exploring a large set of ra-
tionales. The key idea behind it can be expressed
using the following formula:

argmax P(alq) = arg maxz P(a, k|q) 4)
a a k

ZP(a,k|q) ~ fre%ncyw) x frequency(a) (5)
k
where a is the answer to question g, & is the gener-
ated rationale, and n is the sampling count. Based
on it, we can choose the answer that receives the
majority vote as the final prediction because of
its highest frequency. However, when addressing
difficult questions, the quality of each rationale
is relatively random, leading to unstable answer
distributions across different samplings based on
them. Therefore, we cannot guarantee the ‘~’ in
the above equation to hold within a limited number
of samplings. Like the Self-Consistency case in
Figure 3, it is easy to select the wrong option when
the probability distribution of different answers is
relatively uniform (see Rationale 2 in the case).
To mitigate the above problem, we implement
the marginal consistent reasoning module. The
principle behind it is as below:

arg max P(a|q) ~ argmax P(alk”, q) ©)

Plalk* q) = TP YD o frcquency(a) ()
n

Since it is unstable to continue to generate an-

swers based on k in an auto-regressive manner,

we use an effective rationale k* as the condition

to shift the calculation goal from joint probabil-
ity P(a,k|q) to marginal probability P(a|k*,q).
Hence, the search space for generating answers be-
comes smaller, which makes the sampling more
stable. Besides, we also perform multi-round sam-
plings for the answers. Through it, we can further
decrease uncertainty during the sampling process.
To make our method effective, we require a piece
of k* that supports the correct answer’s generation,
holding the first ‘~’ in the equation. This is pre-
cisely the problem that is addressed in §3.2.

Specifically, the process of this module is illus-
trated in Figure 3. For each question, we utilize
the reward model to rate the generated knowledge,
select the top-k pieces of it and concatenate them to
create an effective rationale k*. Then we integrate
it into the input and prompt the LLM to conduct
multi-round reasoning. The final output is deter-
mined by taking the majority vote on the answers.
Through this module, we can mitigate the invalid
reasoning issue by enhancing the stability of the
LLM’s reasoning process.

4 Experiments

4.1 Experimental Settings

Datasets We conduct experiments on four repre-
sentative commonsense reasoning datasets: Wino-
Grande (Wino) (Sakaguchi et al., 2020), Hel-
laSwag (Hella) (Zellers et al., 2019), SociallQA
(SIQA) (Sap et al., 2019) and PIQA (Bisk et al.,
2020). For each dataset, we use 500 samples from
the development set as our testing set. We present
more details and discussions in Appendix B.1.

Baselines We include the following baselines in
our experiments:
Few-shot. We prompt the LLM to directly an-
swer questions in the test set through ICL.
Fine-tuning. We fine-tune the Roberta-large
model (Liu et al., 2019) on the training data and use
it to predict answers. Besides, we also apply two
traditional SOTA methods: UnifiedQA (Khashabi
et al., 2020) and Unicorn (Lourie et al., 2021).
Retrieval augmentation. For retrieval aug-
mentation methods, we implement two base-
lines, BM25 and dense passage retrieval (DPR)
(Karpukhin et al., 2020), to retrieve additional com-
monsense knowledge from knowledge sources.
Self-enhancement. We implement several self-
augmentation methods, including: CoT (Wei et al.,
2022), CoT-SC (SC) (Wang et al., 2023c), Self-
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Methods WinoGrande HellaSwag SocialIQA PIQA

ACC EPS ACC EPS ACC EPS ACC EPS
Few-shot 70.6 0.0 67.8 0.0 71.9 0.0 78.2 0.0

Fine-Tuning Method
Roberta-large 64.0 - 68.6 73.1 - 62.2 -
Unified QA 62.0 - 34.4 63.0 - 78.6 -
Unicorn 72.6 - 272 74.8 - 78.2 -
Retrieval Augmentation Method
BM25 + LLM 64.0 25.7 45.6 38.2 55.0 36.3 59.0 21.1
DPR + LLM 65.6 55.9 60.6 37.6 67.2 48.6 73.2 57.1
Self-Enhancement Method

CoT 69.2 57.8 64.4 42.0 67.1 40.1 82.8 63.8
CoT-SC 71.8 49.7 65.8 40.1 72.3 48.5 85.4 67.5
Self-Refine 61.4 55.0 49.0 35.3 69.0 47.8 80.4 67.9
Least-to-Most 70.2 63.3 472 37.6 72.6 51.3 82.2 64.4
LINKED 81.6 (+9.0) 75.8 (+12.5) 71.0 (+2.4) 48.0 (+6.0) 73.5(-1.3) 55.3(+4.0) 86.0 (+0.6) 69.8 (+1.9)

Table 2: Comparison of LINKED performance with some strong baselines on GPT-3.5. The best results are
highlighted in bold, while the second-best results are underlined. ‘-’ indicates the method applies different models

thus can not compute EPS.

Refine (SR) (Madaan et al., 2023), Least-to-Most
(LtM) (Zhou et al., 2023).

We illustrate the details and prompts when im-
plementing these baselines in Appendix B.2.

Metrics In traditional reasoning tasks, accuracy
is almost the only metric. Nevertheless, it can not
measure how much benefit or harm the knowledge-
enhancement method brings. For example, sup-
pose a method produces three pieces of level 1
knowledge and two pieces of level 3 knowledge,
it performs as well as another method producing
three pieces of level 0 knowledge and two level 2
knowledge in accuracy. But in practice, the latter
performs better since it does not harm the model’s
original reasoning performance. Therefore, a more
detailed metric is needed to measure how many
wrong answers are corrected by the method (effec-
tiveness) and how many correct answers are made
incorrect (harmfulness). To make up for the is-
sue, we design a novel metric called effectiveness-
preservation score (EPS) as follows:

‘{Q|T(q7 k) =a" A qc Qfalse}‘

ES = )
‘Qfalse‘
ps—1_ Hdr@k) #a”Ng€ Quuc}l g,
|Qtrue‘
2x ES* PS
EPS="ps+ps (10)

where Qe and Q 45 represent sets of correct
and incorrect cases of the model directly answering
questions under few-shot settings. The ES quan-
tifies the method’s effectiveness in improving the

model’s performance on previously unanswered
questions, while the PS measures the method’s
detrimental impact on questions the model initially
answered correctly. Our EPS metric provides a
measurement of the impact on both aspects.

Implementation Details In this work, we utilize
gpt-3.5-turbo-0613 provided by OpenAl as the
LLM and Deberta-v3-large as the backbone of
our reward model. For generation parameters, we
set the temperature to 1.3 and the sample count to 5
when generating knowledge. As for the reasoning
step, we set the temperature to 0.7 and the sampling
count to 3. All experiments are conducted using 4
NVIDIA GeForce RTX 3090 GPUs.

4.2 Main Results

The main result of our experiments is presented in
Table 2, from which we can obtain two key conclu-
sions: (1) Our method effectively enhances the
LLM’s commonsense reasoning performance.
For different datasets, our work significantly sur-
passes most existing SOTA methods. Impressively,
on WinoGrande, our method exhibits a significant
9.0% improvement in accuracy. (2) Our method
maintains a good balance between effectiveness
and harmfulness. On average, we improve EPS
by 5.4% , demonstrating that our method can intro-
duce effective knowledge while avoiding damage
to the LLM’s original reasoning capabilities. We
validate the robustness and generalizability of the
results in Appendix C.
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Method Wino Hella SIQA PIQA
LINKED 81.6 71.0 73.5 86.0
-w/o0 RM 78.0 68.6 719 82.0
-w/oMCR 800 692 717 85.6
-w/o both 784 694 727 82.2

Table 3: Ablation experimental results for our approach,
here we only use accuracy for evaluation.

Question Knowledge Ranking Human

A person stays up later

than another person to

watch TV because he 1 v
does not need to wake up

early in the morning ...

If a person ... suggests that

Hunter, in this case, wakes

At night, Jeffrey always
stays up later than Hunter
to watch TV because _
wakes up late.

(1) Jeffrey (2) Hunter

up late and consequently 5 X
stays up later than Jeffrey
to watch TV.

Table 4: Examples on WinoGrande. The correct answer
to the question is bolded, the noisy statement is marked
in red, and the correct statement is marked in blue.

4.3 Ablation Study

To verify the effectiveness of the different compo-
nents in our method, we conduct ablation exper-
iments (see Table 3). The following conclusions
can be drawn from the experimental results: (1)
Both modules are effective. After we remove any
of the two modules, the accuracy decreases, which
indicates both the RM and MCR can successfully
improve commonsense reasoning performance. (2)
The reward model plays important roles. In
most cases, removing the reward model results in
the greatest performance decline. This indicates
that high-quality knowledge assumes a prominent
role in LLMs’ commonsense reasoning.

4.4 Human Evaluation

In this section, we explore whether our method
effectively solves the two issues found in previous
work and whether our metric is effective through
manual evaluation.

Method Evaluation We manually verify whether
our method truly resolves the two issues mentioned
in §1. Firstly, for the noisy knowledge issue, we
conduct the case study, comparing the first and last
knowledge ranked by the reward model (see Ta-
ble 4). As we can see, the knowledge ranked 1st
contains the key evidence that leads to the correct
answer, while the knowledge ranked Sth contains
the wrong statement without any evidence to sup-
port it. Therefore, our method can effectively miti-

Method  WinoGrande HellaSwag
CoT 25.0 35.0
CoT-SC 20.0 30.0
LINKED 15.0 10.0

Table 5: The ratios of the invalid reasoning issue across
different methods and datasets.

Method WinoGrande HellaSwag
ES PS ES PS
DPR 0.58 087 080 0.52
CoT 095 095 094 0.87
LINKED 090 1.00 0.87 0.82

Table 6: Pearson’s correlations of our metrics vs. human
judgments.

gate noisy knowledge by assigning it a lower score.
Secondly, for the invalid reasoning issue, we manu-
ally annotate and compute the occurrence rates of
the issue under different methods (see Table 5). It
demonstrates that our method can reduce the rate
across different datasets, mitigating this issue.

Metrics Evaluation We compare the correla-
tions of the ES and PS with the human evalua-
tion scores separately. The intuition is that a good
evaluation metric should assign a good score to a
good method (i.e. effective or harmless). Thus,
we manually evaluate the effectiveness and harm-
fulness of the injected knowledge generated by
different methods (DPR, CoT, Ours), calculating
Pearson’s correlations under different cases (see
results in Table 6). In most cases, our metrics show
a high positive correlation with human evaluations
(> 0.80), indicating the effectiveness of these two
scores. Since the EPS metric is the average of them,
we can further prove its validity and reliability.

We present additional evaluation results and de-
tailed experimental setups in Appendix D.

4.5 Experimental Factors Analysis

In our experiments, various factors can influence
the performance, here we aim to draw general con-
clusions by observing the effects of them.

Top-k Knowledge The top-k knowledge is se-
lected to construct the final rational in the inference
time, we change this value and compare their dif-
ference, whose results are shown in Figure 4a. We
find that the optimal value for top-k is no more than
2. Compared to the introduction of a large volume
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of relevant knowledge, the filtration of knowledge
is more crucial for LLMs.

Sampling Counts We change the numbers of
generated knowledge to figure out whether more
sampling counts make it more likely to bring ef-
fective knowledge. As illustrated in Figure 4b,
the number of effective knowledge produced by a
model does not directly correlate with the sampling
count. LLMs exhibit significant quality fluctua-
tions between multiple rounds of generation.

Sampling Strategy In our MCR module, we only
construct one rationale and sample multiple an-
swers. Here, we explore the performance of in-
tegrating other sampling strategies. Concretely,
we compare the accuracy under four settings: one
rationale + one answer (OO), one rationale + multi-
answer (OM), multi-rationale + one answer (MO),
and multi-rationale + multi-answer (MM). We set
the top-k value to 3 and the sampling count to 3.
As we can get from 4c, OM and MM perform the
best among all, but considering the higher cost of
the latter, our MCR module adopts the former.

4.6 Effects Analysis of Different Methods

We evaluate the effect of different methods on the
model’s performance using ES and PS scores. The
results are shown in Figure 5, from which we get
the following findings: (1) Retrieval augmenta-
tion methods have low harmfulness but also low
effectiveness. From the results, we can see that the
BM25 and DPR methods get higher PS and lower

Method Wino Hella SIQA PIQA Avg
CoT 0.77k  0.99k 0.96k 0.64k 0.84k
SC 097k 1.17k 1.25k 0.85k 1.06k
SR 289k 3.75k  2.89k 241k 2.99k
LtM 3.35k  3.02k  2.52k 243k 2.83k
Ours 1.39k  1.85k 192k 1.31k 1.62k

Table 7: Token consumption comparison.

ES among all the methods, proving that these meth-
ods struggle to retrieve effective information. (2)
Self-enhancement method can cause significant
harm to the model’s commonsense reasoning.
As for self-enhancement methods (i.e. CoT, SC,
SR, LtM), they have a relatively higher ES but
lower PS as well, highlighting the serious noisy
knowledge issues in these methods. Our method
performs well in both effectiveness and harmful-
ness (high ES and high PS).

4.7 Cost Analysis

To demonstrate the efficiency and practicality of
our method, we calculate its average token cost
per example and compare it with other methods
(see Table 7). As we can see, compared to other
self-enhancement methods (e.g. SR, LtM), our
method uses significantly fewer tokens, averag-
ing only twice the number used by the basic CoT
method. This indicates that our method can achieve
high performance in commonsense reasoning with
fewer computational resources during downstream
inference. Our method is also cost-efficient when
training, which we discuss in Appendix A.3.

5 Conclusion

In this paper, we propose a novel method named
LINKED to enhance the LLM’s performance on
commonsense reasoning tasks. Specifically, we
train a reward model to filter out noisy knowledge
in LLM’s generation and take the marginal consis-
tent reasoning module to reduce invalid reasoning.
Besides, we design a new metric named EPS to
evaluate both the effectiveness and harmfulness of
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different knowledge enhancement methods, which
the former metric can not. We conduct compre-
hensive experiments on four representative com-
monsense reasoning benchmarks, and experimental
results demonstrate that our method significantly
outperforms previous baselines.

Limitations

While our method significantly improves LLM’s
performance in commonsense reasoning tasks, it
has two primary limitations: (1) The black-box na-
ture of the LLM we study hinders our ability to
delve deeper into the model and explain why the
filtered knowledge is effective. (2) Due to time
and resource constraints, we were unable to con-
duct extensive prompt design work, which could
have further improved our method’s performance.
We leave these limitations as our future work to
explore.
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A Reward Models Training Details

A.1 Training Settings

For each dataset, we generate 5,000 <q,k,[> triples
to train the reward model and randomly choose
500 samples from these triples as the validation
set. During training, we set the learning rate as
1 x 1075, the batch size to 16, the epochs to 3, and
the warm-up steps to 50. We choose DeBERTa
as the backbone since it performs well on natural
language inference tasks (He et al., 2023). When
distinguishing between different qualities of knowl-
edge, it is crucial for the model to possess this
capability.

A.2 Training Performance

We use MRR @10 to evaluate whether the model
can rank positive knowledge among the top po-
sitions and report the performance of our reward
model on the validation set (see Table 8). The re-
sults indicate that our reward model can effectively
distinguish between good knowledge and noisy
knowledge.

Wino Hella SIQA PIQA
081 089 096 093

MRR@10

Table 8: The performance on the validation set.

A.3 Training Cost

Compared to other training methods, our reward
model requires minimal training to achieve high
performance. For the volume of training data, we
use only 2,000 training examples per dataset, while
other training methods in our work used at least
5,000 samples. For the time cost of training, on
average, each epoch of training our reward model
takes 56 seconds, significantly less than the 1,182
seconds required to train Roberta-large. Although
we can not obtain the specific training time costs for
the UnifiedQA and Unicorn methods, given their
large training data volumes (Khashabi et al., 2020;
Lourie et al., 2021), we can reasonably infer that
our time cost is also significantly lower than these
methods. In conclusion, the results demonstrate the
cost-efficiency of our method during the training
phase.

B Main Experiment Details

B.1 Datasets Selection

Here, we discuss the reasons for choosing these
four datasets to evaluate our method. As we have
mentioned in §1, retrieval augmentation methods
struggle to recall effective information in complex
commonsense reasoning scenarios. For representa-
tive benchmarks like CSQA (Talmor et al., 2019),
since it focuses on relatively simple entity-based
knowledge, LLMs have already shown high perfor-
mance on it (>90%) (Anil et al., 2023) and can be
effectively augmented using retrieval-augmented
methods (Yu et al., 2022). Hence, our work does
not extend to this dataset and selects harder tasks.
Following former works (Anil et al., 2023; Tou-
vron et al., 2023; OpenAl, 2023), we select these
four benchmarks for evaluating the commonsense
reasoning ability.

B.2 Baseline Implementation Details

We report the implementation details of baselines
in the main experiment:

Few-shot We use 3-shot prompts for the few-
shot, which are presented in Figure 7.

Roberta-large For each dataset, we train the
roberta-large model on 5,000 QA pairs, of
which we divide 500 samples as the validation
set. For the hyper-parameters in training, we set
the batch size to 64, epochs to 2, learning rate to
3 x 1075, and cosine warm-up steps to 500.

UnifiedQA & Unicorn Both methods train the
TS5 model (Raffel et al., 2020) on multiple com-
monsense question-answering datasets to obtain
generalized commonsense reasoning capabilities.

BM25 + LLM  We apply the BM25 algorithm to
retrieve the top 3 most relevant knowledge triples
from ATOMIC-2020 for each test question.

DPR + LLM  We use the relevant data provided
in Yu et al. (2022)’s work for the corpus and train-
ing set. Besides, we use bert-base-uncased as
the base model to train the retriever. When train-
ing, we set the batch size to 16, learning rate to
2 x 107?, linear warm-up steps to 1237 and epochs
to 20.

Self-enhancement We use 3-shot prompts for
CoT, CoT-SC and 5-shot prompts for Self-Refine,
Least-to-Most. Figure 8, 9 and 10 show parts of
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Figure 6: The robustness experiment.
Model Filtered Normal None
Llama2-7B 72.4 67.8 57.2

Table 9: Accuracy comparison of different injected
knowledge types on WinoGrande. ‘Filtered’ means
we inject the filtered knowledge, ‘Normal’ means we
directly inject the generated knowledge, ‘None’ means
we do not inject any knowledge.

the prompts on WinoGrande. We also demonstrate
the prompts of our method in Figure 11.

C More Results for Main Exeperiment

C.1 The Robustness of Our Method

We aim to investigate whether our method can
maintain consistent performance in multi-turn gen-
eration scenarios. As depicted in Figure 6, we
conduct five repetitions of our method (only the
inference phase) and two baselines, recording the
maximum, average, and minimum accuracy values
for comparison. It shows that throughout multiple
rounds of generation, our work maintains a consis-
tent edge over the performance of baselines (> 7%
on accuracy).

C.2 The Generalization of Our Method

In essence, we assess the effectiveness of knowl-
edge using signals provided by LLM itself. This
leads to a new question: Does this signal possess
generality? In other words, can the more effec-
tive knowledge selected by our reward model also
better enhance other small models’ commonsense
reasoning abilities? In this section, we aim to figure
out this question through experiments.

Here we choose L1lama2-7B-chat as the small
model. Since it can not directly utilize the knowl-
edge from the prompts to generate in our pilot ex-
periment (the accuracy of it on WinoGrande is

around 52%), we first fine-tune it with labeled
question-knowledge pairs. After that, we inject
different kinds of knowledge into the model, com-
paring their performance on WinoGrande (see Ta-
ble 9). We can get that the accuracy increases by
15.2% after integrating filtered knowledge, which
is 4.6 points higher than the injection of normal
knowledge. This indicates that the filtered knowl-
edge has generalization across different models in
knowledge enhancement scenarios, highlighting
the critical value of our work in downstream appli-
cations.

D Human Evaluation Details

D.1 Method Evaluation Details

Noisy Knowledge Issue We report the full ex-
perimental results of our case study on the noisy
knowledge issue (see Table 10). we further vali-
date the effectiveness of our reward model by hu-
mans. We randomly choose a question for each
benchmark and compare knowledge with different
ranks provided by our reward model (see Table
10). For the first question, the knowledge ranked
1st contains the key evidence that leads to the cor-
rect answer (marked in blue), while the knowledge
ranked Sth contains the wrong statement (marked
in red) without any evidence to support it. As for
the second question, the knowledge ranked 1st also
contains the reasonable reasoning path to the cor-
rect answer, but the knowledge ranked 5th just de-
scribes the information in the question without any
useful evidence to answer it. In conclusion, we
demonstrate that knowledge with higher scores in
our work is also more reasonable from a human
perspective, indicating that the reward model can
be aligned with humans to a certain extent.

Invalid Reasoning Issue We randomly select 20
answers from the results of different methods. If
the knowledge in the answer is correct but the final
prediction is incorrect, then the case is marked as
invalid reasoning.

D.2 Metric Evaluation Details

For each piece of knowledge, we manually classify
it into one of five categories: effective, relatively
effective, neural, relatively harmful, and harmful.
Then, we assign corresponding scores of 1, 0.5,
0, -0.5, and -1 to each category of knowledge, re-
spectively. We randomly select 20 samples and
calculate the Pearson’s correlation between this
score and both ES and PS.
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System Instruction: You are a helpful assistant that use your own knowledge
to choose the correct answer to the question. Use your commonsense
knowledge to choose correct answer for some questions. Your response
should be in this form:

'‘Answer: ({option}) {answer}'

If there is not proper option, you can give 'Answer: None'.

Now answer the following questions:

Question: The test was hard for Samuel but a breeze for Randy , since _ had
failed to study for it.

(1) Samuel (2) Randy

Answer: (1) Samuel.

Question: Kyle slowly wormed their way into the life of Derrick, because _
was good and manipulating people.

(1) Kyle (2) Derrick

Answer: (1) Kyle.

Question: Donald was very grounded but Michael often got lost in their
daydreams. _ was very capricious all the time.

(1) Donald (2) Michael

Answer: (2) Michael.

Question: {}

Figure 7: Prompts for Few-shot.
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System Instruction: You are a helpful assistant that break down the question
step by step and choose the correct answer to the question. Use your
commonsense knowledge to choice correct answer for some questions and
give the reasoning process. Your response should be in this form:
‘{Reasoning_content}

So the answer is: ({option}) {answer}'

Now answer the following questions:

Question: The test was hard for Samuel but a breeze for Randy , since _ had
failed to study for it.

(1) Samuel (2) Randy

Answer: To pass a test, a person need to study for it. If a person feel the test
like a breeze, it means the test is easy for him. A person feels the test easy,
because he studies hard for it. Since we know that Samuel feel the test very
hard, she may fail to study for it.

So the answer is: (1) Samuel.

Question: Kyle slowly wormed their way into the life of Derrick, because _
was good and manipulating people.

(1) Kyle (2) Derrick

Answer: A person wormes his way into other's life, because he is friendly and
approachable. A friendly person is considered good. A person is seen as
manipulating people, that means he like to interact with others and others like
him. Since Kyle slowly wormed their way into the life of Derric, Kyle will be
seen as good and manipulating people.

So the answer is: (1) Kyle.

Question: Donald was very grounded but Michael often got lost in their
daydreams. _ was very capricious all the time.

(1) Donald (2) Michael

Answer: A person is grounded means he works hard and does not like to
fantasize. A person often gets lost in his daydreams, he is seen as unrealistic
and egocentric. A person is capricious all the time means he does everything
only according to his own ideas. Since Michael often gets lost in their
daydreams but Donald does not, Michael is seen as very capricious all the time.
So the answer is: (2) Michael.

Question: {}

Figure 8: Prompts for CoT and CoT-SC.
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System: You are a helpful, respectful and honest assistant. You should use
your reasoning abilities to give a feedback to the given rational. Your
response should be in this form: 'Feedback: {feedback}’.

Question: Kyle slowly wormed their way into the life of Derrick, because _
was good and manipulating people.\n(1) Kyle (2) Derrick\nRational: A person
wormes his way into other's life, because he is friendly and approachable. A
person is seen as manipulating people, that means he like to interact with
others. Since Kyle slowly wormed their way into the life of Derric, Derric
will be seen as good and manipulating people. So the answer is: (2) Derric.
Answer: Feedback: The rational is wrong. Since a person wormes his way
into other's life is friendly, it's Kyle who was good, not Derrick.

6uestion: {3

System: You are a helpful, respectful and honest assistant. You should use
your reasoning abilities, the given rational and feedback to update your
answer to the given questions in reasoning tasks. You should reply the correct
rationales and the answer. Your response should be in this form: '{reason} So
the answer is: ({option}) {answer}'. If you don't know the answer to a
question, please reply 'Answer: None'.

Question: Kyle slowly wormed their way into the life of Derrick, because _
was good and manipulating people.\n(1) Kyle (2) Derrick\nRational: A person
wormes his way into other's life, because he is friendly and approachable. A
person is seen as manipulating people, that means he like to interact with
others. Since Kyle slowly wormed their way into the life of Derric, Derric
will be seen as good and manipulating people. So the answer is: (2) Derric.
Feedback: The rational is wrong. Since a person wormes his way into other's
life is friendly, it's Kyle who was good, not Derrick.

Answer: A person wormes his way into other's life, because he is friendly
and approachable. A friendly person is considered good. A person is seen as
manipulating people, that means he like to interact with others and others like
him. Since Kyle slowly wormed their way into the life of Derric, Kyle will be
seen as good and manipulating people. So the answer is: (1) Kyle.

6uestion: {3

Figure 9: Prompts for Self-Refine.
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System: You are a helpful, respectful and honest assistant. You should use
your reasoning abilities to break down the questions into subquestions. You
should reply the correct subquestions. Your response should be in this form:
"To solve the question, we need to solve these subquestions:\nQuestion
1:{subquestion}\nQuestion 2:{subquestion}.

Question: The test was hard for Samuel but a breeze for Randy , since _
had failed to study for it.\n(1) Samuel (2) Randy

Answer: To solve the question, we need to solve these
subquestions:\nQuestion 1: Why the test is hard for Samul?\nQuestion
2:Why the test is a breeze for Randy?\nQuestion 3:Who had fail to study for
the test?

éﬁestion: {3

System: You are a helpful, respectful and honest assistant. You should use
your reasoning abilities to answer the given subquestion in reasoning tasks.
You should reply the correct answer to the subquestion. Your response
should be in this form: 'Answer: {answer}'.

Question: The test was hard for Samuel but a breeze for Randy , since _
had failed to study for it.\n(1) Samuel (2) Randy\nQuestion 1: Why the test
is hard for Samul?

Answer: Answer: If the test is hard for Samul, he may not study for it.

6uestion: {3

System: You are a helpful, respectful and honest assistant. You should use
your reasoning abilities and the given context to answer the given questions
in reasoning tasks. You should reply the answer. Your response should be in
this form: 'So the answer is: ({option}) {answer}'. If you don't know the
answer to a question, please reply '‘Answer: None'.

Question: The test was hard for Samuel but a breeze for Randy , since _
had failed to study for it.\n(1) Samuel (2) Randy\nQuestion 1: Why the test
is hard for Samul? Answer: If the test is hard for Samul, he may not study
for it.\nQuestion 2:Why the test is a breeze for Randy? Answer: If Randy
feel the test like a breeze, the test is easy for her. In that case, she may study
hard for it.\nQuestion 3:Who had fail to study for the test? Answer: Since
Samul does not study for the test, Samul fails to study for it.

Answer: So the answer is: (1) Samuel.

ijuestion: {}

Figure 10: Prompts for Least-to-Most.
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System Instruction: You are a helpful assistant that generate
knowledge according to the question.

Use your commonsense knowledge to generate knowledge for
some questions. Your response should be in this form:
'Knowledge: {knowledge}'

Remember you cannot directly answer the question as your
knowledge.

Now the question is as follows:

Question: The test was hard for Samuel but a breeze for Randy ,
since _ had failed to study for it

Answer: Knowledge: To pass a test, a person need to study for it.
If a person feel the test like a breeze, it means the test is easy for
him. A person feels the test easy, because he studies hard for it.

Question: {}

System Instruction: You are a helpful assistant that choose the
correct answer to the question based on the given knowledge.
Use the provided knowledge and your own commonsense
knowledge to choice correct answer for some questions. Your
response should be in this form:

‘Answer: ({option}) {answer}'

If there is not proper option, you can give 'Answer: None'.

Now answer the following questions:

Knowledge: To pass a test, a person need to study for it. If a
person feel the test like a breeze, it means the test is easy for him.
A person feels the test easy, because he studies hard for it.
Question: The test was hard for Samuel but a breeze for Randy ,
since _ had failed to study for it.

(1) Samuel (2) Randy

Knowledge: {}
Question: {}

Figure 11: Prompts for our method.
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Dataset Question Knowledge Ranking Human Preference Reason
A person stays up later
than another person to . .
) watch TV because he 1 4 Contain the reasoning
At night, Jeffrey always to the correct answer
3 stays up later than Hunter does r‘10t need to \.zvake up
‘WinoGrande to watch TV because _ early in the morning ...
wakes up late. Ifa person ... suggests that
(1) Jeffrey (2) Hunter Hunter, in this case, wakes ' .
up late and consequently 5 X Contain wrong reasoning
stays up later than Jeffrey
to watch TV.
When someone falls on
The boy lifts his body their back, it is common . .
above the height of a pole.  or them to turn their body 1 v Contain the reasoning
HellaS The boy lands on his back  rqund or get up from the to the correct answer
elaswag on to ared mat. the boy _ ground afterwards.
(1) turns his body around  “When someone lands on Too general, no help
on the mat. (2) gets up their back, they are gener- 5 X for answering the

from the mat. (3) ...

ally positioned lying down.

question.

Table 10: Examples in case study. The correct answer to the question is bolded, some noisy knowledge statement is
marked in red, and some correct knowledge statement is marked in blue.
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