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Abstract
Yonkoma Manga, characterized by its four-
panel structure, presents unique challenges due
to its rich contextual information and strong
sequential features. To address the limitations
of current multimodal large language models
(MLLMs)1 in understanding this type of data,
we create a novel dataset named YManga from
the Internet. After filtering out low-quality con-
tent, we collect a dataset of 1,015 yonkoma
strips, containing 10,150 human annotations.
We then define three challenging tasks for this
dataset: panel sequence detection, generation
of the author’s creative intention, and descrip-
tion generation for masked panels. These tasks
progressively introduce the complexity of un-
derstanding and utilizing such image-text data.
To the best of our knowledge, YManga is the
first dataset specifically designed for yonkoma
manga strips understanding. Extensive experi-
ments conducted on this dataset reveal signif-
icant challenges faced by current multimodal
large language models. Our results show a sub-
stantial performance gap between models and
humans across all three tasks.2

1 Introduction

Yonkoma Manga, it will be referred to as yonkoma
below for the sake of simplicity, also known as 4-
koma Manga, which is a very regular comic data,
originated in Japan and consists of four panels of
equal size. Each panel typically follows this struc-
ture:
(a) Introduction: Sets up the scene or premise.
(b) Development: Builds on the initial setup.
(c) Twist: Introduces an unexpected turn.
(d) Conclusion: Delivers the resolution.

This format provides a concise and often humorous
narrative within a limited space.

*Equal contribution.
†Corresponding author.
1Specifically refers to LLMs that can process image and

text information.
2https://github.com/yangqi1725/YManga

Task2:         Intention Generation

Task3:       Description Generation

Human-authored:
By personifying the meteoroid, the 
author praises those who are able to 
make great sacrifices for their ideals.

GPT-4o(five-shot):
The comic "Burn Out" illustrates the 
contrast between lofty aspirations and 
harsh realities, showing that even in 
failure or burnout, there can be 
unexpected recognition and beauty.

Title: Burn Out

Task1:     Panel Sequence Detection

Human-authored:
The optimistic meteoroid flies towards 
the Earth's atmosphere without 
hesitation, begins to burn, and turns 
into a shooting star.
GPT-4o(five-shot):
The meteoroid burning up as it enters 
Earth's atmosphere, symbolizing its 
transformation into a shooting star.
True description:
The optimistic meteoroid decides to fly 
into the Earth's atmosphere, but the 
other meteoroid warns the optimistic 
meteoroid not to get close to the Earth's 
atmosphere.

Figure 1: We defined three tasks on YManga: (1) Panel
Sequence Detect (PSD); (2) Author’s Intention Gen-
eration (IG); (3) Description Generation (DG). Addi-
tionally, the last two tasks are further divided based on
the presence or absence of manually annotated panel
descriptions.

Yonkoma data, as showing in figure 1, exhibits
unique structures and modes of information expres-
sion. Existing large-scale image-text datasets, such
as MSCOCO (Lin et al., 2014), ImageNet (Deng
et al., 2009), typically pair images with text in a
straightforward manner, lacking sufficient contex-
tual information. This simplistic correspondence
limits the expressive capacity of these datasets in
complex scenarios. In contrast, yonkoma data pro-
vides stronger contextual relevance and coherence,
not only containing textual elements like titles but
also delivering rich narrative information through
sequential panels.

Furthermore, yonkoma data features a much
higher information density compared to video data.
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In video data, even if certain frames are lost, view-
ers can still comprehend the overall content through
redundant information (Danier et al., 2024). How-
ever, the narrative in yonkoma relies heavily on
the close connection between each panel, and any
missing information can affect the completeness of
the story.

Existing comic datasets such as Sachdeva and
Zisserman (2024); Li et al. (2023b); Lee et al.
(2021); Aizawa et al. (2020) often lack a struc-
tured format, making them difficult to model ef-
fectively. In contrast, our YManga dataset offers
unique structural advantages: each sample consists
of four equally-sized panels, forming a stable 2x2
grid layout. This structure facilitates researchers
in exploring the temporal dependencies in visual
storytelling and the synergies of multimodal infor-
mation, which are difficult to achieve in existing
comic or image-text datasets.

Based on these characteristics, we design three
tasks on the YManga dataset to evaluate the capa-
bility of MLLMs in understanding yonkoma data:
(1) Panel Sequence Detection (PSD), which tests
whether the model can correctly identify the or-
der of yonkoma panels; (2) Intent Generation (IG),
which assesses whether the model can generate the
author’s intended message behind the yonkoma;
and (3) Description Generation (DG), which eval-
uates the model’s ability to infer the content of a
missing panel when it is masked. These three tasks
are illustrated in Figure 1.

To accomplish these tasks, the model must pos-
sess three core abilities: accurately recognizing
character dialogues, identifying characters across
panels, and capturing critical narrative turning
points. Through a progressive task design, where
we provide yonkoma images, title text, and man-
ual annotations, we observe a considerable gap
between the performance of current multimodal
models and human understanding. Experiments
show that the best model achieves only 67% accu-
racy on Panel Sequence Detection(PSD), signifi-
cantly lower than the 90% accuracy achieved by
humans. For Intent Generation (IG) and Descrip-
tion Generation (DG), the model’s performance
heavily depends on the availability of panel de-
scriptions. Even advanced models, such as GPT-4o,
struggle to generate accurate intents or descriptions
in certain cases, despite being provided with panel
descriptions. Our contributions are summarized as
follows:

• The YManga dataset we propose is the first
dataset specifically curated for the collection
of yonkoma-type comics. We collect and filter
1,015 yonkoma strips, manually annotating
each with 10 labels, resulting in a total of
10,150 annotations.

• We design three tasks on the YManga dataset
and conduct rigorous baseline experiments.

• Through the formulation of five research ques-
tions, we perform a comprehensive analysis
of the YManga dataset and summarize three
main limitations of existing MLLMs.

2 Dataset and Task Setups

We collect yonkoma strips from several influen-
tial comic websites, such as Pinterest, GoComics,
and from the personal pages of various comic
artists. Through a rigorous process of both machine
and manual filtering, we retain 1,015 high-quality
yonkoma strips. All of these have been authorized
by their respective creators. For detailed informa-
tion on our criteria for filtering data, please refer to
Appendix A.

2.1 Task Setups
We design three novel tasks on YManga: (1) Panel
Sequence Detection(PSD); (2) Intention Gener-
ation(IG); (3) Description Generation(DG). The
overall statistics of these three tasks are shown in
Table 1.
Task 1: Panel Sequence Detection(PSD)

Can the models identify whether the se-
quence of the four panels in the yonkoma
is correct?

Inspired by the next sentence prediction pre-
training task proposed by Devlin et al. (2019) in
the BERT model, we design this task. We use
two methods to swap panels. The first method in-
volves swapping two adjacent panels3. The second
method involves randomly shuffling all four pan-
els. The sequence of panels in yonkoma is crucial
for conveying the coherence and logic of the story.
The models need to recognize subtle visual clues
within the panels and the semantic relationships be-
tween them to determine if the sequence is correct.
This requires the models to have not only excellent
image processing capabilities but also an under-
standing of the temporal and causal relationships
in the yonkoma’s panels.

3This method includes three cases: swapping panel 1 and
panel 2, panel 2 and panel 3, and panel 3 and panel 4.
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Title: Tortured Metaphor
Description:
Panel 1: A frog sits in a pot, and a fire is lit 
underneath. The narrator writes "If you place a 
frog in water and slowly bring it to a boil."
Panel 2: The frog is still in the pot, and the 
water begins to bubble slightly. The narrator 
writes "It won't notice that it's slowly being 
boiled alive."
Panel 3: The frog says: "Naw man, I know. I 
know.". The water has begun to boil.
Panel 4: The frog is still in the pot, and the 
water is boiling. The narrator writes "Oh..."
Author’s Intention: The author describes the 
"boiling frog in warm water" to satirize those 
who, even though they are aware of the harm of 
their environment, still do not take action, 
causing things to get worse and worse.

Title: Take Medicine
Description:
Panel 1: In the supermarket, character A tells 
character B that "I use ice cream to persuade 
my kids to take their medicine.", and character 
B says "I'll try that."
Panel 2: After returning home, character B tells 
his son that "How's that ice cream, toby? It was 
poisoned. You'll be gone soon."
Panel 3: As character B poured the medicine, he 
continued to say to his son that "Oh look, here's 
the antidote to save you from a long and painful 
death."
Panel 4: Character B's son is taking the 
medicine.
Author’s Intention: The author humorously 
describes the extreme and exaggerated methods 
parents may use to ensure their children take 
medication on time, emphasizing the love 
parents have for their children.

Title: Wing Tip
Description:
Panel 1: A penguin asks a red bird, "What's the 
best way to get out of an awkward situation?"
Panel 2: The red bird responds, "You're a bird. 
Just fly away."
Panel 3: The penguin, looking confused, starts 
to say "BUT ", while the red bird looks at it.
Panel 4: The red bird is gone, and there's a small 
black line in the sky indicating it has flown 
away, leaving the penguin standing alone.
Author’s Intention: The author humorously 
illustrates the point that everyone has different 
advantages and strengths, and when dealing 
with problems one should not copy other 
people’s solutions, but instead find a method 
that suits one’s own.

Figure 2: For each of the 1,015 yonkoma strips, we annotate all four of their panels. We focus on the characters’
dialogue, behaviors, and essential scenes and details. We also distinguish characters that appeared across panels.
Additionally, we discuss the authors’ intentions in detail and provide accurate manual annotations.

Task 2: Intention Generation(IG)

Can the model accurately generate
the author’s intention in creating the
yonkoma?

We design this task following the general guide-
lines proposed by Hessel et al. (2023). This task
is also known as, can the model understand the
sentiment that the yonkoma author want to express
when creating the yonkoma? The key to correctly
identify the author’s intention lies in accurately de-
tecting the turning point of the yonkoma, which
typically occurs in the third or fourth panel. To
identify this turning point correctly, the models
must understand the previous panels and grasp the
overall context of the yonkoma. Additionally, it
needs to compare the previous panel with the sub-
sequent panel to identify differences, which places
extremely high demands on the models’ reasoning
ability.
Task 3: Description Generation(DG)

When a panel is masked, can the models
make full use of the existing information

to infer what the masked panel should
describe?

Based on the structure of the yonkoma data it-
self and inspired by the Masked LM pre-training
task proposed by Devlin et al. (2019) in the BERT
model, we design this task. Since the key elements
of a yonkoma often lie in the third and fourth pan-
els, we focus on these two panels. We mask each
of these panels separately and provide the author’s
intention along with the masked yonkoma to see if
the models can accurately generate the correct de-
scription of the masked panel. We mask the panel
using the average color of the masked panel.

For the latter two tasks, we categorize them
based on the presence or absence of human-
annotated panel descriptions. Specifically, for task
IG, the input to the models consists of a yonkoma-
title pair, accompanied by the descriptions of four
panels when available. For task DG, the input in-
cludes a yonkoma with one masked panel, the cor-
responding title, the author’s creative intention, and
descriptions of three unmasked panels if they are
available. Intuitively, when the description informa-
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tion of the panels are available, the performance of
the models will undoubtedly be greatly enhanced.
This is indeed the case. When there is panel de-
scription information, the output of each model
has been greatly improved, which in turn shows
that the current multimodal LLMs is facing great
challenges in understanding yonkoma strips data.

2.2 Evaluation Metrics
For task PSD, a binary classification task, we use
accuracy and F1 score to automatically evaluate the
models’ predictions. For IG, a generative tasks, we
employ automatic evaluation metrics such as Post
(2018) + ROUGE-L (Lin, 2004) and BERTScore
(Zhang et al., 2020) (using XLNet/xlnet-large-
cased), but our primary focus is on human eval-
uation. We recruit four undergraduate students4

with no prior experience analyzing our data to as-
sist with the human evaluation, under the guidance
of one of the authors of this paper. Specifically,
for task IG, we divide the four evaluators into two
groups: one group evaluate the predictions with
panel descriptions, and the other evaluate the pre-
dictions without panel descriptions. The purpose
of this division is to ensure that each annotator can
only see the correct label once. For each predic-
tion generated by the models, we package it into
a prediction-label pair and ask two evaluators to
choose which data in the pair is better to deter-
mine the generation effect of the models. If both
annotator choose the human-annotated text, it indi-
cates that the quality of the text generated by the
model is not good enough. Otherwise, it suggests
that the model performs well, with no significant
difference from human annotation. For task DG,
we mainly focus on the following two aspects to
observe whether the models’ prediction is correct:
(1)Consistency: Is the model’s prediction consis-
tent with the real panel description? (2)Articulate:
Can the model’s predictions effectively highlight
the author’s creative intentions? When all four
evaluators agree on these two points, we consider
the quality of the prediction to be better. If any
of the evaluators disagree with either of these two
points, we consider the quality of the prediction to
be lower.

2.3 Annotation and Analysis
We recruit three undergraduate students5 from the
School of Languages and Literature to collaborate

4We pay each evaluator $13/hr.
5We pay each annotator $13/hr too.

Train Val Test
Swap Panel 1,2 1218 406 406
Swap Panel 2,3 1218 406 406
Swap Panel 3,4 1218 406 406

Randomly Shuffle 1218 406 406
Intention Generation 609 203 203

Mask Panel 3 609 203 203
Mask Panel 4 609 203 203

Table 1: Basic statistics of YManga. For PSD, we divide
it into four binary classification tasks, each with an equal
number of positive and negative examples. For task DG,
we divide it into two subtasks: masking the third panel
and masking the fourth panel. For these three tasks, we
divide the training set, validation set, and test set in a
ratio of 3:1:1.

with one of the authors of this article on manual
annotation. See the Appendix B for detailed data
annotation guidelines. A random sample of anno-
tations is shown in Figure 2. See Appendix D for
more data samples.

For the creative intention of the yonkoma au-
thor, our general annotation standard is to use one
sentence to summarize the author’s core intention.
For each yonkoma, the three annotators engage
in heated discussions, reached a consensus, and
then perform the manual annotation. The annota-
tion results are reviewed by one of the authors of
this paper to form the final annotation. Finally, we
create a corpus of 1015 human-annotated author in-
tention explanations with relatively uniform length
(mean/median 25.1/25 words, 25.5K total).

For the description of each yonkoma panel,
our annotation standards are: (1) For each panel,
clearly describe the characters that appear, includ-
ing their words, expressions, actions, and the back-
ground (if important); (2) Accurately distinguish
between characters that cross panels and newly ap-
pearing characters. The annotators’ annotations are
also reviewed by the author to form the final an-
notations. In the end, we complete the annotation
of all yonkomas, resulting in a corpus containing
1015 human-annotated yonkoma panel descriptions
(mean/median 58.8/58 words, 59.6K total).

3 Experiments

3.1 Baseline Models
CLIP-ViT. CLIP consists of a text Transformer
(Vaswani et al., 2017) and a vision Transformer
(Dosovitskiy et al., 2021). We use the vision Trans-
former of CLIP ViT-L/14@336px, which is pre-
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(Task2) Human-authored:
The author describes the "boiling frog in warm water" to satirize those who, even though they are aware of the harm of their 
environment, still do not take action, causing things to get worse and worse.
InstructBlip(without_description):
The author uses the metaphor of a frog in a boiling pot to humorously express the idea that if you put too much pressure on 
yourself, you may end up doing things that you don't really want to do.
InstructBlip(with_description):
The author uses the metaphor of a frog being boiled alive to highlight the dangers of procrastinating on important tasks, 
suggesting that procrastination can lead to serious consequences.
GPT-4o(0-shot, without_description):
The author's creative intention in this comic is to humorously illustrate the concept of the "boiling frog" metaphor, showing the 
frog's awareness and resignation to its fate, thereby critiquing complacency in the face of gradual negative change.
GPT-4o(0-shot, with_description):
The author intends to humorously highlight the irony that even when people are aware of gradual dangers, they often fail to 
take action to avoid them.

(Task3, mask Panel3) Human-authored:
Character B pours medicine for his son and says "If you take 
this medicine then everything will be fine."
True description:
As character B poured the medicine, he continued to say to 
his son that "Oh look, here's the antidote to save you from a 
long and painful death."

LLaVA-Next(with_description):
Character B's son is crying.
LLaVA-Next(without_description):
The father asks if the child has taken their medication, to 
which the child responds that they haven't.

(Task3, mask Panel4) Human-authored:
Character B's son eventually takes the medicine his father 
gives him.

True description:
Character B's son is taking the medicine.

LLaVA-Next(with_description):
Character B's son happily eats the medicine.

LLaVA-Next(without_description):
The child reluctantly eats the ice cream.

Figure 3: This is an example of the last two generation tasks. Readers can see more examples in the Appendix
D. In this figure, the upper part shows the generation results of Task IG, and the lower part shows the results of
the two subtasks of Task DG. It can be clearly seen that (1) the quality of models generation is far from that of
human-authored, and (2) the generation result of the models with or without description is also very different.

trained to align images and captions in the We-
bImageText corpus (400M pairs) (Radford et al.,
2021), as a baseline model for PSD, considering
only the image information of yonkoma. Specif-
ically, we take the pooling output of CLIP-ViT
and subsequently connect an Multilayer Perceptron
(Rumelhart et al., 1986) to map it to the binary
classification of whether the sequence of yonkoma
panels is correct.

InstructBlip. InstructBlip (Dai et al., 2023) con-
sists of a vision Transformer (Dosovitskiy et al.,
2021), a Q-Former module, and a large language
model. It has undergone vision-language in-
struction fine-tuning on the pre-trained BLIP-2
(Li et al., 2023a, 2022) model. We choose the
InstructBlip-Flan-T5-XXL(12B parame-
ters) model which is followed by a Flan-T5-
XXL (Raffel et al., 2020; Chung et al., 2022).
For task PSD, we use its vision Transformer
and Q-Former module to encode the image-text
data of yonkoma, obtain its pooling output, and
then connect an Multilayer Perceptron (Rumel-
hart et al., 1986) to map it to the binary classifi-
cation of whether the sequence of the yonkoma
panels is correct. For Tasks 2 and 3, we
fine-tune InstructBlip-Flan-T5-XXL us-
ing Low-Rank Adaptation (Hu et al., 2022).

LLaVA-NeXT. LLaVA-NeXT (Liu et al., 2024)
is a multimodal large language model improved
upon LLaVA (Liu et al., 2023b,a). It has enhanced
reasoning abilities, optical character recognition
(OCR), and world knowledge, outperforming many
multimodal LLMs on various general visual lan-
guage tasks, including Gemini Pro (Anil et al.,
2023). We choose llava-v1.6-mistral-
7b-hf(7B parameters), an open-source model
available on Hugging Face, as the baseline for our
last two generation tasks. We also use Low-Rank
Adaptation (Hu et al., 2022) to fine-tune it.
GPT-4o. We also test our three tasks on the GPT-4o
(OpenAI, 2024a,b). We design detailed prompts for
these three tasks. For task PSD, we set the model to
output “Yes” or “No” to achieve the effect of binary
classification. For the next two generative tasks,
we design prompts for the presence or absence
of panel descriptions. See Appendix C for more
prompt details.

3.2 Fine-tuning Details
All of our locally run models are trained on a single
A100 GPU using the PyTorch framework (Paszke
et al., 2019). We select the AdamW optimizer
(Loshchilov and Hutter, 2019). The specific param-
eters use for the AdamW optimizer are as follows:
the learning rate is set to 1e−5, with β1 and β2 val-
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Model Swap Panel 1, 2 Swap Panel 2, 3 Swap Panel 3, 4 Randomly Shuffle
Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Random 50 50 50 50 50 50 50 50
CLIP-ViT 58.54 60.65 60.24 60.91 58.29 59.57 57.80 50.14
Q-Former 60.73 63.16 65.61 62.99 67.32 67.48 62.20 65.63

LLaVA-NeXT 59.35 59.85 59.85 60.58 60.49 58.04 61.42 59.47
GPT-4o(0-shot) 63.66 63.39 58.05 54.01 57.80 56.64 64.79 63.26

Human 92.80 92.80 90.34 91.77 90.24 90.20 95.24 90.91

Table 2: Results of a baseline experiment to detect if the sequence of yonkoma panels is correct. Q-Former is the
vision Transformer and Q-Former module of the instructblip-flan-t5-xxl mentioned in Section 3.1. We
take the average of 5 cross-validation splits. During training and testing, the CLIP-ViT model can only access
the image information of the yonkoma, while other models and human evaluation can access the image and title
text information of the yonkoma. We make four settings for the sequence of panels, namely swapping panels 1, 2;
swapping panels 2, 3; swapping panels 3, 4; and randomly shuffling the panels.

ues of 0.9 and 0.999, respectively, and a weight de-
cay rate of 0.01. For each individual task, we train
the models until they reach convergence, ensuring
optimal performance before proceeding to the test-
ing phase. To achieve reliable and unbiased results,
we employ a 5-fold cross-validation approach. This
method allowed us to utilize every sample in the
dataset for both training and testing, thereby en-
hancing the robustness and generalizability of our
models. Specifically, for the task of PSD, we con-
duct comprehensive parameter fine-tuning on the
classification models. This involve adjusting all
model parameters to achieve the best performance.
For task IG and DG, we limit the fine-tuning pro-
cess to only the linear layers of the models. This
selective fine-tuning strategy help in maintaining
computational efficiency while still achieving sat-
isfactory performance levels. We divide YManga
into 5 cross-validation groups, and take the average
of these five cross-validation groups as our experi-
mental results.

3.3 Panel Sequence Detection

Table 2 shows the experimental results of PSD.
As can be seen, our fine-tuned Q-Former module
achieved slightly better results than the 0-shot GPT-
4o model, but all our models have a large gap with
human evaluation. In order to conduct in-depth
analysis and exploration of the experimental results
of PSD, we design two research questions(RQs).
RQ1: What does the results of Q-Former and
GPT-4o show? The main difference between the
fine-tuned Q-Former and the zero-shot GPT-4o is
their recognition of the exchange between panel 2
and 3, and between panel 3 and 4. It can be seen
that for these two subtasks, the zero-shot GPT-4o
performs worse than even the CLIP-ViT model,
which lacks title information. We believe this is

due to the features of yonkoma data. Panel 1 must
introduce the background information of the story,
with all the information appearing for the first time.
The subsequent panels build on this basic informa-
tion. Therefore, even with zero-shot GPT-4o, it
performs better than the trained model in recogniz-
ing the sequence of the first two panels or randomly
shuffling the sequence. However, for the sequence
of the last three panels, although the visual reason-
ing ability of GPT-4o is unquestionable, it still does
not grasp the details of the yonkoma images as well
as the smaller model fine-tuned on YManga.
RQ2: What features of yonkoma data does hu-
man evaluation reveal? How does it differ from
model testing? As for the results of human evalua-
tion, we can see that the trend is very similar to that
of GPT-4o. The performance on swapping Panel 1
and Panel 2, and on randomly shuffling, is slightly
better than the other two subtasks. This undoubt-
edly reveals a feature of yonkoma data. To some
extent, the sequence of the last three panels of some
yonkoma may have an implicit relationship that is
not very obvious. For example, in the third exam-
ple of Figure 2, even if we swap Panel 2 and Panel
3, it does not significantly impact the development
and expression of the whole story. However, this
type of yonkoma data only accounts for a small por-
tion. In most cases, humans can easily determine
whether the sequence of panels is correct. We did
not filter out this type of data. On the contrary, we
believe that the presence of this type of data makes
our model more robust, less prone to overfitting,
and beneficial for our subsequent research.

3.4 Intention Generation

Table 3 presents the automatic evaluation and the
human evaluation results of the model generation
of task IG. We show some examples generated
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Model Task 2
Task 3

Mask Panel 3
Task 3

Mask Panel 4
w/o desc ROUGE Bert-Score Human Human

InstructBlip 26.15 52.40 37% 44% 41%
LLaVA-NeXT(0-shot) 26.42 52.23 35% 41% 36%

LLaVA-NeXT(finetuned) 26.55 51.87 33% 43% 33%
GPT-4o(0-shot) 28.73 54.51 53% 54% 49%
GPT-4o(5-shot) 27.65 54.69 69% 68% 54%

w/ desc
InstructBlip 28.67 55.47 48% 63% 48%

LLaVA-NeXT(0-shot) 27.59 53.48 44% 55% 42%
LLaVA-NeXT(finetuned) 27.98 53.76 45% 57% 42%

GPT-4o(0-shot) 28.51 54.82 60% 60% 52%
GPT-4o(5-shot) 28.39 55.12 74% 73% 62%

Table 3: Here are the results of several baseline models on the IG and DG tasks. For the IG task, we primarily used a
combination of automatic evaluation metrics and human evaluation. For the DG task, since it involves open-domain
text generation, we mainly relied on human evaluation. The percentage in the human evaluation results refers to the
proportion of high-quality outputs generated by the model.

by the model in Figure 3. For specific evaluation
methods, see Section 2.2, Evaluation Metrics. The
prompt of GPT-4o is shown in the Appendix C. We
also prepare two Research Questions to analyze
and explore this task.

RQ3: What does it reveal that the generated
results with description information are better
than those without description information? We
compare the impact of having description informa-
tion on the generation results of Task 2 and Task
3. The MLLMs performed better when provided
with description information, which highlights their
limited ability to understand multimodal informa-
tion. When the models have access to panel de-
scriptions, their performance improve significantly,
consistent with the role of dense information as
proposed by Fan et al. (2024). However, for more
advanced models, such as GPT-4o, the improve-
ment was relatively minor. This clearly indicates
that current models still face substantial challenges
in accurately understanding yonkoma data. It also
demonstrates that Task 1 serves as a foundation for
Task 2 and Task 3.

RQ4: For GPT-4o, what does it mean that
the 5-shot result is better than the 0-shot re-
sult? Brown et al. (2020) first introduce in-context
learning as a special form of prompting. We believe
that for generative tasks, this approach is some-
what analogous to human alignment (Ouyang et al.,
2022; Ziegler et al., 2019), where large models
learn human language habits and then imitate the
tone to express answers to questions. As shown
by the experimental results in Table 3, while this

imitation improves the model’s expressive abilities,
we argue that MLLMs are primarily imitating hu-
man output patterns and do not possess a strong
understanding of “emotion”.

3.5 Description Generation

Table 3 shows the experimental results of task DG.
We only perform manual evaluations on this open-
domain task. Table 3 presents the manual evalu-
ation results generated by the model. These per-
centages represent the proportion of high-quality
descriptions generated out of the total number of
generated descriptions.For task DG, we raise one
research question to analyze and explore this task.
RQ5: Why is the model better at generating de-
scriptions for masked panel 3 than for masked
panel 4? The DG task tests the reasoning ability
of MLLMs in open domains. After discussion, we
identify two reasons for this phenomenon. The
first reason is that when generating the description
for the third panel, we can refer not only to the
author’s intent and the previous panels but also to
the information from the fourth panel. This ap-
proach helps anchor the generation of the third
panel’s description to some extent. However, when
generating the description for the fourth panel, the
model lacks this advantage and is more prone to
hallucination, as noted by Dhuliawala et al. (2024);
Qu et al. (2024). The second reason relates to the
characteristics of yonkoma data itself. Typically, a
turning point appears in the third panel, which is
closely tied to the emotions the author aims to con-
vey, making it easier for the model to learn. This
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also highlights the weaker capability of MLLMs in
generating text in more open-ended environments.

We formulate five independent research ques-
tions to thoroughly and comprehensively explore
the limitations of MLLMs. First, MLLMs are less
effective in capturing image details compared to
smaller models that perform classification based
on feature extraction in task 1. Second, when
dealing with complex image structures, such as
yonkoma, MLLMs are more prone to hallucina-
tions in cross-modal tasks. Third, MLLMs also
show limitations in their generative capabilities in
open-domain. These shortcomings hinder the fur-
ther development of MLLMs.

4 Related Work

Research on comics analysis. Comics, as a highly
comprehensive form of multimodal data, have at-
tracted increasing attention from researchers in re-
cent years. However, existing research on comics
mainly focuses on specific aspects. For instance,
Martínek et al. (2024) explore dialogue recognition
in images through comics and introduced a dataset
containing 1,438 annotated panels. Kovanen and
Aizawa (2015) propose a hierarchical method to
study the reading order of comic text bubbles. Hi-
nami et al. (2021) incorporate contextual informa-
tion extracted from comics into a translation sys-
tem, improving translation accuracy. Agrawal et al.
(2023) focus on comic character dialogue genera-
tion and contribute a new dataset called COMSET.
Kim et al. (2024) leverage the sequential features of
comic data to solve the description generation prob-
lem for related data. He et al. (2018) propose a task
to extract irregular comic panels, while Xu et al.
(2023) segment comic panels and propose a Panel-
Page-Aware comic type classification model. He
et al. (2017) introduce the SReN model for detect-
ing panels in comics. Iyyer et al. (2017) presented
a comic dataset called COMICS and introduced
three cloze-style tasks, requiring the model to pre-
dict the narrative of a panel given the context of the
previous n panels. Baek et al. (2022) construct a
new Japanese comic onomatopoeia dataset called
COO, which challenges the recognition of irreg-
ular text. Although there is a variety of work on
comic data, these studies focus on specific features
of comics and fail to fully leverage the comprehen-
sive nature of comic data. Moreover, these works
are not suitable for testing MLLMs, which possess
strong multimodal capabilities.

The development of multimodal LLMs. The suc-
cessful application of large language models has
promoted the development of research in the mul-
timodal field and paved the way for the construc-
tion of multimodal large language models. There
are three main methods for building multimodal
large-scale language-based models, each aiming
to achieve strong zero-shot generalization capabil-
ities in the field of visual language. For example,
Flamingo (Alayrac et al., 2022) is a pioneer in this
field, using frozen visual encoders and large lan-
guage models equipped with gated cross-attention
for cross-modal alignment. This method has been
widely adopted by models such as LLaVA (Liu
et al., 2023b) and Shikra (Chen et al., 2023). How-
ever, a significant limitation of this approach is
the creation of lengthy visual sequences. To ad-
dress this issue, BLIP-2 (Li et al., 2023a) drew
inspiration from DETR (Carion et al., 2020) and
developed a Q-former to effectively reduce the se-
quence length of visual features. Kosmos-1 (Huang
et al., 2023), mPLUG-Owl2 (Ye et al., 2023), and
MiniGPT-4 (Zhu et al., 2023) all adopt this design
to reduce the visual sequences. Despite the rapid
development of MLLMs, our experiments show
that these models have limitations in handling com-
plex image-text modal reasoning problems.

5 Conclusion and Future Work

To explore the limitations of MLLMs, we intro-
duce the YManga dataset, which consists of 1,015
high-quality Yonkoma Manga samples with corre-
sponding human annotations. We designed three
tasks based on YManga: Panel Sequence Detec-
tion (PSD), Intent Generation (IG), and Description
Generation for Masked Panels (DG). Through rig-
orous baseline experiments and in-depth analysis of
the results, we identified three main limitations of
MLLMs: insufficient ability to capture fine-grained
image details, a tendency to hallucinate when han-
dling complex image data, and inadequate genera-
tive capabilities in open-domain tasks.

Our future work will build on the YManga
dataset to further explore ways to mitigate the three
limitations of MLLMs. This will primarily focus
on two areas: first, designing more efficient meth-
ods for modal alignment to capture more image de-
tails, and second, improving the generative quality
of the models by incorporating external knowledge
bases or leveraging techniques such as reinforce-
ment learning.
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6 Limitations

In this work, we collect and annotate Yonkoma
yonkoma data, organize it into a dataset, and con-
duct rigorous experiments on this dataset. How-
ever, several limitations require further exploration.
First, the purpose of proposing YManga is to test
the model’s ability to understand multimodal data,
so we do not specifically design a model to ex-
plore the upper limit of performance on these tasks.
Nonetheless, this constitutes a limitation of this
work. Secondly, although the task of understand-
ing yonkoma data is very comprehensive, a model’s
weak performance in this area does not necessar-
ily indicate its overall incompetence. We design
this task to explore one aspect of the model’s ca-
pabilities, but it should not be considered the most
important criterion for evaluating the model.
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A Data Collection Standards

We follow general data collection standards (Hessel
et al., 2023) while also considering the unique char-
acteristics of the Yonkoma Manga dataset. Our data
collection process involve a two-step review and
filtering procedure, consisting of machine-based
filtering followed by manual filtering.

A.1 Machine-based Collection Criteria

Filtering out low-resolution Yonkoma Manga:
• We use Python’s OpenCV (Bradski, 2000)

library to read images, extracting their DPI
(dots per inch) and filtering out Yonkoma
Manga with a DPI lower than 96. This en-
sures that key elements such as characters’
facial expressions, actions, dialogue text, and
narration are clearly visible.

• Bilateral and median filters are applied to
the remaining images to remove Gaussian
noise and salt-and-pepper noise (Gonzalez
and Woods, 2018).

• Canny edge detection (Canny, 1986) is em-
ployed to compute the proportion of edge pix-
els. Yonkoma Manga with less than 10% edge
pixels are filtered out.

Filtering out Yonkoma Manga with inconsis-
tent panel sizes:

• The findContours function in OpenCV
(Bradski, 2000) is used to extract the contours
of the four panels.

• The aspect ratio and area of each panel are
calculated.

• Yonkoma Manga with more than a 5% differ-
ence in aspect ratio or area between any two
panels are filtered out.

Filtering out duplicate Yonkoma Manga:
• The SIFT (Scale-Invariant Feature Transform)

(Lowe, 2004) algorithm is used to compare
image fingerprints.

• A fingerprint database is established to filter
out Yonkoma Manga with a similarity score
greater than 0.75.

• Yonkoma Manga with a similarity score be-
tween 0.5 and 0.75 are subjected to manual
review for further filtering.

A.2 Manual Collection Criteria

Filtering out Yonkoma Manga with ambiguous
emotional expressions:

• Yonkoma Manga containing ambiguous lan-
guage or behavior are filtered out.

• Yonkoma Manga with self-contradictory con-
tent or inconsistent semantics are filtered out.

• Yonkoma Manga with multiple possible inter-
pretations, metaphors, or implicit content are
filtered out.

• Yonkoma Manga containing elements that
may result in cultural misunderstanding or
cognitive bias are filtered out.

Filtering out Yonkoma Manga that conflict
with mainstream international values:

• Yonkoma Manga containing offensive depic-
tions of violence, pornography, gore, or illegal
activity are filtered out.

• Yonkoma Manga promoting racism, colorism,
gender discrimination, or ableist biases are
filtered out.

• Yonkoma Manga potentially violating intellec-
tual property, infringing on privacy, or posing
security risks are filtered out.

• Yonkoma Manga containing religious or polit-
ically sensitive topics are filtered out.

• Yonkoma Manga that violate fundamental hu-
man rights and dignity are filtered out.

• Yonkoma Manga promoting pseudoscience,
anti-intellectualism, or fringe theories are fil-
tered out.

• Yonkoma Manga containing dangerous
rhetoric or misinformation are filtered out.
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B Data Annotation Standards

We follow general data annotation standards (Hes-
sel et al., 2023) while also taking into account
the unique characteristics of the Yonkoma Manga
dataset. The annotation process is divided into two
categories: Yonkoma Manga description annota-
tion and emotional expression annotation.

B.1 Annotation Method
Below are the specific guidelines for Yonkoma
Manga description annotation:

Character Identification
• Assign a unique identifier to each character

appearing (e.g., A, B, C, etc.).
• Describe each character’s physical attributes

(e.g., gender, age, clothing, etc.).
• Track the continuity of the characters across

different panels.
Dialogue Annotation
• Accurately record the content of each charac-

ter’s dialogue.
• Identify the speaker for each dialogue seg-

ment.
• Annotate the tone or emotion of the dialogue

(e.g., anger, surprise, happiness, etc.).
Scene Description
• Describe the background environment (e.g.,

indoor/outdoor, specific locations, etc.).
• Record important objects or elements in the

scene.
• Note any changes in the scene over time.
Action Description
• Provide detailed descriptions of character ac-

tions and facial expressions.
• Pay attention to the sequence and causality of

actions.
Visual Effects
• Record special visual effects (e.g., close-up

shots, motion lines, etc.).
• Pay attention to the use of color and composi-

tional features.
Below are the guidelines for annotating the emo-

tional expression of the author:
• Summarize the core creative intent of the au-

thor in one sentence.
• Consider the overall theme and emotional tone

of the Yonkoma Manga.
• Analyze the turning point (usually found in

the third or fourth panel).
• Consider the humorous elements and any satir-

ical undertones in the Yonkoma Manga.

B.2 Quality Review
For the quality standards of manual annotations,
we use a combination of machine and human evalu-
ation. To ensure high-quality annotations, we adapt
the BERT-score metric to evaluate the agreement
rate among different annotators.

For the panel description annotations, our agree-
ment rate requirements are as follows:

• Character Identification: ≥ 0.9
• Dialogue Annotation: ≥ 0.95 (due to the im-

portance of dialogue)
• Scene Description: ≥ 0.85
• Action Description: ≥ 0.85
• Visual Effects: ≥ 0.8
For the emotional expression annotations, our

agreement rate requirements are:
• Overall Agreement Rate: ≥ 0.8
• Core Intent Agreement Rate: ≥ 0.9 (even if

expressed differently, the core meaning should
remain consistent)

If the agreement rate for a certain type of anno-
tation falls below the required threshold, we will
arrange additional training for the annotators. For
samples with particularly low agreement rates, a
third-party annotator will be brought in to arbitrate.
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C Prompts of GPT-4o

In this section we show the prompts used by GPT-
4o for all tasks.

• This is the prompt of PSD.
<image>You are an assistant who is good at
reading four-panel comics.
The title of this four-panel comic is <Title>.
Please tell me whether the sequence of the
four panels of this comic is correct.
You only need to answer “Yes.” or “No.”

Figure 4: This is the prompt for PSD. We only used
0-shot for PSD.

• This is the 0-shot prompt of IG.
<image> You are an assistant who is good at
reading four-panel comics and can accurately
grasp the author’s emotions.
The title of this four-panel comic is <Title>.
<Description of panels if with description.>
Please tell me in one sentence what the author
of this comic created to express.
• This is the 5-shot prompt of IG.
You are an assistant who is good at reading
four-panel comics and can accurately grasp
the author’s emotions.
<Sample 1>,<Sample 2>,<Sample 3>,<Sam-
ple 4>,<Sample 5>
<image> The title of this four-frame comic is
<Title>.
<Description of panels if with description.>
Please tell me in one sentence what the author
of this comic created to express.

Figure 5: These are the four prompts for IG, with and
without descriptions for the 0-shot and 5-shot cases.

We design detailed prompts for all three tasks to
ensure precise and effective results. For PSD, we
specifically structure the prompt to force the model
to output either “Yes.” or “No.” This approach
helps us achieve the effect of binary classification,
simplifying the decision-making process. For IG
and DG, we take a different approach by designing
prompts that focus on the presence or absence of
panel descriptions. This method allows us to guide
the model’s generative capabilities more effectively,
ensuring that the output aligns with our specific
requirements and expectations.Finally, we test the

• This is the 0-shot prompt of DG.
<image>You are an assistant who is good at
reading four-panel comics and can infer the
contents of masked panel.
The title of this four-panel comic is <Title>,
and now its panel <3/4> is masked.
<Description of panels if with description.>
Please tell me in one sentence what the
masked panel should describe.
• This is the 5-shot prompt of DG.
You are an assistant who is good at reading
four-panel comics and can infer the contents
of masked panel.
<Sample 1>,<Sample 2>,<Sample 3>,<Sam-
ple 4>,<Sample 5>
<image> The title of this four-panel comic is
Title, and now its panel 3/4 is masked.
<Description of panels if with description.>
The panel 3/4 is masked.
Please tell me in one sentence what the
masked panel should describe.

Figure 6: These are the four prompts for DG, with and
without descriptions for the 0-shot and 5-shot cases.

Prompt Accuracy F1-Socre
Original Prompt 64.79 63.36
“Yes,no” ->“1,0” 62.84 62.35

“Yes,no” ->“True,False” 65.46 64.04
Swap sentence 1 and 2 64.86 64.49
Swap sentence 2 and 3 64.37 65.54

Table 4: Prompt Sensitivity of GPT-4o

issue of prompt sensitivity of GPT-4o, as shown in
Table 4.
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D Data Samples
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