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Abstract

When large language models (LLMs) sur-
pass human capabilities, supervising them
effectively becomes difficult. Weak-to-strong
learning, where a less capable model enhances
a stronger one, proves valuable in this
context. Yet, the efficacy of this paradigm for
complex reasoning tasks is still unexplored.
In this paper, we introduce a progressive
weak-to-strong reasoning framework that
enables the strong model to autonomously
refine its training data, maximizing the use
of weak signals and unlocking its latent
abilities. This framework begins with su-
pervised fine-tuning on a selective small but
high-quality dataset, followed by preference
optimization on contrastive samples identified
by the strong model itself. Experiments
on the GSM8K and MATH datasets verify
that our method can effectively improve the
reasoning capabilities of Llama2-70b using
three separate weak models. This work paves
the way for a more scalable and sophisticated
strategy to enhance AI reasoning powers.
All relevant code and resources are avail-
able in https://github.com/GAIR-NLP/
weak-to-strong-reasoning.

1 Introduction

As the pursuit of Artificial General Intelligence
(AGI) advances, the creation of superintelligent
systems—models that exceed human cognitive ca-
pabilities—remains a key ambition within the field
(Robert, 2017; Altman et al., 2023; Puthumanail-
lam et al., 2024). This quest introduces a host
of challenges, especially concerning the supervi-
sion and learning paradigms for these advanced AI
models. Conventional supervision methods, which
typically depend on human oversight (Christiano
et al., 2017; Ouyang et al., 2022; Sun et al., 2024)
or guidance (i.e., distilled knowledge) from more
advanced models (Bai et al., 2022; Lee et al., 2023;
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I think you're right.
I need to learn from

your reasoning process.

Solution:
Joy can read 8/20 = 0.4 pages in a minute.

To read 120 pages, it will take her 120/0.4 =

300 minutes = 5 hours.

Reasoning Problem:
Joy can read 8 pages of a book in

20 minutes. How many hours will

it take her to read 120 pages?

Solution:
Joy can read 8/20 = 0.4 pages in a minute.

To read 120 pages, it will take her 120*0.4 =

48 minutes = 0.8 hours.

I think you're wrong.
I won't let myself make

such a mistake.

Evolution of Strong Model

Figure 1: Illustration of weak-to-strong reasoning through
the strong model self-refining its training data.

Peng et al., 2023), become inadequate as the ca-
pabilities of AI exceed those of their supervisors
(Bowman et al., 2022; Sang et al., 2024). To ad-
dress this issue, we focus on the weak-to-strong
learning paradigm (Burns et al., 2023), which op-
erates under a unique task setting where only a less
capable model and a stronger1 but not fully utilized
model are available.

The central question of weak-to-strong learning
is whether models with limited capabilities can ef-
fectively guide the development of more advanced,
stronger models. Previous studies by Burns et al.
(2023) have demonstrated the feasibility of it in
classification, chess, and reward modeling tasks.
However, the applicability of this setup to more
complex reasoning tasks, which demand more than

1Similar to Burns et al. (2023), we define “strong model”
in the context of LLMs, taking into account their character-
istics—that is, LLMs often contain the knowledge and capa-
bilities needed to perform specific tasks, but these have not
yet been fully elicited (Zhou et al., 2024). Typically, it refers
to stronger and larger pre-trained language models whose
capabilities have not been fully realized yet.
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mere extrapolation or pattern recognition, remains
an open question. Complex reasoning represents a
key aspect of human cognition, crucial for assess-
ing whether LLMs can emulate or surpass human-
like capabilities in comprehending the world, mak-
ing decisions, and solving problems (Qiao et al.,
2023; Huang and Chang, 2023; Chang et al., 2023).
Given the complexity and the critical nature of
these tasks, applying the weak-to-strong learning
framework to advanced reasoning challenges is es-
sential, particularly within the broader context of
achieving superintelligence.

Although Burns et al. (2023) suggest that naively
fine-tuning strong models on the full set of noisy
data produced by weak models, named full weak
fine-tuning, can consistently improve their perfor-
mance over the weaker counterparts, this approach
is still far from recovering the full capabilities of
strong models, and our experiments show that it
loses effectiveness when facing more complex rea-
soning challenges. They also propose an auxiliary
confidence loss to mitigate the issue of strong mod-
els imitating the errors of their supervisors. How-
ever, this method is tailored to classification tasks
with a set of fixed labels and does not naturally
extend to open-ended generation tasks including
reasoning. Currently, there is a lack of effective
methods beyond naive fine-tuning to prevent the
overfit of weak errors and to further elicit the in-
trinsic reasoning abilities of strong models within
the weak-to-strong reasoning framework.

To achieve the above goal, we introduce a pro-
gressive refinement learning framework, guided by
the principle that a model can enhance its capa-
bilities more effectively by initially focusing on
smaller, more reliable subsets of data, and then iter-
atively expanding its learning scope, as illustrated
in Fig. 1. In the first stage, we hypothesize that it
is more advantageous to utilize smaller quantities
of data that are likely to be more accurate. We
achieve this by combining weak data, generated by
the less capable model, with data self-generated by
the more advanced model through in-context learn-
ing. This blend is then used to selectively curate
datasets for subsequent supervised fine-tuning. In
the second stage, upon having developed a strong
model with improved reasoning capabilities, we
utilize its ability to construct contrastive samples
for preference optimization (Rafailov et al., 2023;
Hong et al., 2024) and enable the model to learn
effectively from the errors of the weaker model.

In implementation, we employ Llama2-70b

(Touvron et al., 2023) as the strong model, test three
separate weak models: Llama2-7b, Gemma-2b
(Mesnard et al., 2024), and Mistral-7b (Jiang et al.,
2023), and conduct experiments on the commonly
used math reasoning datasets GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021). Experi-
mental results reveal that:
(1) Full weak fine-tuning, while effective in clas-
sification tasks, falls short for complex reasoning
tasks. (2) Our proposed method significantly out-
performs full weak fine-tuning method, achieving
a 26.99-point improvement on GSM8K when su-
pervised solely by the weak model (i.e., Gemma-
2b) after the first stage of training (M → Mplus),
and further enhances performance by an additional
8.49 points through preference optimization with-
out knowing the gold answer (Mplus → Mpro).
(3) Our proposed preference optimization phase
enables the strong model to learn from errors made
by the weak supervisor, ultimately surpassing the
strong model fine-tuned on gold-standard solu-
tions (i.e., strong ceiling) in challenging scenarios,
such as level 4-5 MATH problems.

To more accurately approximate future scenar-
ios, we conduct additional experiments on Olympi-
cArena (Huang et al., 2024), an extremely challeng-
ing dataset with no definitive ground truth answers.
Llama3-8b-instruct (AI@Meta, 2024), despite its
smaller size, has been aligned and proven to ef-
fectively supervise the larger Llama3-70b, whose
potential has not yet been fully realized. Moreover,
our proposed two-stage training approach outper-
forms full weak fine-tuning by 3.19 points.

2 Preliminaries

2.1 Typical Learning Paradigms for LLMs

We outline common learning paradigms in large
model training, primarily characterized by the need
for ground truth answers and supervision from
stronger models as shown in Tab. 1: Generic-
supervised learning (Ouyang et al., 2022; Yuan
et al., 2023), which relies on abundant labeled data,
often proves impractical due to its high cost and
complexity. Alternatives such as distillation-based
learning (Lee et al., 2023; Peng et al., 2023; An
et al., 2023; Agarwal et al., 2023; Chen et al., 2023)
employ a stronger model to guide a weaker one,
enhancing performance through knowledge distil-
lation, but this approach only narrows performance
gap marginally on tasks not well-represented in
the imitation data (Gudibande et al., 2023). Self-
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G.T. Answer Stronger Model

Generic-supervised ✔ –
Distillation-based ✘ ✔
Self-improvement ✔ –
Semi-supervised ✔ –
Weak-to-strong ✘ ✘

Table 1: Typical Learning Paradigms for LLMs. “✔” and “✘”
indicate whether supervision is required, and “–” indicates it
is optional. “G.T.” represents Ground Truth.

improvement learning (Zelikman et al., 2022;
Yuan et al., 2023; Singh et al., 2023; Hosseini et al.,
2024) utilizes the model’s own outputs for updates,
still requiring some external accurate feedback for
effectiveness (Huang et al., 2023; Tyen et al., 2023),
while semi-supervised learning (Tong et al., 2024;
Hase et al., 2024; Sun et al., 2024) leverages a
small set of high-quality data to refine the model’s
capabilities. In contrast, weak-to-strong learn-
ing (Burns et al., 2023) uniquely utilizes weaker
supervisory signals to enhance model performance
when no superior model or ground truth is available,
showing significant potential for tackling complex
problems without stringent supervisory conditions.

2.2 Weak-to-Strong Reasoning Setup
In this paper, we address reasoning tasks in the
weak-to-strong setting, as illustrated in Tab. 2. First,
we examine mathematical reasoning tasks, such as
those in GSM8k and MATH. These tasks require
each step of the reasoning process to demonstrate
fundamental mathematical problem-solving skills,
including problem comprehension and algebraic
operations, and build upon the previous steps. This
imposes higher demands on the model’s learning
and generalization capabilities. Unlike classifica-
tion tasks, where models can rely on superficial pat-
tern extrapolation or recognition, reasoning tasks
offer minimal benefit from guessing. Then, we
use a weak model (e.g., Llama2-7b) with a certain
degree of mathematical problem-solving ability,2

denoted as m. This model acts analogously to hu-
man supervisors with limited expertise in the era of
superintelligence. Besides, we only have a set of
questions Q = {qi} without ground truth answers
and the goal is to improve the reasoning capabil-
ity of a strong model M (e.g., Llama2-70b). To
implement this, following Burns et al. (2023), we
randomly divide the original training set into two
equal parts, Dgold,1 and Dgold,2. The weak model

2Otherwise, the weak model can hardly provide useful
supervision.

Role weak model strong model task question

Analogue Llama2-7b Llama2-70b Q ∈ GSM8K
+ SFT(Dgold,1) ∈ MATH

Table 2: Weak-to-Strong Reasoning Setup.

is initially fine-tuned using Dgold,1 where the gold
solutions are available, resulting in a weak model
with some problem-solving capability, i.e. m. In
contrast, the strong model can only access the ques-
tions from Dgold,2, without reasoning chains or final
answers, i.e., Q.

3 Methodology

In this section, we propose a weak-to-strong train-
ing method designed to maximize the use of weak
data and to elicit the strong model’s innate talent.
First, we identify potentially positive samples in
the absence of ground truth and external signals.
During Stage I, we exclusively utilize this subset
of data for supervised fine-tuning. Then once the
strong model has achieved a certain level of reason-
ing proficiency, we employ the full weak data, par-
ticularly the potentially negative samples in Stage
II via preference learning-based approaches like
DPO (Rafailov et al., 2023), encouraging the strong
model to learn from mistakes made by the weaker
model. The whole framework is depicted in Fig. 2.

3.1 Stage I: Learn from “Positive” Samples

Given a weak model m and a series of math prob-
lems Q without ground truth, m generates weak
data Dweak = {qi, cweak,i, aweak,i}, where qi ∈ Q,
cweak,i represents a reasoning chain, and aweak,i rep-
resents the final answer. The correctness of aweak,i
is unknown. The central challenge is: how can
we maximize the use of m and Dweak to fully en-
hance and recover the mathematical reasoning
capabilities of a stronger model M?

3.1.1 Full Weak Fine-Tuning
Our initial strategy is to fine-tune the stronger
model M across the entirety of the weak dataset
Dweak. While prior research (Burns et al., 2023)
has validated the effectiveness of this approach in
text classification tasks, its efficacy in reasoning
tasks remains unexplored. We have therefore em-
barked on an investigation to determine whether
the phenomenon of weak-to-strong generalization
can also enhance the reasoning capabilities of M
in this less examined domain.
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Figure 2: Overview of our method evolving from M →Mplus →Mpro . Left: we utilize final answer consistency to
selectively filter weak and icl data from diverse sources, which is used to fine-tune the strong model M and obtain Mplus with
enhanced mathematical reasoning capabilities. Right: we leverage the confidence of Mplus to identify contrastive samples for
performance optimization, resulting in a more robust strong model Mpro.

3.1.2 Weak In-Context Learning

Another straightforward approach is in-context
learning (ICL, Dong et al. (2023b)), which requires
only several training samples as demonstrations
in the prompt. Specifically, we randomly select
four samples from Dweak as demonstrations. Since
we do not have access to the ground truth, these
demonstrations cannot be provably correct.

3.1.3 Weak-ICL Fine-Tuning

Given that models can mimic weak errors through
supervised fine-tuning (Charikar et al., 2024; Lang
et al., 2024), we propose refining Dweak before use,
instead of using all data blindly. Additionally, we
seek to harness the innate abilities of the strong
model activated via in-context learning. Building
on these two ideas, we introduce weak-icl fine-
tuning, employing both weak data Dweak and “icl
data” Dicl = {qi, cicl,i, aicl,i}, where qi ∈ Q, cicl,i
and aicl,i are generated by M with few-shot demon-
strations,3 as higher-quality supervision signals.

Note that, for both Dweak and Dicl, we cannot
determine whether a certain answer is correct or not.

3Experiments in §4.3 show that despite ICL being affected
by demonstration selection, our method can achieve further
improvements accordingly beyond ICL.

Nonetheless, when two models, employing distinct
data representations, converge on the same answer
in an open-ended task, it is indicative of a higher
likelihood of accuracy. This phenomenon supports
the reliability of the results when consistency is
observed across different methodologies. We thus
compare Dweak and Dicl generated by the weak
model and strong model, respectively, and select
D̂weak and D̂icl if aweak,i = aicl,i, for subsequent
supervised fine-tuning. We call this approach final
answer consistency. Considering the combination
of the two sets of data, we can obtain three versions
of enhanced fine-tuned strong models:

• Mweak-ft: M fine-tuned on D̂weak.
• Micl-ft: M fine-tuned on D̂icl.
• Mhybrid-ft: M fine-tuned on the union of D̂weak

and D̂icl.

Iterative Training Upon closed examination of
Mweak-ft and Micl-ft, we see that they still satisfy
the condition of having different data representa-
tions, as they are trained on data from different
sources. Hence, we can perform iterative train-
ing to bootstrap performance. We denote the ini-
tial round of supervised fine-tuning data as D̂1

weak
and D̂1

icl, resulting in models M1
weak-ft, M1

icl-ft, and
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QUESTION (qi): John has five more roommates than twice
as many as Bob. If Bob has 10 roommates, how many
roommates does John have?

WEAK RESPONSE ({cweak,i, aweak,i}): John has 10+5=15
roommates. The answer is 15.

SELF RESPONSE 1 ({c1strong,i, a
1
strong,i} ∈ A+

strong,i): Bob
has 10 roommates. Twice as many as Bob is 2*10 = 20
roommates. John has 5 more roommates than twice as
many as Bob, so John has 20+5 = 25 roommates. The
answer is 25.

SELF RESPONSE 2 ({c2strong,i, a
2
strong,i} ∈ A+

strong,i): Let x
be the number of roommates Bob has. John has 5 more
roommates than twice as many as Bob, so John has 2x+5
roommates. Bob has 10 roommates, so x=10. John has
2*10+5 = 25 roommates. The answer is 25.

Table 3: A real case example. Given a math question, the in-
correct “weak response” is generated by m, while the two cor-
rect “self responses” are sampled from A+

strong,i self-generated
by Mplus. Benefiting from dual solutions in the training data
during Stage I, Mplus is able to generate different reasoning
paths that converge to the same final answer. Through Stage II,
Mplus learns to avoid m’s error of overlooking the key word
“twice” in calculations.

M1
hybrid-ft. In the second iteration, we obtain zero-

shot solutions from M1
weak-ft applied to Q to con-

struct D2
weak, and those from M1

icl-ft to construct
D2

icl. Here, the subscripts “weak” and “icl” indicate
the initial data source. Then we apply final answer
consistency to obtain D̂2

weak and D̂2
icl. Following

another round of supervised fine-tuning, we have:

• M2
weak-ft: M fine-tuned on D̂2

weak.
• M2

icl-ft: M fine-tuned on D̂2
icl.

• M2
hybrid-ft: M fine-tuned on the union of D̂2

weak

and D̂2
icl.

Note that the iterative training step is optional;
it may lead to performance degradation when data
quality is too low or the model overfits.

3.2 Stage II: Learn from “Negative” Samples
We denote the final iteration of Mhybrid-ft from
Stage I as Mplus, which has learned dual math-
ematical solutions and holds potential for further
enhancement. Next, we apply preference optimiza-
tion techniques to strategically utilize the poten-
tially erroneous subset of the original weak dataset
Dweak generated by m, which allows the strong
model to identify and avoid similar errors in future
reasoning processes. The key factor lies in how to
construct contrastive samples for learning.

Without access to ground truth, the current
strong model with enhanced reasoning capabili-
ties identifies the most likely correct answers based

on its confidence. Specifically, for each question
qi ∈ Q, we sample n responses from Mplus, and
define the probability of the answer that appears
most frequently among these responses as confi-
dence. When the confidence falls below a specified
threshold τ , we consider the model’s judgment on
this question unreliable and therefore discard it.
Conversely, if the confidence is no less than τ , we
regard the model as capable of solving the ques-
tion and proceed to construct contrastive samples
as follows.

• For a question qi where Mplus is confident, we
denote the most confident answer as a+strong,i and
P (a+strong,i) ≥ τ . It can be considered as the “cor-
rect” answer according to Mplus. For instance,
if we set τ = 0.6 and 8 out of 10 sampled re-
sponses have the same final answer “4.2”, we
say that Mplus considers “4.2” to be the correct
answer to this question, i.e. a+strong,i = 4.2.

• Then we divide the sampled n responses
of Mplus to qi into two sets: A+

strong,i =

{cjstrong,i, a
j
strong,i} where ajstrong,i = a+strong,i;

A−
strong,i = {ckstrong,i, a

k
strong,i} where akstrong,i ̸=

a+strong,i. In the above example, |A+
strong,i| = 8

and |A−
strong,i| = 2.

• If the weak model holds an answer that the
enhanced model considers “correct”, that is,
aweak,i = a+strong,i, we treat the weak model’s
response {cweak,i, aweak,i} as chosen response
and randomly select a rejected response from
A−

strong,i. Otherwise, if aweak,i ̸= a+strong,i, we
treat {cweak,i, aweak,i} as rejected response and
randomly select a chosen response from A+

strong,i.
Examples are shown in Tab. 3.

Further training Mplus on these samples enables
it to distinguish between correct and incorrect solu-
tions, leading to a stronger model Mpro.

4 Experiments

4.1 Datasets
GSM8K (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021) are two widely used
datasets for mathematical reasoning, and MATH
comprises more challenging competition problems.
The data statistics we use are presented in Tab. 4.
Particularly, to ensure a sufficient amount of train-
ing data for developing preliminary mathematical
skills in the weak model, we augment the GSM8K
training set with the data constructed by Chern et al.
(2023). Further details are available in §A.1.
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Figure 3: Main results of Stage I. “Iter. 0” presents the performance of two baselines, where “weak” indicates full weak
fine-tuning, i.e., naively fine-tuning on the entire weak data, and “icl” refers to weak ICL without fine-tuning. Models connected
by a line mean that they share the same training data sources. Results below “strong ceiling” present test accuracy via greedy
decoding, while those above show pass@k scores (k = 10 and temperature = 1.0). For simplicity, we only present the pass@k
scores of Mhybrid-ft and checkpoints that surpass it using greedy decoding, and full results are provided in §A.4.2.

# Dgold,1 # Dgold,2 # Test

GSM8K 7,000 7,000 1,319
MATH 6,000 6,000 500

Table 4: Data Statistics. Dgold,1 and Dgold,2 are subsets of the
training set. The weak model uses Dgold,1 to cultivate initial
mathematical skills, while the strong model can only access
questions from Dgold,2 without ground truths.

4.2 Experiment Settings

We use Llama2-70b as the strong model and em-
ploy three weak models from different families:
Llama2-7b, Gemma-2b, and Mistral-7b. We apply
full parameter fine-tuning to the weak models on
Dgold,1, and consistently adopt LoRA (Hu et al.,
2022) for fine-tuning the strong model. In Stage
I, we perform two rounds of iterations on GSM8K
and one round on MATH according to the princi-
ples of iteration outlined in §3.1. In Stage II, we
adopt two preference learning-based approaches,
DPO (Rafailov et al., 2023) and ORPO (Hong et al.,
2024). Details are provided in §A.2.

We evaluate the accuracy on the test set. The
performance of the weak model m is defined as the
“weak floor”. The performance of the strong model
M, fine-tuned with data containing gold solutions
from Dgold,2, is termed the “strong ceiling”. It

represents the upper limit of the capabilities that
the strong model can achieve with Dgold,2.

4.3 Results of Stage I

The main results of Stage I on both GSM8K and
MATH datasets are depicted in Fig. 3.4 Notably,
in the MATH experiments, we randomly sample
additional data that is not chosen based on the final
answer consistency, due to the small amount avail-
able. Please refer to §A.4.1 for details. According
to Fig. 3, we have the following observations.

Weak-ICL fine-tuning demonstrates a notable
enhancement. Using our proposed method, the
performance of the strong model, supervised only
by the weak Gemma-2b with 25.17 accuracy on
GSM8K (without any gold answers), can be im-
proved up to 60.12, surpassing naive full weak
fine-tuning by 31.08, and Mplus (i.e., M2

hybrid-ft)
outperforms it by 26.99. This verifies the effec-
tiveness of data refining before supervised fine-
tuning. Also, experimental results show that the
mathematical reasoning capabilities of the strong
model are increasingly recovered as the weak

4We do not incorporate the zero-shot performance of the
strong model in the main results as it is significantly lower
than that of weak ICL. See §A.4.5 for further details.
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Figure 4: Results on GSM8K supervised by Gemma-2b.
and are under original demonstrations, and and are
under carefully selected demonstrations.

model improves, a conclusion verified by Liu
and Alahi (2024) on classification tasks. In de-
tail, the performance on GSM8K gradually im-
proves for Gemma-2b, Llama-7b, and Mistral-7b
(25.17 → 33.81 → 59.51). Hence, the maximum
performance of the strong model, trained with data
generated by these models, also progressively en-
hances (60.12 → 63.76 → 68.39).
Mhybrid-ft achieves the highest pass@k scores.

As expected, Mhybrid-ft achieves the highest
pass@k scores in the weak-to-strong setting, ben-
efiting from its training data that incorporates two
types of solutions—one from the weak model, and
another from the strong model. This diversity
enhances the robustness of the model by reduc-
ing the likelihood of overfitting. Additionally, the
performance of Micl-ft generally surpasses that of
Mweak-ft, which can be attributed to variations in
process-level accuracy and possibly the solution
format. Detailed analyses are conducted in §A.3.

Naive fine-tuning is inadequate for weak-to-
strong reasoning. When using Gemma-2b as the
weak model on the MATH dataset, full weak fine-
tuning underperforms compared to the weak floor
(10.0 v.s. 11.6). This indicates that naive fine-
tuning, though successfully applied to classifica-
tion, chess, and reward modeling tasks (Burns et al.,
2023), falls short for intricate reasoning tasks, par-
ticularly those of substantial difficulty like ques-
tions in MATH. In contrast, our weak-icl fine-
tuning method effectively bridges the gap, offering
an effective and scalable solution for the weak-to-
strong reasoning challenge.

Effect of ICL Performance Given that the effi-
cacy of weak-icl fine-tuning partially depends on
the effectiveness of weak ICL, we further explore

Weak Model Test Accuracy

I II. DPO II. ORPO

GSM8K
Llama2-7b 62.62 66.19 (+3.57) 68.16 (+5.54)
Gemma-2b 56.03 64.52 (+8.49) 63.91 (+7.88)
Mistral-7b 68.39 70.96 (+2.57) 72.18 (+3.79)

MATH
Llama2-7b 14.00 12.00 (-2.00) 15.00 (+1.00)
Gemma-2b 14.20 11.60 (-2.60) 16.00 (+1.80)
Mistral-7b 14.80 13.40 (-1.40) 17.00 (+2.20)

Table 5: Main results of Stage II.

how enhancing ICL performance through careful
selection of demonstrations affects the performance
of weak-icl fine-tuning. Fig. 4 shows the test ac-
curacy on GSM8K using Gemma-2b as the weak
model under a different set of demonstrations.

The results indicate that the performance of weak
ICL with this particular group of demonstrations
increases from the original 56.48 to 64.06. We
then regenerate Dicl with these demonstrations in
the prompt and fine-tune the strong model on D̂icl,
which is selectively curated through final answer
consistency. This further improves performance
from 64.06 to 64.75, confirming the utility of self-
directed data curation. It is worth noting that
although weak ICL holds the potential for high
performance, the selection of effective demonstra-
tions in a weak-to-strong framework is a non-trivial
thing, and is beyond the scope of this paper.

4.4 Results of Stage II

As discussed in §3.2, we employ the final iteration
of Mhybrid-ft as Mplus for subsequent preference
learning. The experimental results in §4.3 validate
this checkpoint achieves higher pass@k and pos-
sesses significant potential for further refinement.

As shown in Tab. 5, our method for constructing
positive and negative samples effectively enhance
the strong model’s math reasoning capabilities.
On GSM8K, both DPO and ORPO consistently
achieve significant improvements using our con-
structed datasets, notably resulting in an increase
of 8.49 points when supervised by Gemma-2b. De-
spite the inherently challenging nature of MATH
problem, which compromises the strong model’s
judgment and introduces inaccuracies in the train-
ing data, our method still achieves improvements
on MATH through ORPO by at least 1 point.5

5Pang et al. (2024); Xu et al. (2024); Yuan et al. (2024)
demonstrate that DPO can cause performance degradation on
MATH due to the lack of regularization in its loss.
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Figure 5: Accuracy across varying difficulty levels on the MATH test set. We use ORPO to obtain Mpro.

Data Construction Recipe When constructing
preference data, we always use weak responses
generated by the weak model as one of the cho-
sen/rejected responses, instead of relying exclu-
sively on self-generated data. We also test the self-
generated setting on GSM8K using Llama2-7b as
the weak model, where both chosen and rejected
responses are generated by the strong model it-
self. The DPO test accuracy in this setting is 62.40
(-0.22), indicating a slight performance degrada-
tion. Without ground truth, the constructed positive
and negative samples actually correspond to the
more frequently and less frequently occurring an-
swers, respectively, and are related to the answers
the model tends to choose. Since preference opti-
mization essentially performs ranking, the poten-
tial benefit of this self-generated setting is minimal.
Therefore, incorporating weak data signals in the
preference data construction process proves to be a
better approach.

4.5 Analysis

For further analysis, we examine the accuracy
across different difficulty levels in the MATH test
set (See §A.1.2 for data statistics).

As shown in Fig. 5, the strong model exhibits
better generalization on easier problems. Specifi-
cally, even though Llama2-7b achieves only 6.98
points accuracy on level 1 problems, Llama2-70b
can achieve an accuracy exceeding 30 points af-
ter training using this weak supervision. For more
challenging problems (levels 4-5), Mpro, enhanced
with ORPO, even surpasses the strong ceiling ob-
tained by supervised fine-tuning solely on gold
solutions. This phenomenon serves to validate the
effectiveness of learning from incorrect data.

4.6 Experiments Closer to Future Scenarios

In preliminary tests with Llama3-70b (AI@Meta,
2024), we observe that on GSM8K and MATH,

Test Accuracy

Weak Floor 11.82
Full Weak FT 12.46
Weak ICL 8.63

M1
weak-ft 12.78

M1
icl-ft 9.58

M1
hybrid-ft 11.18

M2
weak-ft 13.10

M2
icl-ft 11.50

M2
hybrid-ft (Mplus) 11.82

Mpro 15.65

Table 6: Results on OlympicArena using Llama3 family. The
best result is in bold, and the best result of supervised fine-
tuning is underlined.

Llama3-70b can largely unlock its potential
through in-context learning, with marginal or even
adverse impacts from parameter updates due to
training instabilities. Consequently, we focus on
a more challenging dataset developed after the re-
lease of Llama3-70b, OlympicArena (Huang et al.,
2024), to simulate a more realistic future scenario.

We only consider English questions in Olympi-
cArena, excluding the CODE (Code Generation)
and OT (Others) problem types that require case-
based or expert evaluation. This results in 6,020
training data without solutions and final answers,
and 313 test data with final answers to assess the
performance of different methods. We use Llama3-
8b-instruct (without initial fine-tuning on a subset
of training data) as the weak model and Llama3-
70b as the strong model to be improved. This con-
figuration more closely resembles future real-world
weak-to-strong scenarios.

Experimental results are displayed in Tab. 6.
“Weak Floor” represents the zero-shot performance
of Llama3-8b-instruct, “Full Weak FT” denotes the
performance of Llama3-70b after supervised fine-
tuning on the full set (i.e, 6,020) of weak solutions
generated by Llama3-8b-instruct on the training
set, and “Weak ICL” indicates the performance
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of Llama3-70b under 4-shot weak demonstrations
generated by Llama3-8b-instruct. Despite having
more parameters, Llama3-70b under in-context
learning still performs lower than the zero-shot per-
formance of Llama3-8b-instruct due to insufficient
mining capabilities.
M1

weak-ft, obtained by our proposed weak-icl
fine-tuning method, achieves higher performance
than Full Weak FT with fewer training data (i.e.,
746), outperforming it by 0.32 points. After the
second stage of preference optimization, which fur-
ther exploits the weak model and training questions
without answers, the strong model’s performance
is improved by an additional 3.19 points over Full
Weak FT. This demonstrates the robustness and
generalizability of our method in scenarios closer
to future conditions.

5 Related Work

LLM Training LLMs can improve their task-
solving abilities and alignment with human in-
structions through supervised fine-tuning (Zhang
et al., 2023; Dong et al., 2023a; Lv et al., 2023b,a),
with the process heavily influenced by the quality
of training data (Zhou et al., 2023a; Wang et al.,
2023b). In this paper, we investigate the potential
of learning from weak supervision. To better uti-
lize both positive and negative feedback, there are
additional training methods such as reinforcement
learning from human feedback (RLHF, Ouyang
et al. (2022); Bai et al. (2022)) and DPO (Rafailov
et al., 2023)). DPO modifies reward functions in
RLHF and has led to variants like ORPO (Hong
et al., 2024) and SimPO (Meng et al., 2024), which
improve stability and performance. This paper ex-
plores the capabilities of DPO and ORPO using
our constructed contrastive samples in a weak-to-
strong setting.

Mathematical Reasoning The exploration of
mathematical reasoning within LLMs has been a
focal point for evaluating their cognitive capabili-
ties akin to human reasoning (Qiao et al., 2023; Lu
et al., 2023). Researchers have developed various
methods to enhance the mathematical reasoning ca-
pabilities of LLMs after pre-training, which can be
broadly classified into two categories: (1) Prompt-
ing: Some works (Kojima et al., 2022; Wei et al.,
2022; Zhou et al., 2023b; Liu et al., 2023) aim to
elicit the intrinsic reasoning abilities of LLMs by
specific prompting engineering, without updating
the model parameters; (2) Fine-tuning: Another

line of studies focuses on generating a more ex-
tensive and higher-quality collection of question-
answer pairs (Yu et al., 2023; Wang et al., 2023c,a).
Through supervised fine-tuning and preference op-
timization (Luo et al., 2023; Azerbayev et al., 2023;
Mitra et al., 2024; Xu et al., 2024), the models can
achieve significant improvements in their mathe-
matical problem-solving capabilities.

6 Conclusion

In this paper, we explore the efficacy of weak-to-
strong framework in complex reasoning tasks. We
introduce a new method that elicits strong capabili-
ties using weak supervision, without relying on an-
notations from humans or more advanced models.
This method focuses on the strong model’s ability
to autonomously refine its training data, even if
it has not learned the task before. By iteratively
expanding its learning scope, the strong model con-
tinuously broadens its reasoning skills. This self-
directed data curation is crucial for scaling up the
enhancement of AI reasoning capabilities, making
the model more independent and effective in its
developmental trajectory. Through this work, we
seek to illuminate new pathways for AI develop-
ment, emphasizing the critical role of innovative
model supervision in advancing AGI and beyond.

Limitations

In our experiments, we use Llama2-70b as a proxy
for hypothetical superintelligent models of the fu-
ture. We acknowledge that there might be perfor-
mance discrepancies compared to a genuine fu-
ture advanced model. Nonetheless, our efforts lay
the groundwork for investigating methodologies in
weak-to-strong reasoning. Additionally, this paper
does not explore supervision at the process level,
such as the model’s ability to learn from partially
correct data (Ni et al., 2023; Lightman et al., 2023).
In the weak-to-strong scenario, the presence of
non-negligible errors and noise at the process level
yields only limited performance improvements in
our early experiments, thereby posing challenges
for future research.
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A Appendix

A.1 Dataset Details

A.1.1 Dataset Construction
For GSM8K, we evenly divide the original training
dataset of 7,473 samples into two subsets, Dgold,1
and Dgold,2. Additionally, we supplement both
Dgold,1 and Dgold,2 with the data of the same distri-
bution developed by (Chern et al., 2023), until each
contains 7,000 samples. Thus, the weak model uses
Dgold,1, which includes both questions and gold
solutions, to obtain basic problem-solving capabili-
ties. Meanwhile, the strong model can only access
a training dataset Q = {qi}, where qi ∈ Dgold,2,
consisting of 7,000 mathematical problems without
ground truth answers. GSM8K also includes 1,319
test samples.

For MATH, we employ the same subset of 500
representative problems as the test set, identical
to that used in (Lightman et al., 2023). We then
split the remaining 12,000 samples evenly between
Dgold,1 and Dgold,2, each containing 6,000 samples.

A.1.2 Statistics of MATH test set
The distribution of difficulty levels across the 500
test data samples in MATH is listed in Tab. 7.

# L1 # L2 # L3 # L4 # L5 # Total

43 90 105 128 134 500

Table 7: Data statistics of the MATH test set.

A.2 Training Details

For supervised fine-tuning in Stage I, we adopt
LoRA to fine-tune the strong model M with a
learning rate of 1 × 10−4 and search for weight
decay in the set {0, 0.01}. We run 2 epochs on
GSM8K and 3 epochs on MATH, with a batch
size of 8. In Stage II, we employ two preference
optimization methods. For DPO, we train the en-
hanced strong model Mplus with a learning rate of
1× 10−5 and run 1 epoch. For ORPO, we search
for β in the set {0.1, 0.5, 1.0} with a learning rate
of 3× 10−5 and run 1 epoch. For experiments on
OlympicArena using Llama3 family, the hyperpa-
rameters are consistent with those used for GSM8K.
All experiments are conducted using A100 GPUs.

When constructing contrastive samples in Stage
II, we sample n = 10 responses at temperature =
1.0, and use a confidence threshold of τ = 0.6.
Normally, we evaluate using greedy decoding.

Final Answer Process-Level

GSM8K

Llama2-7b D̂1
weak 89.82 72.50

D̂1
icl 89.82 76.50

Gemma-2b D̂1
weak 87.97 73.10

D̂1
icl 87.97 73.80

Mistral-7b D̂1
weak 92.38 80.10

D̂1
icl 92.38 77.90

MATH

Llama2-7b D̂weak 46.11 32.04
D̂icl 46.11 39.22

Gemma-2b D̂weak 30.40 26.30
D̂icl 31.90 29.90

Mistral-7b D̂weak 24.75 21.50
D̂icl 25.25 25.60

Table 8: Training accuracy of Stage I.

For calculating pass@k, we set k = 10 and
temperature = 1.0.

A.3 Additional Analysis
A.3.1 Diversity Analysis
To investigate why Mhybrid-ft achieves high pass@k
scores despite lower greedy decoding results, we
explore the diversity of responses generated by
Mhybrid-ft and Micl-ft. We specifically examine
the frequency distribution of the number of distinct
solutions for each question across the two strong
model checkpoints. Given a question from Dgold,2,
we sample n = 10 responses at temperature = 1.0
for each checkpoint. We consider two responses
distinct if their ROUGE-L similarity is less than 0.7.
We then compute the number of clusters formed
by these distinct responses and plot their frequency
distribution in Fig. 6.

As shown in Fig. 6, M2
icl-ft tends to produce

nearly the same sampled responses for each ques-
tion in more than 36% of the instances. This in-
dicates a limited exploration of problem-solving
paths and difficulty in generating diverse, correct
solutions during the sampling process. In contrast,
M2

hybrid-ft generates a variety of responses, increas-
ing its hit rate with multiple sampling and thus
achieving higher pass@k scores. Additionally, di-
verse solutions are crucial for robust outcomes and
model generalization (Yu et al., 2024; Wu et al.,
2024). In Stage II, diverse solutions also ensure the
distinction between positive and negative samples,
demonstrating the rationale for selecting M2

hybrid-ft
for preference optimization in Stage II.
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Figure 6: Frequency distribution of the number of distinct solutions on GSM8K supervised by Llama2-7b.

A.3.2 Training Accuracy of Stage I
Tab. 8 presents the final answer accuracy and
process-level accuracy for both weak data and icl
data utilized in the initial round.6 To compute
process-level accuracy, we randomly sample a max-
imum of 1,000 training sample from each of weak
data and icl data, and evaluate them using GPT-
4o following Xia et al. (2024); Zeng et al. (2023),
the prompt we use is illustrated in Tab. 14. Accu-
racy at this level is determined strictly on the basis
that there are no errors throughout the intermediate
reasoning steps.

From the results we can see that despite having
consistent final answer accuracy (with the excep-
tions of Gemma-2b and Mistral-7b on MATH us-
ing augmented training data), there are noticeable
differences in process-level performance, leading
to variations in the effectiveness of Mweak-ft and
Micl-ft. Moreover, it is counterintuitive that models
trained on icl data with relatively low process-level
accuracy achieve higher performance. This might
be because the models prefer self-generated so-
lutions and can more effectively learn those that
better align with their inherent distribution (Pan-
ickssery et al., 2024; Ren et al., 2024; Fan et al.,
2024).

A.4 Additional Experiments
A.4.1 Details of Stage I on MATH
In the Stage I experiment conducted on the MATH
dataset, it is found that the amount of training data
selected via final answer consistency is so limited
that the strong model can hardly learn the effective
features through supervised fine-tuning. To address
this, we randomly sample additional inconsistent

6The relatively low accuracy observed in MATH explains
why we choose to perform one round of iteration.

Test Accuracy # Training Data

Gemma-2b
SFT on Full Weak 10.00 6,000
SFT on Gold Weak 15.60 644
M1

weak-ft 11.00 448
M1

icl-ft 11.40 448
M1

hybrid-ft 13.20 448× 2

Mistral-7b
SFT on Full Weak 14.40 6,000
SFT on Gold Weak 16.60 861
M1

weak-ft 12.40 584
M1

icl-ft 15.60 584
M1

hybrid-ft 14.20 584× 2

Table 9: Stage I results on MATH without augmenting train-
ing data.

data. Based on the weak model’s performance
(Llama-7b < Gemma-2b < Mistral-7b on MATH),
we supplement the data (both D̂weak and D̂icl) to
1,000 instances for Gemma-2b and 2,000 instances
for Mistral-7b, and present the results in Fig. 3. The
original amount of training data and test accuracy
for these two weak models are shown in Tab. 9.

A.4.2 Pass@k Results
Tab. 10 summarizes the greedy decoding and
pass@k results for the three variants of enhanced
strong models obtained through weak-icl fine-
tuning. Notably, Mhybrid-ft utilizes a training set
that combines those used by Mweak-ft and Micl-ft.
The results indicate that Mhybrid-ft outperforms its
counterparts in terms of pass@k, achieving supe-
rior pass@k scores with margins of up to 5.23
points. The only exception occurs in the MATH
dataset supervised by Llama2-7b, where the under-
performance is likely due to limited training data.

The superior performance of Mhybrid-ft can be
attributed to the diversity of solutions in its training
set (verified in §A.3.1), validating our approach
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Greedy Decoding Pass@k

GSM8K

Llama2-7b
M2

weak-ft 57.47 77.26
M2

icl-ft 63.76 81.05
M2

hybrid-ft 62.62 86.28

Gemma-2b
M2

weak-ft 45.03 71.49
M2

icl-ft 60.12 80.14
M2

hybrid-ft 56.03 85.14

Mistral-7b
M2

weak-ft 66.72 85.67
M2

icl-ft 66.64 84.08
M2

hybrid-ft 68.39 88.70

MATH

Llama2-7b
M1

weak-ft 10.80 34.80
M1

icl-ft 11.80 35.00
M1

hybrid-ft 14.00 33.60

Gemma-2b
M1

weak-ft 14.80 38.80
M1

icl-ft 13.60 33.60
M1

hybrid-ft 14.80 39.60

Mistral-7b
M1

weak-ft 10.80 34.20
M1

icl-ft 15.60 31.60
M1

hybrid-ft 14.20 38.40

Table 10: Greedy decoding and pass@k results (k = 10
and temperature = 1.0) for the three variants of enhanced
strong models obtained through weak-icl fine-tuning. The
best results are in bold.

of adopting the final iteration of Mhybrid-ft from
Stage I for preference optimization in Stage II.
It is important to note that while higher pass@k
scores suggest greater potential, the true challenge
lies in effectively harnessing this potential, particu-
larly in the weak-to-strong setting where no ground
truths are available. Our proposed weak-to-strong
preference optimization in Stage II successfully
addresses this challenge, transforming theoretical
potential into tangible performance gains in greedy
decoding, as proved in §4.4.

A.4.3 PGR of Stage I
Burns et al. (2023) propose a new metric called
performance gap recovered (PGR) to measure the
fraction of the performance gap that can be recov-
ered through weak supervision, as illustrated in
Eq. 1. Tab. 11 displays the results of the naive full
weak fine-tuning (i.e., Full Weak FT) and our best
weak-icl fine-tuning (i.e., Weak-ICL FT) in terms
of PGR, which also demonstrate that our method
can outperform the simple competitor. However,
the variations in PGR across different weak models
do not provide meaningful insights. In the experi-
ments described in the main text, we use test accu-
racy instead to provide a more detailed depiction
of model performance.

Weak Model Full Weak FT Weak-ICL FT

GSM8K
Llama2-7b 22.47 78.53
Gemma2-2b 8.27 75.71
Mistral-7b 14.63 71.38

MATH
Llama2-7b 10.45 71.64
Gemma-2b -25.81 64.52
Mistral-7b 19.05 28.57

Table 11: Performance Gap Recovered (PGR) in Stage I.

Weak Model SFT Data Test Accuracy

Llama2-7b

Full Weak 42.38
Gold Weak 54.21 (+11.83)
Our Weak 53.68 (+11.30)

Full ICL 59.14
Gold ICL 64.29 (+5.15)
Our ICL 61.71 (+2.57)

Gemma-2b

Full Weak 29.04
Gold Weak 46.40 (+17.36)
Our Weak 42.91 (+13.87)

Full ICL 58.61
Gold ICL 63.86 (+5.25)
Our ICL 59.21 (+0.60)

Mistral-7b

Full Weak 61.33
Gold Weak 67.55 (+6.22)
Our Weak 65.96 (+4.63)

Full ICL 62.32
Gold ICL 66.64 (+4.32)
Our ICL 65.43 (+3.11)

Table 12: Detailed results of Stage I.

PGR =
weak-to-strong − weak floor
strong ceiling − weak floor

. (1)

A.4.4 Effect of SFT Data
Tab. 12 presents more detailed comparative experi-
mental results of Stage I on GSM8K. “Full Weak”
denotes full weak fine-tuning, “Our Weak” is equiv-
alent to M1

weak-ft, and “Our ICL” is equivalent to
M1

icl-ft. “Gold Weak” refers to the scenario where
weak data with correct final answers are filtered
and used for supervised fine-tuning, which is im-
possible in the weak-to-strong setting and just used
for experimental analysis. Similarly, “Gold ICL”
refers to the scenario where solutions with correct
final answers, generated by the strong model via
weak ICL, are filtered.

Compared to using a large volume of noisy data
(i.e., Full Weak and Full ICL), reducing the data
quantity while enhancing data quality can signifi-
cantly improve the accuracy of the trained model,

8365



Test Accuracy

GSM8K

Llama2-70b wo CoT 12.36
Llama2-70b w/ CoT 18.35

MATH

Llama2-70b wo CoT 6.40
Llama2-70b w/ CoT 7.20

Table 13: Zero-Shot Results of Llama2-70b on GSM8K and
MATH.

with potential gains over 17 points. Although our
method performs slightly lower than the gold re-
sults, it proves highly effective and stable in scenar-
ios where obtaining the ground truth is impossible.

A.4.5 Zero-Shot Results
To obtain zero-shot performance, we follow Kojima
et al. (2022) using a two-stage prompting approach.
Specifically, we use the first prompt to extract a
full reasoning path, where “wo CoT” denotes the
standard prompt “Question: {question}\nAnswer:”,
while “w/ CoT” denotes the CoT prompt “Question:
{question}\nLet’s think step by step.\nAnswer:”.
Then we use the second prompt, which concate-
nates “The answer is” with the generated reasoning
path, to extract the answer in the correct format.
The zero-shot results of Llama2-70b on the two
reasoning datasets are presented in Tab. 13. We can
observe that these results are significantly lower
than those achieved with weak ICL. This notably
poor zero-shot performance aligns with our hypoth-
esis about the strong model: before any fine-tuning
with weak supervision, the strong model’s capabili-
ties have not been fully realized.
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Question:
{question}

Student Solution:
{solution}

Your task involves three parts:
1. **Step-by-step Evaluation:** Go through the student solution carefully and identify key errors and potential misunder-
standings that led to the incorrect solution.
2. **Final Judgement:** Provide an overall judgement on the correctness of the student’s solution.
3. **First Error Step:** If the solution is incorrect, generate the step number where the first error occurs, otherwise
generate N/A here.

Here’s the format I want:
Step-by-step Evaluation: [Provide a step by step examination of the student solution and identify key errors and misunder-
standings here.]
Final Judgement: [Insert only **correct** or **wrong** here]
First Error Step: [Insert either N/A or the step number where the first error occurs]

Please follow this format without any additional introductory or concluding statements.

Table 14: Prompt used to evaluate process-level accuracy.
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