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Abstract

The interactive theorem prover Lean enables
the verification of formal mathematical proofs
and is backed by an expanding community.
Central to this ecosystem is its mathematical
library, mathlib4, which lays the groundwork
for the formalization of an expanding range
of mathematical theories. However, searching
for theorems in mathlib4 can be challenging.
To successfully search in mathlib4, users often
need to be familiar with its naming conventions
or documentation strings. Therefore, creating
a semantic search engine that can be used eas-
ily by individuals with varying familiarity with
mathlib4 is very important. In this paper, we
present a semantic search engine' for mathlib4
that accepts informal queries and finds the rele-
vant theorems. We also establish a benchmark
for assessing the performance of various search
engines for mathlib4.?

1 Introduction

Lean (de Moura et al., 2015; de Moura and Ull-
rich, 2021) is an interactive theorem prover built
on dependent type theory, designed to verify math-
ematical proofs written in a formal language and
thereby enhancing their rigor. It has a vibrant and
supportive community, with its popularity growing
among mathematicians. A prime example of the
Lean community’s collaborative spirit is mathlib4,
the mathematical library for Lean 4. This library,
regularly updated by contributors from around the
globe, acts as a basis for the formalization of new
mathematical theories. This eliminates the need to
repeatedly formalize established results, as users
can simply check if mathlib4 contains the necessary
theorems referenced in informal proofs. However,
locating these theorems is often challenging due to
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the limitations of officially provided search tools,
which struggle to find relevant theorems with infor-
mal queries.

There are primarily two methods to search for
theorems in mathlib4: using the mathlib4 docu-
mentation® and searching the GitHub repository
of mathlib4*. The mathlib4 documentation allows
users to search for theorems by their formal names.
However, this feature can be challenging for be-
ginners to utilize effectively, as they may not be
familiar with the naming conventions. For exam-
ple, Cauchy’s Mean Value Theorem is named as
exists_ratio_deriv_eq_ratio_slope in math-
lib4, meaning a direct search for "Cauchy’s Mean
Value Theorem" yields no results. An alterna-
tive method involves searching within the GitHub
repository of mathlib4, which allows for keyword-
based searches across the source files, including for-
mal statements, proofs, and documentation strings.
This method can locate Cauchy’s Mean Value
Theorem as it is mentioned in the documentation
string of exists_ratio_deriv_eq_ratio_slope.
However, this approach faces two issues: many the-
orems in mathlib4 lack documentation strings, and
semantically similar user queries that don’t exactly
match the theorems or documentation strings may
lead to unsuccessful searches.

Consequently, neither method adequately sup-
ports finding theorems based on informal queries,
leading to beginners spending significant time on
this task. Discussions on Zulip> have highlighted
the need for creating a semantic search engine for
mathlib4. Therefore, developing such a search en-
gine for mathlib4 is highly desirable to improve the
efficiency of theorem retrieval.

In this paper, we introduce a semantic search

3https://leanprover-community.github.io/mathlib4_docs/

*https://github.com/leanprover-community/mathlib4

Shttps://leanprover.zulipchat.com/#narrow/stream/219941-
Machine-Learning-for-Theorem-
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engine for mathlib4 that allows users to input an in-
formal query and retrieve a list of relevant theorems
from mathlib4. To construct this search engine, we
translate the formal statements of mathlib4 theo-
rems into informal ones and integrate these pairs
into a database. Each database entry consists of a
formal theorem statement and its informal version.
Upon receiving a user query, we augment the query
for improved context understanding and perform
semantic search across the database to find rele-
vant results. Additionally, we have established a
benchmark to compare the effectiveness of various
search engines for mathlib4.

The remaining part of the paper is organized
as follows. In Section 2, we review the related
works on text retrieval and mathematical informa-
tion retrieval. Section 3 describes our approach to
developing a semantic search engine for mathlib4.
Section 4 presents the mathlib4 semantic search
benchmark. Numerical results are discussed in Sec-
tion 5. We conclude this paper in Section 6.

2 Related Work

Text Retrieval. Text retrieval is the task of
finding relevant information within a corpus based
on user queries. Early methods, such as BM25
(Robertson et al., 1995; Robertson and Zaragoza,
2009), used sparse vector representations for
queries and documents, assessing relevance by
comparing these vectors with certain weighting
techniques (Salton and Buckley, 1988). While ef-
fective in measuring lexical similarity, these ap-
proaches fall short in capturing the semantic simi-
larity between queries and documents.

To address this limitation, deep learning tech-
niques (Huang et al., 2013; Xiong et al., 2017;
McDonald et al., 2018; Liu et al., 2018) have
been introduced. Utilizing deep neural networks,
these techniques encode queries and documents
into dense vectors, thereby assessing relevance
based on semantic similarity. Further developments
have been made in neural architectures and training
paradigms. There are two main architectures: the
cross-encoder (Qiao et al., 2019; Nogueira et al.,
2020) and the bi-encoder (Karpukhin et al., 2020;
Quetal., 2021; Ni et al., 2022b,a). Cross-encoders
take the concatenation of query and document as
input and produce the final relevance of this query-
document pair, while bi-encoders map the query
and document into vectors separately, determining
relevance through similarity between the two vec-

tors. Training paradigms have also evolved, with
the Inverse Close Task (ICT) (Lee et al., 2019)
initially proposed for dense retriever pre-training.
Subsequently, other pre-training tasks have been de-
veloped, including Body First Selection and Wiki
Link Prediction, both introduced in (Chang et al.,
2020). Recent studies (Neelakantan et al., 2022;
Wang et al., 2022; Su et al., 2023; Xiao et al.,
2023) have explored large-scale unsupervised pre-
training using contrastive loss, followed by fine-
tuning on smaller, labeled datasets. Pre-training
with extensive text pairs allows the language model
to grasp textual semantics and the fine-tuning stage
further enhances its performance across various
retrieval tasks. However, the authors of (Wang
et al., 2024) argue that a two-stage training ap-
proach might not be necessary, demonstrating that
directly fine-tuning a decoder-only model on both
synthetic and labeled data can yield competitive
results.

Mathematical Information Retrieval. Math-
ematical Information Retrieval (MIR) differs from
text retrieval in that it involves queries and docu-
ments that contain mathematical formulas. These
formulas are highly structured, which distinguishes
them from plain text. To effectively capture the se-
mantics of math formulas, several representations
are employed. The Symbol Layout Tree (SLT)
(Zanibbi and Blostein, 2012) preserves the original
layout of formulas, while the Operator Tree (OPT)
(Gao et al., 2016) represents mathematical symbols
as nodes, with edges denoting the relationships be-
tween operators and operands. Classical MIR meth-
ods (Fraser et al., 2018; Gao et al., 2016; Kristianto
et al., 2016; Zanibbi et al., 2016; Kane et al., 2022;
Ng et al., 2021, 2020) rely on structure search,
identifying matching substructures across various
features. Among these, the ApproachO structural
search method (Zhong and Zanibbi, 2019; Zhong
et al., 2020) has shown to be particularly effec-
tive. It indexes formulas through leaf-root paths
in the OPT and utilizes subexpression matching
to assess formula similarity. With advancements
in deep learning, dense retrievers have been inte-
grated into MIR, often combined with structural
searches (Kane et al., 2022; Zhong et al., 2022a,b,
2023). A notable example is the ApproachO hybrid
search (Zhong et al., 2022a), which combines Ap-
proachO structure search with a bi-encoder dense
retriever, CoIBERT (Khattab and Zaharia, 2020).
This combination not only facilitates effective for-
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mula matching but also enhances understanding of
context.

The preceding literature focuses on extracting
mathematical content from a corpus composed of
natural language texts and formulas formatted in
markup languages. This contrasts with our objec-
tive of conducting searches within mathlib4, a for-
mal mathematical library. The work most closely
related to ours is Moogle®, a semantic search en-
gine for mathlib4. However, its technical details
have not been released. We will compare the perfor-
mance of Moogle and our search engine in Section
5.

3 Methodology

In this section, we will describe the implementation
of our semantic search engine for mathlib4’. This
engine is designed to accept a user query in natural
language and return a list of relevant theorems in
mathlib4. Our approach involves converting formal
theorems from mathlib4 into their informal coun-
terparts, as illustrated in Figure 1. These informal-
formal theorem pairs are then vectorized and stored
in a vector database, a step that can be executed
offline. When a user query is submitted, we aug-
ment the query to better grasp its context, vectorize
the enriched query, and locate the corresponding
theorems in the embedding space. In the following
subsections, we will elaborate on the informaliza-
tion of mathlib4, the design of the search engine,
and the method of query augmentation.

3.1 Informalizing Mathlib4

Our strategy for informalizing mathlib4 involves
employing a large language model (LLM). Central
to this strategy is providing the LLM with sufficient
context to accurately grasp the formal theorem’s
exact meaning. To this end, we not only extract
the theorem’s name, statement, and documentation
string® from the mathlib4 documentation but also
include related definitions found in the theorem
statements through hyperlinks. For example, as
illustrated in Figure 2, we extract the definition of
Exists.choose because it is referenced and linked
in the theorem Exists.choose_spec. The gath-
ered information is then fed into an LLM® to gener-

Shttps://www.moogle.ai/

"We use mathlib4 with
db04a978b67b2200691f0bd968f334c83261b66a.

8For many theorems in mathlib4 that lack a documentation
string, we will extract only the theorem name and statement.

"We use gpt-3.5-turbo-16k for generating informal
names and statements, setting the temperature to 0.
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Figure 1: Overview of our method for creating a se-
mantic search engine for mathlib4. We employ an in-
formalizer to convert formal statements from mathlib4
into their informal counterparts. These informal-formal
pairs are then stored in a vector database. When users in-
put a query, the system augments the query and searches
across the database, yielding a list of relevant theorems.

ate informal theorem names and statements. These
are subsequently formatted as "theorem name: in-
formal statement" and incorporated into an infor-
mal corpus. Figure 3 shows the prompt used for in-
formalizing the theorem Exists. choose_spec, in-
cluding the formal statement, documentation string,
and the definition of Exists.choose as annota-
tions to aid the LLM’s understanding.

Notably, the authors of (Jiang et al., 2023) also
employed an LLM for informalizing mathlib4 state-
ments, relying solely on the formal statements. We
argue that providing the LLM with additional con-
text, such as related definitions and documentation
strings, enhances its ability to accurately interpret
and convert formal theorems into their informal
counterparts. An example comparing the informal-
ized mathlib4 statement generated by (Jiang et al.,
2023) to the one produced by our method is pro-
vided in Appendix A.

3.2 Semantic Search Engine for Mathlib4

After obtaining the informal corpus, we employ
dense embedding models, which excel at captur-
ing semantic information, to encode the informal-
formal theorem pairs. Recent advancements in text
embedding models have introduced the practice
of integrating specific task instructions into either
queries or documents, enhancing the model’s adapt-
ability to diverse tasks and boosting performance in
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| statement, using Classical.choose.

&)
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Theorem name: Existential Element Chosen by Choose Function
Informal statement: For any property p on a set a, if there
exists an element a such that p(a) is true, then the element
chosen from the existential statement using the choose
function also satisfies p.

| Existential Element Chosen by Choose Function: For any

i property p on a set a, if there exists an element a such

{ that p(a) is true, then the element chosen from the Informal
| existential statement using the choose function also | Corpus
| satisfies p. H

Figure 2: Our approach to informalizing mathlib4 the-
orems. We extract the theorem name, statement, and
documentation string from the mathlib4 documentation.
Moreover, we collect related definitions via the hyper-
links in the theorem statements. The gathered informa-
tion is then inputted into GPT-3.5 to generate informal
names and statements. These are then organized in the
format "theorem name: informal statement” and added
to an informal corpus.

zero-shot settings (Su et al., 2023; Li and Li, 2023;
Wang et al., 2024). Consequently, for the purpose
of theorem retrieval within mathlib4, we enrich our
corpus documents with specific instructions. We
adopt the following instruction template:

Instruct: Retrieve math theorems stated

in bilingual Lean 4 + natural language

that are mathematically equivalent to
the given one \n Doc:{document}

Here, {document} denotes

"{formal statement} \n {informal
name}:{informal statement}".

These task-specific instructions significantly in-
fluence the performance of embedding models. We
will investigate the effect of varying task instruc-
tions on the overall retrieval performance in Ap-
pendix D.

Embedding the entire corpus, although a time-
consuming process, is performed offline and does
not require repetition for each use of the engine. We
utilize Chroma DB to store the embeddings. Upon
receiving a query, our system vectorizes it and re-
trieves theorems based on their cosine distance to
the query in the embedding space. Chroma DB
employs the Hierarchical Navigable Small World
(HNSW) algorithm (Malkov and Yashunin, 2020),

Input:

System message: As a mathematician and expert in Lean and Mathlib, your task is to translate the formal theorem
provided below into an informal statement that is more accessible to mathematicians. Please utilize the provided
doc string and annotations to better understand the formal theorem. Additionally, please express the
mathematical formulas in LaTeX when necessary.

Formal theorem:

theorem Exists.choose_spec {a :
(Exists.choose P)

Doc string:

Show that an element extracted from P : 3 a, p a using P.choose satisfies p.
Annotations:

noncomputable def Exists.choose {a : Sort u_1}{p : a = Prop} (P: 33, pa) : @
Extract an element from a existential statement, using Classical.choose.

Sort u 1} {p : @~ Prop} (P : 3 a, pa):p

Output:

Theorem name: Existential Element Chosen by Choose Function
Informal statement: For any property p on a set a, if there exists an element a such that p(a) is true, then the
element chosen from the existential statement using the choose function also satisfies p.

Figure 3: Prompt for informalizing mathlib4 statements
with documentation strings.

an efficient approximate nearest neighbor search
method, ensuring rapid retrieval from the corpus.

3.3 Query Augmentation

To enhance query clarity and achieve a more accu-
rate embedding, our system incorporates a query
augmentation step. This process involves prompt-
ing an LLM!? to transform a brief, vague query
into a detailed statement that includes both infor-
mal and formal statements, ensuring mathematical
equivalence with the original query. We guide the
LLM with specific principles for query augmenta-
tion, emphasizing the importance of precision, the
use of LaTeX for mathematical expressions, and
the clarification of ambiguous inputs. Additionally,
we provide examples of query augmentations to
improve the LLM’s comprehension of the task. A
detailed prompt for query augmentation is provided
in Appendix B. Although Lean 4 code generation
by LLMs may occasionally introduce inaccuracies
due to the limited presence of mathlib4 in their
training data, this approach effectively enriches the
query with additional contextual information.
Following augmentation, the enriched query
is structured as "{formal statement} \n
{informal name}:{informal statement}"”,
matching the structure of our database. In a similar
manner to adding task instructions in document
processing, we enrich the query with specific in-
structions, utilizing a template as follows:

Instruct: Retrieve math theorems stated
in bilingual Lean 4 + natural language
that are mathematically equivalent to
the given one \n Query:{formal statement}
\n {informal name}:{informal statement}”

This formatted query is then vectorized and utilized

10We use gpt-4-0125-preview for query augmentation.
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by the search engine to retrieve theorems based on
the cosine distance in the embedding space.

4 Mathlib4 Semantic Search Benchmark

To rigorously assess and compare the efficacy of
various retrieval methods, we have established the
Mathlib4 Semantic Search Benchmark. This bench-
mark encompasses a curated set of queries, rele-
vance labels of each mathlib4 theorem for these
queries, and a collection of performance metrics.
In this section, we provide a detailed explanation
of the benchmark. Section 4.1 describes the com-
position of the query set. In Section 4.2, we explain
the relevance criteria for our benchmark and the la-
beling procedure. Section 4.3 lists the performance
metrics used in our benchmark.

4.1 Composition of the Query Set

The query set of our benchmark has 50 distinct
queries, spanning various mathematical disciplines
including calculus, abstract algebra, linear algebra,
number theory, algebraic number theory, set theory,
and mathematical logic. This selection aims to
cover a broad spectrum of topics and complexities.
We argue that this is a typical size for the query sets
in mathematical information retrieval datasets, as
demonstrated by the ARQMath1, ARQMath2, and
ARQMath3 databases from the MIR field, which
contain 77, 71, and 78 queries, respectively, for
their answer retrieval tasks (Mansouri et al., 2022).

To optimize labeling efforts, we organize queries
with identical search intents into 18 distinct, non-
overlapping groups, each containing at least two
distinct queries. This approach assumes that all
queries within a group have the same relevance
score for any document, significantly reducing the
need for repetitive labeling, as each document is
evaluated only once per query group. Furthermore,
to provide a more detailed assessment and mitigate
the impact of duplicate document labels, we con-
sider four prevalent forms of mathematical queries:
natural language descriptions, LaTeX formulas,
theorem names, and Lean 4 term descriptions. In
each query group, we strive to include as many
different description forms as possible. Table 1
provides statistics and examples of the query set.
However, not all query groups contain all four rep-
resentation forms, as some theorems may not have
an official name or their representation in a LaTeX
formula might be redundant.

Category | Count || E ple 1 E le 2
If there exist injective maps of sets

from A to B and from B to A, then

Natural If p implies ¢, then not

Description there exists a bijective map between | ¢ implies not p.
Aand B.
If there exist f : A — B injective,
LaTeX L -
aze 15 g : B — A injective, then there v —=q) = (g

Formula exists h : A — B bijective. »)

Theorem

Modus Tollens
Name

7 Schroeder Bernstein Theorem

{f : A+ B} {g: B~ A} (hf:
10 Injective f) (hg : Injective
g) : 3 h, Bijective h

Lean 4
Term

(= = (q-
“p)

Table 1: Statistics and examples of query groups in our
benchmark.

4.2 Relevance Judgments

During the process of collecting relevance labels
for query-document pairs, we adopt an approach
similar to ARQMath(Mansouri et al., 2022). Ini-
tially, we establish a carefully crafted relevance
assessment criteria, elaborated in Table 2. While
performing the labeling, assessors are instructed to
evaluate whether a given search result facilitates
their mathematical formalization workflow. Instead
of merely considering similarity in topic, presented
form, formula structure, or mathematical induc-
tion relationship, the relevance we focus on here is
deeply aligned with the needs of Lean 4 experts.

Definition

Exact match to the query or being a stronger
statement

Useful in locating where the corresponding
statement should be

Rating Label | Score

Exact Match 2 1

Relevant 1 0.3

Not expected to be useful in mathematics

Trrelevant 0 0 formalization workflow

Table 2: The relevance assessment criteria for our bench-
mark.

For each set of queries grouped by identical
search intentions, assessors are presented with the
top 50 theorems retrieved by an intermediate ver-
sion of our search engine. In addition to evaluating
the provided theorems, assessors are tasked with
identifying and adding any relevant theorems that
may have been omitted from the initial list by in-
specting the files where "Exact Match" items in the
list are located, with particular attention to those
with "Exact Match" rating.

Given the structured organization of mathlib4,
where related theorems are often located within
the same file, it is reasonable to assume that any
items not in the list are irrelevant to this query
group. Additionally, all queries are guaranteed to
have at least one exact match in mathlib4. These
assumptions support the performance metrics we
use in the benchmark, as described in the following
subsection.
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4.3 Performance Measures

To compare different retrieval paradigms’ perfor-
mance on our labeled dataset, three commonly
used metrics are adopted in our benchmark. Preci-
sion@k calculates the average relevant document
proportion in top-k retrieved results among the
query set Q:

9] &
Precision@k = 1(4, dJ 1
wal Q, PR (1)

=1 j=1

where d; represents the list of retrieved theorems
for the i-th query, and I(¢,d]) = 1 if and only
if the j-th retrieved result of i-th query is "Exact
Match", otherwise I(i,d}) = 0. Assuming that
all unlabeled theorems are irrelevant, we can also
calculate Recall @k:

1 el ‘
Recall@k:@ E — E I(i,d}), (2
o “
i=1 j=1

where o; is the number of "Exact Match" theo-
rems for i-th query.

The third metric, nDCG (normalized Discounted
Cumulative Gain), incorporates the position of the
retrieved result. A decaying weight is allocated to
each position:

DCG, @k = Z Zidj) 3)
log2 +1)’

where s(i, dg ) represents the score of the j-th
retrieved theorem for the ¢-th query, as defined in
Table 2. Our scoring system is not proportional
to the label number, emphasizing the importance
of exact matching in the mathlib4 retrieval task.
We further define IDCG; @k as the highest possi-
ble DCG; @k by properly arranging the retrieved
theorems, and finally:

1Ql

1 & pce; ek
DCG@k = — S — 2o~
. 10 ; IDCG; @k

“4)

To sum up, nDCG @k measures both the retrieval
and ranking ability of the given engine in a uni-
fied and detailed way. Meanwhile, P@10 (Preci-
sion@10) and R@10 (Recall@10) focus solely on
the retrieval effectiveness. In our benchmark, all
three metrics will be reported for both the entire
query set and each query category.

5 Experiments

In this section, we evaluate the performance of
various theorem retrieval methods using our bench-
mark. The experimental setup is detailed in Section
5.1. We compare the performances of different re-
trieval methods in Section 5.2. Additionally, the
ablation study on document preparations and query
augmentations is presented in Section 5.3.

5.1 Experiment Setup

We have considered four embedding models in
our experiments: text-embedding-ada-002 and
text-embedding-3-large from OpenAl, UAE-Large-
V1(Li and Li, 2023), and E5yjsera-70(Wang et al.,
2024). For the baseline methods, we compare
BM25 (Robertson and Zaragoza, 2009), Moogle,
and the four embedding models applied to the orig-
inal Lean 4 formal corpus and unaugmented query.
The same four embedding models equipped with
formal + informal query augmentation and formal
+ informal document corpus are also tested on our
benchmark to demonstrate the efficacy of our ap-
proach. The implementation details are provided
in Appendix C.

5.2 Main Results

Table 3 and 4 present the results of BM?25,
Moogle, and four embedding models. The model
ESmistral-70, When integrated with our retrieval
pipeline, achieves the best performance across
three overall metrics and significantly outperforms
all other methods, including its own performance
on a formal corpus with unaugmented queries. We
observe that all retrieval methods benefit from us-
ing an augmented corpus and queries, as augmen-
tation expands concrete mathematics and Lean 4
terms, and these embedding models typically per-
form better on symmetrical retrieval tasks (Wang
et al., 2024).

Examining the results averaged by category, we
find that ESpyisra1-70 attains the best results in nearly
all categories, with the exception of nDCG@20
for Lean 4 Terms. This exception is likely due to
the augmented informal information negatively im-
pacting retrieval performance, as it is not essential
in formal-formal retrieval (formal queries, formal
results) which focuses on lexical matches. Notably,
our method significantly improves performance in
the Theorem Name category. The enhancement is
due to the expansion of the statement for a given
theorem name by our query augmentation, which
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is essential for successful retrieval in this category.
Furthermore, the combined corpus of formal and
informal statements facilitates the retrieval process.

Model Corpus Query aug. nDCG@20 P@10 R@10
Baselines
Moogle’ \ \ 0.3651 0.092F  0.5137
BM25 F \ 0.024 0.004  0.030
OpenAl v2 F \ 0.312 0.078  0.405
OpenAl v3 F \ 0.493 0.128  0.622
UAE-Large-V1 F \ 0.233 0.066  0.307
ESmistral-mh F \ 0.593 0.132  0.687
Our Methods
OpenAl v2 F+IF F+IF 0.553 0.144  0.707
OpenAl v3 F+IF F+IF 0.691 0.178  0.837
UAE-Large-V1  F+IF F+IF 0.368 0.084  0.440
ESmistral-7h F+IF F+IF 0.733 0.196 0913

Table 3: Results on our benchmark, averaged across
all queries in our dataset. Here "aug.", F, IF, P@10
and R@10 represent augmentation, formal, informal,
Precision@ 10, and Recall@ 10, respectively. The terms
OpenAl v2 and v3 refer to the text-embedding mod-
els ada-002 and 3-large, respectively. Moogle', unlike
other retrieval systems, not only fetches theorems but
also definitions, structures, instances, etc., making it
incomparable under our performance metrics directly.
For the purpose of this analysis, all non-theorem items
retrieved are considered irrelevant, given the explicit
theorem-searching intent of our queries. This approach,
however, might advantage our theorem retrieval systems
over Moogle, as non-theorem items occupy potential
slots in the retrieval list. The notation ' is used to denote
this adjustment.

nDCG @20 P@10
ND LF TN LT ND LF TN LT

Model

Baselines

Moogle" 03697 0.324" 0.333" 04417 0.083" 0.1077 0.0717 0.100"
BM25 0.000  0.000 0.000 0.119 0.000 0.000 0.000 0.020
OpenAl v2 0.276  0.379 0.000 0.498 0.061 0.107 0.000 0.120
OpenAI v3 0479 0553 0235 0.610 0.122 0.160 0.057 0.140
UAE-Large-V1 0301 0216 0.004 0.298 0.078 0.067 0.000 0.090
ESmistral-7b 0576  0.633 0294 0774 0.139 0.140 0.043 0.170
Our Methods
OpenAl v2 0.536 0533 0571 0.600 0.111 0.160 0.186  0.150
OpenAI v3 0.681  0.657 0.772 0703 0.167 0.180 0.200  0.180
UAE-Large-V1 0415 0337 0371 0.329 0.100 0.080 0.071 0.070
ESmistral-7b 0.748 0.712 0.855 0.654 0.194 0.200 0.214 0.180

Table 4: Results on our benchmark averaged by category.
Here ND, LF, TN and LT stands for Natural Descrip-
tion, LaTeX Formula, Theorem Name and Lean 4 Term
respectively. Corpus type and query augmentation type
remain the same as Table 3 and are omitted here due to
space limitations. T indicates a different performance
calculation rule, detailed in captions of Table 3.

5.3 Ablation Studies

In this subsection, we perform ablation studies
on document preparation and query augmentation.
The results of these studies are presented in Sec-
tions 5.3.1 and 5.3.2, respectively. Additionally,
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Figure 4: nDCG @20 performance of ES a7, across
formal, informal and formal + informal corpus on our
benchmark, averaged by query groups. These evalua-
tions are conducted using non-augmented queries.
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the ablation study on task instructions in provided
in Appendix D.

5.3.1 Ablation of Document Preparations

Table 5 presents the effects of changing corpus
type with and without query augmentation. We
use the original Lean 4 statement and its informal-
ized version to create the formal and informal cor-
pus. Without query augmentation, results indicate
that both OpenAl v3 large and E5yjstrar-7b underper-
form with incomplete corpus components, yielding
lower overall scores on all metrics. Specifically, the
formal + informal corpus enhances performance
on Lean 4 Terms by incorporating formal data and
improves score on the Natural Description category
by providing hybrid information. For the Theorem
Name category, ESpistral-7o Significantly benefits
from the formal + informal corpus by utilizing the
unfolded mathematical descriptions provided by
the informalized statement, whereas OpenAl v3
large shows diminished results, likely due to the
lack of training on mixed-domain texts and absence
of adaptive instructions. We note that the formal
corpus outperforms the formal+informal corpus in
the Lean 4 Terms category for E5istral- 70, a8 €X-
plained in Section 5.2: retrieval on Lean 4 Terms
relies heavily on lexical rather than semantic infor-
mation, and the presence of informal information
negatively impacts retrieval performance. Similar
results are observed with augmented queries.

A more detailed examination of the results for
each query group without query augmentation is
shown in Figure 4. In most instances, the "for-
mal + informal" configuration avoids the abrupt
performance decline observed in solely formal or
informal settings. The informalized statement pro-
vided in the corpus mitigates the lexical mismatch
between the query and the formal statement, which
justifies our choice of a combined corpus.
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Model & Corpus nDCG@20 P@10 R@10
ND LF TN LT All All All
without query augmentation

OpenAl v3 large

formal corpus 0.479 0.553 0.235 0.610 0.493 0.128 0.622

informal corpus 0.591 0.527 0.365 0.451 0.512 0.134  0.628

formal+informal corpus  0.607 0.549 0.267 0.622 0.545 0.140 0.677

ESmistral-7h

formal corpus 0.576  0.633 0.294 0.774 0593 0.132  0.687

informal corpus 0.696 0.636 0.616 0.604 0.648 0.174 0.773

formal+informal corpus  0.749 0.687 0.698 0.612 0.701 0.184 0.845

with query augmentation

OpenAl v3 large

formal corpus 0.637 0.617 0.565 0.647 0.623 0.160 0.747
informal corpus 0.603 0.650 0.810 0.575 0.640 0.166 0.783
formal+informal corpus  0.681  0.657 0.772 0.703 0.691 0.178  0.837
ESmistral-7h

formal corpus 0.688 0.685 0.631 0.694 0.680 0.178 0.847
informal corpus 0.711 0.646 0.824 0.670 0.699 0.184 0.877

formal+informal corpus  0.748 0.712 0.855 0.654 0.733 0.196 0.913

Table 5: Results of ablation studies on document prepa-
ration and query augmentation. "All" indicates the per-
formance averaged across the entire query set. In the
query augmentation section, all queries are augmented
to match the corpus type. Here, ES pigrar-70 uses different
task instructions for the document and query in the non-
augmented query setting and the same task instructions
for both in the query augmentation setting. Detailed
task instructions can be found in Table 6.

Query aug. &

Doc Type Side | Task Instructions

Given a math search query, retrieve theorems
mathematically equivalent to the query
Represent the given math theorem statement
Doc for retrieving related statement by natural
language query

Given a math search query, retrieve theorems
Query | stated in bilingual Lean 4 + natural language
that mathematically match the query
Represent the given formal math statement
written in Lean 4 concatenated with its
natural language explanation for retrieving
related statement by natural language query
Retrieve math theorems stated in Lean 4 that
are mathematically equivalent to the given
one

Retrieve math theorems that are
mathematically equivalent to the given one

Query

None & Informal

None & F+IF

Query

Formal & Formal & Doc

Query
IF & IF & Doc

Table 6: Task Instructions for ES g7 in ablation
studies, supplementing Table 7. The abbreviation "aug."
denotes augmentation, while "F" and "IF" represent
formal and informal, respectively.

5.3.2 Ablation of Query Augmentations

The effect of query augmentation is evident when
comparing the results in the upper and lower sec-
tions of Table 5. As shown, augmented queries
enhance the performance across all compared meth-
ods. Specifically, query augmentation significantly
improves the ability of all methods to identify
Theorem Names by expanding terms and provid-
ing richer context. Notably, the performance of
ESmistral-7o On the formal + informal corpus with-
out query augmentation is comparable to its per-
formance on the same corpus with query augmen-

tation. This makes it a cost-effective option for
deploying our semantic search engine, as it elimi-
nates the need to prompt an LLM with every query.

6 Conclusion

In this paper, we introduce a semantic search en-
gine designed to enable users to locate theorems in
mathlib4 using informal queries. Specifically, we
translate the formal statements of mathlib4 theo-
rems into informal versions and develop our search
engine to work with a corpus of informal-formal
theorem pairs. Additionally, we construct a dataset
to facilitate evaluation. Our comprehensive experi-
ments on this dataset reveal that the best theorem
retrieval performance is attained by augmenting the
user’s query appropriately and embedding the con-
tent of the corpus simultaneously. Consequently,
our system employs a strategy that first augments
the query, followed by a semantic search, thereby
precisely aligning with the users’ search intentions.

Our future research will focus on three primary
directions. First, in terms of informalizing math-
lib4, we aim to design guidelines for translation
and provide examples of converting mathlib4 state-
ments to informal language for LLMs, enhancing
the informal corpus’s quality. Second, regarding
the mathlib4 semantic search benchmark, we plan
to continually enlarge the query set, aiming for a
more comprehensive benchmark. Lastly, for the se-
mantic search engine itself, we intend to fine-tune
a text embedding model on the task of theorem
retrieval, aiming to improve the search engine’s
performance.

7 Limitations

When translating mathlib4 theorems into their in-
formal versions, we extract the related definitions
through the hyperlinks in the theorem statements.
This approach to extracting dependencies can some-
times be inaccurate and may omit certain depen-
dencies. A more precise method is to extract the de-
pendencies of a theorem by interacting with Lean’s
language server.

Another limitation of our work is the use of
ES5mistral-70, @ 7B embedding model, in our search
engine. This model may pose challenges when de-
ploying the search engine on resource-constrained
devices like laptops. In future work, we aim to im-
prove the performance of smaller embedding mod-
els for theorem retrieval tasks to enable broader
accessibility.
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A Example of Informalized Mathlib4
Statements

In this section, we provide an example comparing
the informalized mathlib4 statement generated by
(Jiang et al., 2023), which used GPT-4 without any
additional context, to the statement produced by
our approach that incorporates additional context.

Formal Statement: theorem dite_eq_iff {« :
Sortu_2} {P: Prop} [Decidable P| {c: o} {A: P
—a}{B:-P—a}:ditePAB=c+ (3h,Ah
=¢)VIh,Bh=c

Informal Statement (Jiang et al., 2023)!':
dite P A B equals c if and only if there exists a
proof h such that A h equals c, or there exists a
proof h such that B h equals c.

Informal Statement (ours): Dependent if-
then-else equivalence: For any proposition P that
is decidable, and any elements c, A, and B, the
expression ‘if P then A else B’ is equal to c if and
only if either there exists a proof h such that A h is
equal to c, or there exists a proof h such that B h is
equal to c.

https://github.com/albertqjiang/MMA/tree/main/data

In this example, the informalized statement pro-
vided by (Jiang et al., 2023) retains the "dite" no-
tation, which may be difficult for readers unfamil-
iar with mathlib4 naming conventions. In con-
trast, our informalized statement translates "dite"
into "dependent if-then-else," making the statement
more accessible. This translation was achieved
by extracting the definition of "dite" and its docu-
mentation string "Dependent if-then-else..." in the
prompt, demonstrating how additional context en-
hances the interpretation and conversion of formal
theorems into informal language.

B Prompt for Query Augmentation

In this section, we present the prompt template for
query augmentation, as illustrated in Figure 5. We
outline specific principles for query augmentation,
highlighting the importance of providing precise
information, using LaTeX for mathematical expres-
sions, and clarifying ambiguous inputs. Addition-
ally, we offer examples of query augmentations to
enhance understanding of the task.

Input:

System message: Suppose you are an expert in mathematics and Leand. Your task is to rewrite a short, vague
input description of a mathematical theorem into a detailed, explicit statement of the theorem, first written in
natural mathematical language, then in the formal language of Leand.

Output Format

Your output must contain exactly two parts. The first part is a natural mathematical language statement, starting
with a theorem name, followed by the detailed statement of the theorem. The second part is a Leand code block,
write the formal theorem statement directly without import before or proof following. NO other paragraph is
allowed to appear in the output.

Principles of Output

1. You should provide as much information and be as precise as possible.

2. The natural language part should be accessible to mathematicians. Additionally, please express the
mathematical formulas in LaTeX when necessary.

3. Even in the case that the input is very vague, you should guess a most similar mathematical theorem and write
it out explicitly.

4. The formal statement can assume certain definitions in hypothesis is already formalized, in the case you are not
sure whether or not.

Examplel

Input description

The image of a compact set under a continuous function is compact.

Output

Theorem (Image of a Compact Set Under a Continuous Function):

Let \(f: X \rightarrow Y\) be a continuous function between two topological spaces \(X\) and \(Y\). If \(K\) is a
compact subset of \(X\), then the image \(f(K)\) is a compact subset of \(Y\).

theorem image_compact_of_compact {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y]
(F:X ) (K: Set ) (hf : Continuous f) (K : IsCompact K) : IsCompact (f " K) :=

<...other examples...>
Now, the statement for you to rewrite is:
Input description

degree of product of two polynomials equals to sum of degree

Output:

Theorem (Degree of the Product of Two Polynomials):
Let \(P(x)\) and \(Q(x)\) be two non-zero polynomials over a field \(F\). The degree of the product \(P(x)Q(x)\) is
equal to the sum of the degrees of \(P(x)\) and \(Q(x)\). Formally, if \(\deg(P) = m\) and \(\deg(Q) = n\), then
\(\deg(PQ) = m + n\).

theorem degree_product_eq_sum_degree {F : Type*} [Field F] {P Q : Polynomial F}
(hP:P#0)(hQ:Q#0): degree (P * Q) = ial.degree P +

degree Q :=

Figure 5: Prompt for query augmentations.
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C Implementation Details

In this section, we provide the implementation de-
tails of our experiments.

We use default task instructions in UAE-Large-
V1. For E5yjistral-7b, We employ different task in-
structions for the document and query in the non-
augmented query setting and the same task instruc-
tions for both in the query augmentation setting,
as shown in Table 7. Notably, the original im-
plementation of ESpjga-7o 0mits document-side
task instructions to reduce computational costs dur-
ing document indexing in multiple retrieval tasks.
Given the complexity of the theorem retrieval task,
we have modified this approach to use two-sided
prompts.

During evaluation, inputs to the embedding
model exceeding 4096 characters were truncated
due to GPU memory limitations. For all tested
models, the corpus embedding process was com-
pleted within three hours on a single Nvidia V100
GPU with 16GB of GPU memory.

Query aug. &

Doc Type Side Input with Task Instructions

"Instruct: Given a math search query, retrieve
theorems stated in Lean 4 that mathematically
match the query \n Query:{F+IF augmented
query}"”

"Instruct: Represent the given formal math
statement written in Lean 4 for retrieving
related statement by natural language query \n
Doc:{Formal statement}”

"Instruct: Retrieve math theorems stated in
bilingual Lean 4 + natural language that are
mathematically equivalent to the given one \n
Query:{query}"

"Instruct: Retrieve math theorems stated in
bilingual Lean 4 + natural language that are
mathematically equivalent to the given one \n
Doc:{F + IF statement}”

Query

None & Formal

Query

F+IF & F+IF

Table 7: Task instructions used in ES5srai7. Here
"aug." stands for augmentation, and F and IF stands for
formal and informal respectively. The "None & Formal"
setting is used as baseline, and "F+IF & F+IF" is used
in our method.

D Ablation Study on Task Instructions

In this section, we investigate the impact of task
instructions on the theorem retrieval performance.
We present a visualization of the embeddings of all
50 queries, generated by four embedding engines
in our benchmark, using t-SNE(van der Maaten and
Hinton, 2008). We use the default task instruction
for UAE-Large-V1. For E5istral-70, We test three
instructions: an empty instruction, a mathematics
retrieval instruction ("Given a math search query,
retrieve theorems mathematically equivalent to the
query"), and a Lean 4 retrieval instruction ("Given a

math search query, retrieve Lean 4 written theorems
that mathematically match the query").

As illustrated in Figure 6, clusters of theorem
names appear in the results produced by all four
embedding models. However, these clusters van-
ish when we provide ES pistra-7p With mathematics-
aware task instructions. Given that we assume
all queries within the same query group (denoted
by identical colors in Figure 6) have the same
search intent, they should be proximal on the graph,
as t-SNE maintains the relative distance relation-
ships between vectors. Thus, the more effective
the embedding engine, the more closely the dots
of the same color group together. A comparison
of subfigures 6¢ and 6d with 6a and 6b reveals
that text-embedding-3-large and E5yjgtra1-7o demon-
strate superior performance in discerning mathe-
matical search intentions, aligning with our main
results (Table 3).

The presence of theorem name clusters in these
subfigures, however, contradicts this principle, sug-
gesting that the embedding models perceive these
theorem names as more similar to each other rather
than correctly associating them with their respec-
tive query groups. While this might be accept-
able for other retrieval tasks, it is inappropriate for
our mathematical information retrieval context. In
contrast, the absence of theorem clusters in sub-
figures 6e and 6f suggests that these embedding
methods successfully group theorem names with
their corresponding statements, despite their no-
table differences in appearance and structure. This
indicates their proficiency in comprehending math-
ematical theorems and recognizing search intents.
In summary, appropriate task instructions enhance
the embedding models’ sensitivity to the search in-
tents of mathematical concepts, thereby improving
retrieval effectiveness on mathlib4.

E Models for Query Augmentation

In this section, we compare the performance of two
LLMs, DeepSeek-V2-Chat and GPT-4, for query
augmentation. Table 8 presents the performance
of both models using the informal+formal corpus
setting, with results averaged over 10 runs.

API nDCG@20 P@10 R@10 Cost per IM input tokens  Cost per 1M output tokens

gpt-4-0125-preview 0.721 0.195 0911 $10.00 $30.00
deepseek-chat 0.749 0202 0.933 $0.14 $0.14

Table 8: Performance of DeepSeek-V2-Chat and GPT-4
for query augmentation.

As shown, DeepSeek-V2-Chat not only outper-
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(a) text-embedding-ada-002
(without task instruction)

-

(c) text-embedding-3-large
(without task instruction)

a
-

]
)

(e) ESmistra-7o With Math re-
trieving instruction

(b) UAE-Large-V1 with de-
fault instruction

(d) ESmistral-7b With empty in-
struction

-

(f) ESmistrai-7o With Lean 4 re-
trieving instruction

Figure 6: t-SNE visualization of the embeddings of all
queries in our benchmark. Each dot denotes a distinct
query, with queries within the same query group sharing
identical colors. The shape of the markers differentiates
the four distinct query categories. Theorem name clus-
ters are emphasized with circles.

forms GPT-4 in terms of effectiveness but also of-
fers a significantly lower cost. The results suggest
that DeepSeek-V2-Chat is a more efficient and cost-
effective choice for query augmentation tasks.
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