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Abstract

Large Language Models (LLMs) are regu-
larly updated to enhance performance, typically
through changes in data or architecture. Within
the update process, developers often prioritize
improving overall performance metrics, paying
less attention to maintaining compatibility with
earlier model versions. Instance-level degrada-
tion (instance regression) of performance from
one model version to the next can interfere with
a user’s mental model (Bansal et al., 2019) of
the capabilities of a particular language model.
Users having to adapt their mental model with
every update can lead to dissatisfaction, espe-
cially when the new model has degraded com-
pared to a prior version for a known use case
(model update regression). We find that when
pretrained LLM base models are updated, fine-
tuned user-facing downstream task adapters
experience negative flips – previously correct
instances are now predicted incorrectly. We
observe model update regression between dif-
ferent model versions on a diverse set of tasks
and models, even when the downstream task
training procedures remain identical. We argue
for the importance of maintaining model update
compatibility during updates, and present eval-
uation metrics designed specifically for gen-
erative tasks, while also being applicable to
discriminative tasks. We propose a training
strategy to minimize the extent of instance re-
gression in model updates, involving training
of a compatibility adapter that can enhance task
fine-tuned language models. We show negative
flips reduce by up to 40% e.g. when updating
Llama 1 to Llama 2 with our proposed method.

1 Introduction

Large Language Models (LLMs) are often pre-
trained on large-scale corpora to obtain a base
model with general world knowledge. These base
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Figure 1: A real example of a model update that intro-
duces instance regression (negative flip, where a previ-
ously correct prediction becomes incorrect) (top). With
our model update strategy using a compatibility adapter
approach, we enhance model update compatibility to
the previous model while maintaining the overall perfor-
mance gain (e.g. measured by the ROUGE-1 score for
the summarization task) of the model update (bottom).

models are typically evaluated using a suite of
benchmarks that mostly focus on zero/few-shot
performance and in-context learning capabilities.
Training these models is expensive, and only a few
organizations have access to the resources needed.
Hence, to enable various user-facing applications
such as summarization, chatbots, code assistants,
and question-answering, practitioners often adapt
pre-trained base models by training task-specific
parameter-efficient adapters using downstream task
datasets.

Several scenarios drive updates to the base
model, e.g. improved training strategy, advances
in LLM architectures or increasing model context
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length (Touvron et al., 2023a), the availability of ad-
ditional or higher quality datasets (Gunasekar et al.,
2023), the expansion of model vocabulary (e.g.,
to support multilingual or multimodal models), or
simply training for a longer period (Biderman et al.,
2023).

When a base model is updated, all associated
task adapters need to be retrained/updated to have
meaningful downstream models. Hence, in the rest
of the paper, we use the term model update to refer
to an update to a downstream task model, which
includes updating the base model and retraining the
task adapter. When a model is updated, we evaluate
model update compatibility with different metrics
by four quadrants shown in Fig. 2. The new model
could produce a worse prediction (negative flip
(quadrant 4)) for many samples (Yan et al., 2021)
even when it has a better overall performance when
compared to the previous model. A real example
of instance regression measured as a negative flip
is shown in Fig. 1 for a dialogue summarization
task. This kind of regression can confuse the user
and impair their satisfaction (Sakai, 2022). We
denote the aggregated overall regression for all
individual instances as model update regression
(Table 1). Regression testing has become increas-
ingly important for the evolving use of LLMs ac-
cessed via APIs (Ma et al., 2023). When updating
models, practitioners typically focus on increasing
positive flips (quadrant 2) while avoiding negative
flips (quadrant 4) (Cai et al., 2022; Sakai, 2022;
Yan et al., 2021; Li et al., 2023b; Schumann et al.,
2023). However, they neglect prediction inconsis-
tencies in the scenarios where both model versions
are incorrect (quadrant 3) or already correct, but
slightly different (quadrant 1). For example, Träu-
ble et al. (2021) assumes the cost of flips from
one incorrect class to another incorrect class to be
zero. We argue that there is value in evaluating
consistency when both models are wrong. A user
may have developed coping strategies on how to
interact with a model when it is incorrect; there-
fore, inconsistencies in mistakes can lead to user
dissatisfaction.

Previous works have mainly addressed the
model update regression challenge for classifica-
tion tasks (Cai et al., 2022; Sakai, 2022; Yan et al.,
2021; Li et al., 2023b; Schumann et al., 2023). In
this work, we systematically study the problem of
model update compatibility using discriminative
and generative downstream tasks and different base
models.
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Figure 2: Four possibilities arise for each sample when
a model is updated. Quadrants 2 and 4 show positive
and negative flips, respectively. Quadrant 3 corresponds
to instances where both models are incorrect. Encourag-
ing similarity between the old and new models in this
case (i.e., making the same mistakes) results in a more
seamless model update from the user’s perspective.

Following is a summary of our contributions:

• We formulate the compatibility problem when
updating LLMs. We focus on common setups
where base LLMs undergo updates and evalu-
ate model compatibility and performance via
parameter-efficient, task-specific fine-tuning,
as these models are deployed for user interac-
tion.

• We extend the notion of model compatibility
from discriminative to generative tasks, and
propose compatibility metrics that consider
similarities in model behavior after an update,
going beyond the negative flip rate metric.

• We investigate model compatibility for differ-
ent update scenarios using open-weight mod-
els and find significant model update regres-
sion across various tasks.

• We propose learning a compatibility adapter
to align model versions and minimize model
update regression. We demonstrate up to
40% reduction in negative flip rate (e.g. for
Llama 1 to Llama 2 update in language un-
derstanding) and reduced model inconsistency
for downstream tasks such as summarization,
math reasoning, and commonsense question-
answering.

2 Related Work

2.1 Measuring Model Update Regression
Classification Yan et al. (2021) introduce nega-
tive flip rate (NFR) to evaluate model compatibility
for classification tasks. NFR calculates the frac-
tion of instances that were previously correct but
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Instance Regression An instance i is predicted correctly by an old model Mv1, but incorrectly by a new model Mv2.

Model Update Regression Aggregation of all instances correctly predicted by an old model Mv1, but incorrectly by an
updated model version Mv2.

Model Update Compatibility Measures the degree to which predictions made by an updated model Mv2 remain consistent
with the predictions of the previous model version Mv1, specifically on instances where Mv1

was correct. Quantifies the alignment or compatibility between model versions across updates.

Table 1: Definitions of Instance Regression, Model Update Regression, and Model Update Compatibility.

are now incorrect with the new model. A similar
statistic (Sakai, 2022), backward trust compatibil-
ity (BTC) (Srivastava et al., 2020), measures the
ratio of instances that the new model predicts cor-
rectly among all instances the old model predicts
correctly. Matsuno and Sakuma (2023) propose
backward compatibility with a conditional distri-
bution, which computes the ratio at which the ac-
curacy of the conditional distribution of the new
model is equal to or higher than that of the old
model. Cai et al. (2022) introduce the negative flip
impact for graph NLP tasks, taking into account
the negative flips and the overall error rate of the
model. These aforementioned metrics are limited
to the evaluation of discriminative classification
tasks.

2.2 Reducing Model Update Regression

Model Ensembles Prior work found that model
ensembles reduce model update regression. This
can be attributed to the reduction of variance by
ensembling, as every single model may capture
the training data from a distinct aspect (Yan et al.,
2021; Xie et al., 2021). Extensions on this line
of work include choosing the most centric model
from an ensemble (Xie et al., 2021), aligning two
models’ uncertainties (Li et al., 2023b), or using
gating mechanisms (Lai et al., 2023). Previous
work has also used model parts from an old model
to infuse into the new one (Ran et al., 2023), with
the limitation of both models being required at
inference time. For limited use cases, Qin et al.
(2023) have shown to re-use previously learned
adapters when purely a data update was performed.
All these methods either introduce a larger memory
footprint by re-using old model parts or are limited
to (same-domain) data-updates and same models.

Knowledge Distillation Originally proposed for
model compression (Buciluǎ et al., 2006), a
(smaller) student model is trained to mimic a
(larger) teacher model. By treating the old model
as the teacher and the new model as the student,
knowledge distillation has been shown to reduce

model update regression in vision and language dis-
criminative tasks (Yan et al., 2021; Xie et al., 2021;
Schumann et al., 2023; Jaeckle et al., 2023; Zhang
et al., 2021; Shen et al., 2020; Ramanujan et al.,
2022). Shen et al. (2020) propose a distillation-
based influence loss to align new model represen-
tations with those of the old model. Similarly, Ra-
manujan et al. (2022); Jaeckle et al. (2023) apply
distillation after a learned transformation module.
Schumann et al. (2023) propose weight interpola-
tion between the old and the new model, Zhao et al.
(2022) suggest matching old and new model distri-
butions, Yan et al. (2021) distill from an ensemble,
and Caciolai et al. (2023) recommend using focal
distillation. However, none of these approaches
evaluate their approaches on generative tasks or
they require both the old and new models to be in
memory at inference time.

3 Problem Formulation

While existing methods provide valuable ap-
proaches to mitigating model update regression,
they predominantly focus on discriminative classi-
fication tasks and often require additional memory
at inference time. We propose a flexible approach
to updating models without sacrificing performance
or compatibility across downstream tasks.

Setup We follow the common setup of finetuning
a pre-trained base LLM to multiple downstream
tasks with task-specific LoRA adapters (Hu et al.,
2021). Let Mbase

i denote the ith version of a base
LLM with parameters θi. We adapt Mbase

i to a
downstream task T using an adapter AT

i to obtain
a downstream model MT

i with weights θTi = θi +
∆T

i , where ∆T
i denotes the weights of the task-

specific adapter AT
i learned using the training data

corresponding to task T . When the base model
is updated from Mbase

v1 to Mbase
v2 , the task-specific

adapters are re-trained for each downstream task.
Hereafter, for simplicity of notation, we use Mv1

and Mv2 to refer to the task-adapted models MT
v1

and MT
v2, respectively, and explicitly mention the

task T when needed.
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3.1 Backward Compatibility Metrics
A backward compatibility metric outputs a compat-
ibility score based on two models, Mv1 to Mv2.
Yan et al. (2021) propose negative flip rate (NFR)
to measure regression in classification models over
a dataset {xi, yi}Ni=1, where yi is the ground truth
class for input xi for a particular task T :

NF(xi) ≜ [Mv1(xi) = yi] ∧ [Mv2(xi) ̸= yi]

NFR ≜ 1

N

N∑

i

1[NF(xi)]

Here 1 denotes the indicator function. This no-
tion of regression is partly applicable to autoregres-
sively trained tasks. LLM benchmarks (Gao et al.,
2023) calculate the likelihood of every possible
choice in a multiple-choice question and choose
the response with the highest likelihood to calcu-
late a likelihood based accuracy. This evaluation
can indicate model update regression similar to
classification for tasks when multiple choices are
available (Zellers et al., 2019; Wang et al., 2019;
Welbl et al., 2017).

Unobserved Inconsistencies Other inconsisten-
cies arise when the old model predicts class A, the
new model class B, and the ground truth is class C.
Similarly, if there are multiple ground truth options,
a flip could occur within the ground truth options,
as in quadrant 1 in Fig. 2. These inconsistencies
are not captured by positive or negative flips. We
argue that if we cannot produce a better prediction,
we should at least stay consistent with the user’s
expectations and propose extended negative flips
metrics for this use case.

Continuous Metrics In generative tasks for lan-
guage models, we do not necessarily have multiple
choices for which we can predict if an instance
regressed or not. Hence a metric incorporating
multiple choices and then calculating negative flips
is not applicable for continuous evaluation metrics.
Typical continuous metrics in generative language
tasks are ROUGE (Lin, 2004) or BERT (Zhang
et al., 2019) scores. As regular negative flips are
incapable of capturing these nuances, we require a
new metric to evaluate compatibility for generative
tasks like summarization.

3.2 Extended Evaluation Metrics
We propose a suite of metrics that evaluate model
update compatibility on a fine-grained basis specif-
ically for generative tasks (e.g summarization).

Accounting for Flips when Both Models are In-
correct To capture inconsistencies for instances
where both old and new models are incorrect, we
adapt the negative flip rate as follows when multi-
ple choice options are available:

NFmc(xi) ≜[Mv2(xi) ̸= yi]∧
[Mv1(xi) ̸= Mv2(xi)]

NFRmc ≜
1

N

N∑

i

1[NFmc(xi)]

This includes the possibility that neither of the mod-
els gives the correct answer, but a change in be-
havior occurs that can confuse a user. Similarly,
for multi-label tasks, this notion can account for
ground-truths that may have flipped during a model
update when multiple ground truth options exist.

Smooth Compatibility Metrics To add continu-
ous metrics for generative tasks, we evaluate the ex-
pected model update regression. Our general frame-
work aims to be independent of the actual similarity
metric, such that it can be chosen in accordance
with any respective task of interest. For exam-
ple, translation tasks might require BLEU (Pap-
ineni et al., 2002), but summarization ROUGE (Lin,
2004) evaluation. Additionally, we want to mea-
sure a notion of performance gain, when both mod-
els are correct, but one might still be better than the
other.

Given a similarity metric S, and model outputs
Mv1(xi) and Mv2(xi) for an input xi, the dif-
ference for a model update for a particular test
instance i is

D(xi) ≜ S(Mv2(xi), yi)− S(Mv1(xi), yi)

acting as an indication of the distance between the
two model outputs with respect to the grand truth.
This per instance indication of distance enables us
to classify which model update compatibility quad-
rant an instance falls into. In practice, similarity
metrics could be BERT Score (Zhang et al., 2019),
ROUGE Score (Lin, 2004), BLEU Score (Papineni
et al., 2002), or model-as-a-judge metrics (Huang
et al., 2024) depending on the use case and task.

To get a metric for generative tasks that is similar
to the positive and negative flip rate in classification
tasks, we observe the distribution of instances with
positive gain or negative regression:

P̃FR ≜ 1

N

N∑

i

1[D(xi) > 0]
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Figure 3: When updating a model, regression on individual tokens and instances can arise. We use a masked
approach to select tokens to be aligned with knowledge distillation either with the old version to remain consistent
or with the new task model to increase performance.

ÑFR ≜ 1

N

N∑

i

1[D(xi) < 0]

To observe the magnitude of model update re-
gression and gain, we can observe the expectation:

mg ≜ 1

N · P̃FR

N∑

i

D(xi) 1[D(xi) > 0]

mr ≜
1

N · ÑFR

N∑

i

|D(xi)| 1[D(xi) < 0]

These give an indication of the average magnitude
of change in a similarity metric when gain or re-
gression occurs.

4 Knowledge Transfer

Now that we have metrics to indicate model update
regression, we propose a knowledge distillation
approach to minimize this regression for the task-
specific models Mv1 and Mv2. Typically, knowl-
edge distillation minimizes the KL divergence be-
tween the soft targets σ(zt) and σ(zs), where zs
and zt are logits predicted by student and teacher
models, respectively.

LKL =
1

n

n∑

i=1

KL(σ(zt,i/T )∥σ(zs,i/T ))

, i denotes the i’th token, n is the total number of
tokens available for training, T is temperature pa-
rameter, and σ denotes softmax. Most knowledge
distillation works consider the distillation from a
trained teacher to an untrained student (Tian et al.,
2022; Rajasegaran et al., 2020). Recent work (Roth
et al., 2024) tackles the goal of knowledge trans-
fer between pre-trained student and teacher models
while retaining student knowledge gained a pri-
ori, and shows that standard knowledge distillation
between pre-trained models struggles to transfer

knowledge without performance drops. Comple-
mentary to this work focusing on performance and
maintaining prior knowledge, we tackle compatibil-
ity with prior models through knowledge transfer.

4.1 Model Update Strategy for Compatible
LLM Evolution (MUSCLE)

When the base model is updated, we train a task-
specific fine-tuned model, MC

v2, that has the accu-
racy benefits of Mv2, but with most compatibility
with Mv1. We obtain MC

v2 by training a compat-
ibility adapter applied to the base model Mbase

v2 .
We use knowledge from task-specific fine-tuned
models Mv1 and Mv2 when training MC

v2. Mv2

typically has increased prediction capabilities over
Mv1 (due to improvements in the base model),
but Mv1 has information on already correctly pre-
dicted tokens or instances that we want to minimize
degradation towards.

We initialize the compatibility adapter with the
task-specific adapter of Mv2, and further fine-tune
it (using the task training dataset) by aligning the
next token prediction to either Mv1 or Mv2. We
define masking (for individual tokens of a training
sequence) following a simple heuristic depending
on whether MC

v2 (the adapter being trained) pre-
dicts the correct tokens or not. If it does, we align to
Mv2 logits, otherwise, we align to Mv1. The fine-
tuning process of MC

v2 is depicted in Fig. 3. The
fine-tuning loss to train the compatibility adapter,
Lm
comp, is defined below:

mi = 1[argmax σ(zMC
v2,i

) ̸= yi]

aMv1 =KL(σ(zMv1,i/T )∥σ(zMC
v2,i

/T ))

aMv2 =KL(σ(zMv2,i/T )∥σ(zMC
v2,i

/T ))

Lm
comp =

1

n

n∑

i=1

mi · aMv1 + (1−mi) · aMv2

(1)
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Mbase
v1 Mbase

v2 Update

Phi 1 Phi 1.5 Synthetic data, data selection (Gunasekar et al., 2023; Li et al., 2023a)
Phi 1.5 Phi 2 Synthetic data, data selection, ↑ parameters (Javaheripi et al., 2023)
Llama 1 Llama 2 More data, ↑ context size (Touvron et al., 2023a,b)
Vicuna 1.3 Vicuna 1.5 Llama 1 → Llama 2, Instruction fine-tuning (Zheng et al., 2024)

Table 2: We select a suite of models with varying update scenarios and parameter sizes and evaluate them on
different LLM benchmark tasks. We select Llama and Vicuna models with 7B parameters.

Dataset Task Metric

HellaSwag Language Understanding
(Multiple-Choice)

Log-Likelihood
Accuracy

PIQA Commonsense Reasoning
(Binary-Choice)

Log-Likelihood
Accuracy

GSM8k Grade School Math
(Exact Match)

Exact Match
Accuracy

SAMsum Dialogue Summarization ROUGE-1

Table 3: We tackle compatible model updates for differ-
ent downstream tasks and datasets, including multiple-
choice and generative tasks (Zellers et al., 2019; Bisk
et al., 2019; Cobbe et al., 2021; Gliwa et al., 2019).

When evaluating, we denote NFR as negative
flip rate between Mv1 Mv2, NFRc as the observed
negative flip rate between Mv1 and our compati-
bility model MC

v2, and ∆NFRc = NFRc − NFR.

5 Experimental Setup

5.1 Model Update Assumptions

To analyze the impact of model updates we con-
sider parameter-efficient fine-tuned models using
Low-Rank Adapters (LoRA) (Hu et al., 2021).
Compared to previous work on continuous learn-
ing and model updates (Qin et al., 2022, 2023),
we do not limit model updates to be produced by
only data updates, but consider different kinds of
updates shown in Table 2. We include updates due
to data, increased parameters, or different training
strategies. We include a wide range of downstream
tasks to evaluate model compatibility, including
generative tasks as summarized in Table 2. For all
tasks, we learn the LoRA adapter autoregressively
(next-token prediction).

5.2 Task Adapter Training

For each task and each old model Mv1 and new
model Mv2, we train a LoRA adapter on all linear
layers with r = 128 and α = 256. We use a
0.8/0.2 training/validation split for 10 epochs. We
choose the model by cross-entropy validation loss.
More information on hyperparameters is shown in
Table 8.

5.3 Compatibility Adapter Training

We keep all hyper-parameters the same for task
adapter training, and train compatibility adapter
with the Lm

comp loss defined in Eq. (1). We analyze
the statistical significance of the results on a subset
of compatibility adapter training for Phi 1 to Phi
1.5 updates on PIQA using 3 random seeds. We
observe a standard deviation of accuracy of 0.0012.

We compare Lm
comp with different masking

strategies m in the ablation studies in Section 6.5,
but find that the version introduced in Section 4.1
works best for most model updates. For model up-
dates with large performance gaps between Mv1

and Mv2 we find that an auxiliary cross-entropy
loss enhances the stability of training for PIQA and
SAMSum from Phi 1 to Phi 1.5, and all Phi updates
in GSM8k and Hellaswag (more in Appendix A.4).

5.4 Similarity Metrics

We evaluate multiple-choice tasks with
classification-like approaches by choosing
the maximum log-likelihood of the possible
answers (Gao et al., 2023). For math tasks, we
use exact-match accuracy of the final calculated
result. For summarization, we cannot evaluate in
a classification-like manner. We use ROUGE-1
(Lin, 2004), given that we do not observe relative
ranking differences for different ROUGE-n.

6 Results

6.1 Negative Flips Occur in Model Updates

Fig. 4 shows that significant negative flips (up to
more than 60%) exist for a variety of base model
update scenarios and downstream tasks. We ob-
serve negative flips in updates within one model
family (e.g. Llama/Vicuna, and Phi models). We
find more negative flips for model updates with a
smaller delta in performance gain. For generative
tasks like SAMsum dialogue summarization, we
observe a large number of negative flips as contin-
uous metrics are more sensitive to small changes
when updated.
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Mbase
v1 Mbase

v2 accMv1 accMv2 accc ∆accc ↑ NFR ∆NFRc ↓ ∆%NFRc ↓

H
el

la
Sw

ag Llama 1 Llama 2 72.74 72.91 79.53 6.62 10.27 -4.17 -40.60
Phi 1.5 Phi 2 69.76 78.02 77.86 -0.16 3.09 0.24 7.77
Phi 1 Phi 1.5 32.38 69.76 69.86 0.10 2.47 -0.13 -5.26
Vicuna 1.3 Vicuna 1.5 72.19 71.54 78.10 6.56 10.48 -4.06 -38.74

PI
Q

A

Llama 1 Llama 2 74.86 74.76 79.27 4.51 11.59 -3.97 -34.25
Phi 1.5 Phi 2 74.65 78.78 78.94 0.16 6.20 -0.11 -1.77
Phi 1 Phi 1.5 59.03 74.65 74.70 0.05 7.78 -0.05 -0.64
Vicuna 1.3 Vicuna 1.5 74.70 75.52 78.89 3.37 9.90 -2.88 -29.09

Table 4: Compatible task adapter trained with MUSCLE (corresponding to metrics with suffix c) reduces negative
flip rate on the test sets of multiple-choice language tasks. We see most improvements for model updates that have
small performance differences.

Mbase
v1 Mbase

v2 EMMv1 EMMv2 EMc ∆EMc ↑ NFR ∆NFRc ↓ ∆%NFRc ↓
Llama 1 Llama 2 24.45 33.09 36.66 3.57 8.49 -0.91 -10.72
Phi 1.5 Phi 2 30.02 48.18 50.68 2.50 5.88 -1.71 -29.08
Phi 1 Phi 1.5 3.41 30.02 26.99 -3.03 2.01 -0.04 -1.99
Vicuna 1.3 Vicuna 1.5 26.72 29.91 31.84 1.93 11.60 -0.99 -8.53

Table 5: GSM8K math evaluation with exact match (EM) over the test dataset. For compatibility adapter (corre-
sponding to metrics with suffix c), we observe a decreased negative flip rate while mostly maintaining performance
gains.
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Figure 4: When updating LLM models (e.g. Llama
1 → Llama 2), we observe negative flips in different
tasks. The smaller the performance gap from an old
model to a new model, the more negative flips we ob-
serve.We indicate the performance gap by the difference
in exact match for GSM8K, Rouge-1 for SAMSum,
and log-likelihood-based accuracy for PIQA and Hel-
laSwag. When evaluating continuous metrics with abso-
lute ROUGE-1 value for summarization on SAMSum,
we observe a large fraction of negative flips. We show
the exact models analyzed in Table 9.

6.2 Reduced Negative Flips in Classification

In Table 4, we observe that MUSCLE decreases
negative flips when compared to regular model
updates without compatibility-specific training
(Mv2). Specifically, we see a reduction of NFR
by 40% for the update of LLama 1 to Llama 2 and
39% for Vicuna 1.3 to Vicuna 1.5. For updates with

a large performance gap (for example Phi 1 to Phi
1.5), we observe a less strong enhancement with a
negative flip rate reduction by 1-5%. In addition
to the reduction of negative flips, we also observe
an increased accuracy of up to 7% for Llama and
Vicuna updates.

In exact match (EM) evaluation, we match the
final result of the math question from the prediction
to ground truth. Results are shown in Table 5. In
this case, we observe that we can reduce the number
of negative flips by 29% for Phi 1.5 to Phi 2. When
the version 1 model is significantly less accurate
(e.g., 3.4% exact-match accuracy for Phi 1), we ob-
serve a reduction in accuracy with the compatibility
adapter while only being able to decrease negative
flips by 2%. For all other updates, MUSCLE in-
creases expected-match accuracy while reducing
negative flips.

6.3 Increased Consistent Behavior

When we cannot achieve a positive flip (switching
from an incorrect to a correct answer), we might
prefer to at least maintain consistent behavior to
the old model to avoid unexpected behavior for the
user. We evaluate negative flips rate (NFR) and
inconsistency flips rate (NFRmc). For model up-
dates that have a large performance gap and a small
number of negative flips to begin with (Phi mod-
els), we see a limited reduction in inconsistency
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Mbase
v1 Mbase

v2 R1Mv1 R1Mv2 R1c ∆R1c ↑ ÑFR ∆ÑFRc ↓ ∆%ÑFRc ↓ ∆mg ↑ ∆mr ↓
Llama 1 Llama 2 32.06 32.28 34.79 2.51 48.96 -7.81 -15.95 0.64 -1.13
Phi 1.5 Phi 2 37.53 36.15 40.69 4.54 54.70 -15.02 -27.46 0.24 -3.39
Phi 1 Phi 1.5 30.92 37.53 38.76 1.23 32.60 -5.74 -17.61 -0.38 -0.59
Vicuna 1.3 Vicuna 1.5 30.32 30.88 34.08 3.20 49.69 -10.98 -22.10 -0.02 -1.85

Table 6: For summarization (SAMsum) generative task we reduce model update regression of ROUGE-1 score (R1)
by up to 27%.

Figure 5: Comparison of NFR vs NFRmc metrics to
evaluate inconsistency when updating LLMs for Hel-
laSwag task. We see that using our compatibility adapter
(denoted by c), we can reduce inconsistency for Llama
and Vicuna models.

flips. However, we observe that we can reduce the
inconsistency flips with our method for model up-
dates with small accuracy gaps such as the updates
for Llama and Vicuna (Fig. 5) on the HellaSwag
dataset.

6.4 Reduced Model Update Regression in
Generative Tasks

When evaluating generative tasks, we can reduce
model update regression of ROUGE-1 score perfor-
mance (Table 6). We can reduce negative flips by
18% for updates with weaker version 1 models (Phi
1 → Phi 1.5) and 22% for smaller model updates
(Vicuna 1.3 → Vicuna 1.5) and 27% for Phi 1.5 →
Phi 2. We see that we decrease ROUGE-1 model
update regression by 1-3%, while maintaining gain.

6.5 The Effect of Different Masking Strategies
We analyze different training and masking strate-
gies to evaluate our design choices. On the PIQA
dataset and model update Llama 1 → Llama 2, we
compare MUSCLE with different masking strate-
gies. Intuitively, instance or token-wise likelihood-
based masking strategies can be useful for tasks
that are evaluated with log-likelihoods (e.g. PIQA,
HellaSwag) where multiple choices are available.
We compare likelihood-based masking for example
on individual tokens,

mi = LLL = 1[σ(zMC
v2,i

) < σ(zMv1,i)] (2)

∆NFRc ∆%NFRc ∆PFRc ∆accc

LMC
v2 ̸=y

comp -3.97 -34.25 0.54 4.51
LMv1=y

comp -2.29 -19.76 -0.60 1.68
aMv1 -2.99 -25.80 -0.82 2.17

CE+LMC
v2 ̸=y

comp -3.10 -26.75 0.38 3.48
CE+LLLL

comp -2.12 -18.29 -0.49 1.63
CE+LLLS

comp -1.96 -16.91 0.05 2.01

Table 7: A model update from Llama 1 → Llama 2
on PIQA. Different ablations and masking strategies
and their impact on negative flips, positive flips, and
accuracy improvement.

to check if the likelihood of the ground-truth next
token in the current model is smaller than the old
model. Only in this case, we align to Mv1, and
align to Mv2 for every other token. Alternatively,
we can also compare the likelihood of the entire
sequence

mi = LLS = 1[
∑

i

[σ(zMC
v2,i

) < σ(zMv1,i)]]

(3)
such that we mask all tokens per sequence to get

instance-wise masking. For both of these strategies,
we see a reduction in negative flips. We note that
likelihood-based masking requires auxiliary cross-
entropy loss for stability (A.4). Aligning to the
old model only if it is already correct with a mask
LMv1=y
comp with mi = 1[σ(zMv1,i) = yi] or without

masking with KL (aMv1) leads to a small reduc-
tion in negative flips. Our approach that aligns to
the old model if the current prediction is incorrect

(LMC
v2 ̸=y

comp ), leads to the best reduction in negative
flips while providing the biggest accuracy gain and
increased positive flips (Table 7). This strategy has
the additional advantage that it takes into account
extended inconsistent flips explained in Fig. 5, as
it aligns to Mv1 whenever Mv2 is incorrect. For
this best-performing strategy, we see that including

cross-entropy loss (CE+LMC
v2 ̸=y

comp ) does not lead to
additional performance gains.
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6.6 Behavior for Different Model Pairs

A general point in the analysis of negative flips
is its connection with accuracy: if accuracy is
100%, the NFR must be 0%. This means that
compatible model updates become harder when
updating Mv1 → Mv2 with lower Mv2 accu-
racy. We report observed compatibility when using
vanilla adapter learning, and show a reduction in
NFR when using the proposed method (MUSCLE).
When acc(Mv2) > acc(Mv1) for a task, the ob-
served NFR is small (Fig. 4). This has been the case
irrespective of the model update scenario and task.
We find that MUSCLE reduces the observed NFR
the most when acc(Mv2) ≈ acc(Mv1). In such
cases, the incompatibility between vanilla model
updates is not dominated by the fact that one model
version is more accurate than the other, making it
an easier use case to be improved by our proposed
distillation loss. With multiple frequent incremen-
tal model updates in academia and industry, this is
a very relevant use case to focus on.

7 Conclusion

In this work, we study the task-specific compat-
ibility problem when updating LLMs. We show
that LLM updates with different scenarios, e.g.,
changes in model architecture, optimization, or
training dataset, exhibit significant negative flips
– instances previously classified or generated cor-
rectly, and incorrectly after the model update. We
extend the negative flip metric for discriminative
and, for the first time, generative tasks, and report
results for various models and tasks.

We propose a novel method (MUSCLE) to train
task-specific compatibility adapters when updating
an old LLM to a new LLM to reduce negative flips
while maintaining performance gain. Our proposed
method does not require a modification to the base
model training and is only based on adapter train-
ing. Further, as opposed to previous works, the
proposed solution does not require both versions
of the model in memory to enable compatibility,
which is often infeasible due to the large size of
LLMs.

We observe a mitigation of negative flips of 40%
for multiple-choice type evaluations, and 27% for
continuous summarization evaluation. We also
show insights into model properties that facilitate
transfer, finding that our alignment masking strat-
egy provides best results with the additional benefit
of mitigating inconsistent update behavior.

8 Limitations, Risks and Future Work

We do not consider a model update that includes
changes in tokenization and/or vocabulary size
(e.g.Llama 2 (Touvron et al., 2023b) to LLama
3 (AI@Meta, 2024)). Future work can explore
compatible vocabulary mapping strategies before
learning from prior model versions.

Tackling Large Performance Gaps When there
is a large performance gap between Mv1 and Mv2,
loss hyperparameter weighting could be an inter-
esting avenue to explore. We unsuccessfully exper-
imented with simple weighting based on average
accuracy. We hypothesize that instance-based loss
weighting could be a more promising approach to
tackle this model update case. As this would re-
quire intensive experimentation, we leave this as
an avenue for future work. In general, the utility
of aligning to prior model versions is limited by
the performance of the prior model version. For
example, see the update from Phi 1 to Phi 1.5 in
Table 5, where Phi 1 only has an accuracy of 3%.
In this case, it is arguable if an alignment to Mv1 is
desired and if the strive for compatibility outweighs
a possible performance drop.

MUSCLE Performance Improvements In our
work, we observe an interesting overall perfor-
mance improvement following knowledge transfer,
which is an intriguing finding regarding the pos-
sibilities of this line of work. Previous works on
model compatibility using distillation-like losses
have also observed such a phenomenon (e.g.,
(Jaeckle et al., 2023)). Given that we initialize the
compatibility adapter with Mv2 (an independently
trained task adapter) and continue fine-tuning it
with knowledge transfer loss from Mv1, one can
argue that the observed performance improvement
demonstrates an ensemble knowledge effect (i.e.,
knowledge from both Mv2 and Mv1 is aggregated
into our compatibility adapter).

Ethical Considerations and Risks One potential
risk of the proposed approach for compatible task-
specific LLM updates is the transfer of potential
biases from the old model, Mv1, to the new model
trained through knowledge transfer. We did not
explore this aspect in the current study.
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A Appendix

A.1 Training Hyperparameters and
Evaluation

We show an overview of the design choices of our
LoRA adapter for task and compatibility training
in Table 8. We learn about the entire context and
answer tokens during fine-tuning. We find that
successfully training the compatibility adapter gen-
erally requires a larger LoRA rank. Task adapters
can be trained with lower rank, but also experience
performance boost with higher rank. We use the
training splits of the respective datasets where we
use 80% of the training set as training data, and
20% as validation data for selecting the best model
based on validation loss. We evaluate for selection
after each epoch. All compatibility adapter mod-
els are initialized with the previously trained task
adapter models for version 2 model. KL divergence
temperature is set to 2. We use deepspeed for opti-
mization (Rasley et al., 2020). For benchmark eval-

Hyperparameter Value

Epochs 10
Learning Rate 1e-4
Grad. acc. steps 8
LoRA α 256
LoRA rank 128
Dropout 0.0
Adapter Layers All linear
Warmup Steps 500
Weight decay 0.0

Table 8: Hyperparameters for the training setup of the
task and compatibility adapters.

uation, we use LM evaluation harness (Gao et al.,
2023), where most of the benchmarks (GSM8k,
HellaSwag, PIQA) are already defined, and we use
them as-is. We add an evaluation for SAMsum
summarization evaluating ROUGE-1 score with a
no-repeat N-gram size of 2, and generation stop
words of “Dialogue:”, “Summary:” (which are the
keywords for the context and answer behavior),
“</s>” and double new lines. All of our tasks are
based on the English language.

A.2 Training Cost

All Experiments were run on NVIDIA A100 and
H100 GPUs with an overall compute budget of
720x8 GPUh. Assuming hourly rates of 2.5$,
this would amount to 14,400$. Compared to reg-
ular parameter-efficient fine-tuning, our compat-
ibility method requires both model versions in
GPU memory during training, hence fewer data
batches can be processed per time step. However,
as the compatibility adapters are initialized with the
task adapters, we can view it as a continued train-
ing. There are no differences for inference time
and costs compared to regular parameter-efficiently
fine-tuned LoRa adapters.

A.3 Model Update Evaluation

In the evaluation of model update regression for
different model updates (Fig. 4), we consider the
model pairs shown in Table 9.

A.4 Auxiliary Cross-Entropy Loss

For model updates with large performance gaps
between Mv1 and Mv2, we find that an auxiliary
cross-entropy loss enhances the stability of training.
When the performance of Mv1 is greatly inferior to
Mv2, we assume that the inferior Mv1 introduces
errors that steer the model away too much from the
ground truth. We can account for this by adding the
cross-entropy loss to align with the ground truth.
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Mbase
v1 Mbase

v2

Phi 1 Phi 1.5
Phi 1 Phi 2
Phi 1.5 Phi 2
Vicuna 1.3 Vicuna 1.5
Llama 1 Llama 2
Llama 1 Vicuna 1.5
Llama 1 Vicuna 1.3
Vicuna 1.3 Llama 2
Llama 2 Vicuna 1.5
Llama 2 Llama 3
Llama 1 Llama 3
Vicuna 1.3 Llama 3
Vicuna 1.5 Llama 3

Table 9: Model pairs used to analyse model update
regression.

Dataset Train Test

HellaSwag (Zellers et al., 2019) 40k 10k
PIQA (Bisk et al., 2019) 16k 3k
GSM8k (Cobbe et al., 2021) 7.5k 1.3k
SAMsum (Gliwa et al., 2019) 14.7k 819

Table 10: Dataset size for our experiments.

Using Eq. (1), we add a LCE for training (scaled
with hyperparameter λ) .

LCE = − 1

N

N∑

i=1

K∑

k=1

yi,k log(σ(zMC
v2,i,k

)) (4)

L = λLm
comp + (1− λ)LCE (5)

We find that likelihood-based masking (Section 6.5)
also requires auxiliary cross-entropy loss for stabil-
ity. Even though one model version might provide
a higher likelihood than the other, this likelihood
does not necessarily mean a suitable probability dis-
tribution over the vocabulary, hence adding align-
ment to the ground truth helps to provide better
results.

A.5 Downstream Tasks
We describe the datasets used in our experiments.
Each dataset poses unique challenges and targets
different aspects of language understanding and
reasoning. Dataset sizes are shown in Table 10.

GSM8K The Grade School Math 8K (GSM8K)
dataset is designed to evaluate mathematical rea-
soning capabilities. It consists of grade school-
level math word problems. These problems require
the application of mathematical concepts and the
ability to reason about quantities and operations
in a textual format. The dataset is structured to
test the performance of models on arithmetic, alge-
bra, geometry, and statistics problems, reflecting

a wide range of mathematical knowledge in ed-
ucation. We use this dataset as a representative
case to test problem-solving cases. We evaluate
model update regression in this task with exact
match, which is a strict evaluation on a fraction
of produced tokens, but does not account for the
reasoning process.

SAMSum The SAMSum dataset consists of di-
alogue summaries designed to facilitate the evalu-
ation of automatic conversational summarization
models. It contains dialogue instances, paired with
human-written summaries. These conversations
mimic real-life scenarios to enable learning to gen-
erate coherent and concise summaries. We use this
dataset as a representative case to test language
generation behavior. We evaluate model update
regression in this task with ROUGE-1.

HellaSwag HellaSWAG is a dataset for assessing
common sense reasoning and predictive text mod-
eling. It builds on the SWAG (Zellers et al., 2018)
dataset by providing more challenging distractors.
HellaSWAG consists of multiple-choice scenarios
where a model must predict the most plausible con-
tinuation among four options, focusing on everyday
activities, scenarios, and interactions. We use this
dataset as a representative case to test abilities that
require not just linguistic understanding but also
real-world knowledge and common sense reason-
ing. We evaluate model update regression in this
task with log-likelihoods for the correct answer, as
multiple choices are given.

PIQA The Physical Interaction Question An-
swering (PIQA) dataset tests the understanding of
physical and causal interactions in the real world
through textual descriptions. It contains scenarios
that require reasoning about physical properties, ac-
tions, and outcomes. Each scenario is presented as
a question with two possible solutions, where the
model must choose the most physically plausible
one. We use this dataset as a representative case
for evaluating models on tasks that require an un-
derstanding of the physical world and its governing
principles. We evaluate model update regression in
this task with log-likelihoods for the correct answer,
as different choices are given.
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