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Abstract

Multi-agent debate has proven effective in im-
proving large language models quality for rea-
soning and factuality tasks. While various role-
playing strategies in multi-agent debates have
been explored, in terms of the communication
among agents, existing approaches adopt a
brute-force algorithm - each agent can commu-
nicate with all other agents. In this paper, we
systematically investigate the effect of commu-
nication connectivity in multi-agent systems.
Our experiments on GPT and Mistral mod-
els reveal that multi-agent debates leveraging
sparse communication topology can achieve
comparable or superior performance while sig-
nificantly reducing computational costs. Fur-
thermore, we extend the multi-agent debate
framework to multimodal reasoning and align-
ment labeling tasks, showcasing its broad ap-
plicability and effectiveness. Our findings
underscore the importance of communication
connectivity on enhancing the efficiency and
effectiveness of the “society of minds” ap-
proach.

1 Introduction

Large language models (LLMs) have demonstrated
exceptional performance in natural language under-
standing and generation tasks. Recently a paradigm
shift towards prompting LLMs has emerged as a
significant and influential research area. By lever-
aging the in-context learning (ICL) capabilities of
LLMs, these models can be adapted to various tasks
such as reasoning, factuality, and Al feedback.
Several prompting methods have been devel-
oped to enhance LLM performance by optimiz-
ing their ICL capabilities. Notable techniques in-
clude Chain-of-Thought (CoT) (Wei et al., 2022),
self-consistency (SC) (Wang et al., 2022), and self-
critique (Madaan et al., 2024; Welleck et al., 2022;
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Figure 1: Accuracy (top) and inference input cost (mid-
dle) comparison of multi-agent debate system between
fully-connected (bottom left) and neighbor-connected
(bottom right) communication topologies.

Shinn et al., 2024). Recently, the multi-agent de-
bate (MAD) framework is proven to be an inno-
vative approach. Similar to a human discussion
process, MAD employs multiple LLM agents to
engage in discussions with one another, combin-
ing their reasoning and critical thinking abilities to
produce high-quality results. Specifically, given a
question, each agent first generates their own solu-
tions to the question and then takes other agents’
solutions as reference to update its own answer.
This process can be repeated for several rounds.
MAD has demonstrated significant improvement
on factuality and reasoning tasks. While the debate
process is highly productive, it is also very costly:
As the number of LLM agents and debate rounds
increase, the input context expands significantly.
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Inspired by the intensive computational cost
of MAD, a natural question arises: What if we
reduce the number of reference solutions visible
to each agent? We conduct a systematic study
on the sparsity of the multi-agent communication
topology. Surprisingly, we find that sparse com-
munication connectivity can deliver comparable
or superior performance while significantly reduc-
ing inference costs. Figure 1 presents a compari-
son between fully-connected MAD and neighbor-
connected MAD. Compared to fully-connected
MAD, neighbor-connected MAD achieves an im-
provement of +2% on the MATH dataset and main-
tains the same accuracy on GSM8K. Meanwhile,
the average input token cost for reasoning tasks is
reduced by over 40%.

MAD can also be a promising approach for Re-
inforcement Learning with Al Feedback (RLAIF)
(Bai et al., 2022b; Lee et al., 2023) and weak-to-
strong generalization (Burns et al., 2023). By deliv-
ering better reward signals, MAD has the potential
to significantly aid in aligning large language mod-
els. To assess this, we first extend the MAD frame-
work to alignment labeling tasks, demonstrating
its effectiveness compared to single-agent setups.
Additionally, we verify that the advantages of spar-
sity observed in the reasoning tasks experiments
also apply to alignment labeling tasks. Our ex-
periments on the Anthropic-HH datasets show an
improvement of +0.5% in helpfulness and +1.0%
in harmlessness, while reducing costs by 50.0%
and 53.3%, respectively.

We find that when agents are instantiated by dif-
ferent LLLMs within the MAD framework, interac-
tions among multiple LLMs allow weaker models
to be progressively strengthened through engage-
ment with stronger models. In non-regular graph
settings, assigning stronger LL.Ms to agents with
higher centrality consistently yields better perfor-
mance.

In summary, our contributions are listed as fol-
lows: (1) We demonstrate that sparse communi-
cation topology enhances both effectiveness and
efficiency of the multi-agent debate framework; (2)
We thoroughly evaluate sparse MAD for text-only
and multimodal reasoning tasks, showing its advan-
tage over standard MAD; (3) We extend the MAD
framework to alignment labeling tasks, showing
the effectiveness of standard MAD and further per-
formance improvement introduced by sparse MAD;
(4) We provide insights that explain the effective-
ness of sparsity in MAD; (5) We find that assign-

ing stronger LL.Ms to agents with higher centrality
yields better overall performance in multiple LLM
debate setup.

2 Related Work

Multi-Agent Debate MAD utilizes multiple LLM
agents to discuss and debate with each other to
generate and update the responses. It was first in-
troduced by Du et al. (2023). Most of the MAD
work focus on diversifying agents during the de-
bate process. Liang et al. (2023); Park et al. (2023);
Li et al. (2023a); Chan et al. (2023) highlight the
importance of assigning different roles for agents.
Chen et al. (2023) diversifies agents’ responses
by instantiated with multiple LLMs. Wang et al.
(2024a) proposes a method in which agents are
divided into sub-groups and their discussion out-
comes are later merged. Qian et al. (2023); Wu
et al. (2024); Hong et al. (2024) demonstrate the
advantage of multi-agent collaboration in solving
complex tasks. Unlike other work, we aim to ex-
plore the effectiveness of sparse communication
topology in MAD, and extend its applications to
reasoning and alignment tasks.

LLM Reasoning Much work has been done to im-
prove the reasoning ability of language models with
prompting, including Chain-of-Thought (Wei et al.,
2022) and its variants (Yao et al., 2024; Besta et al.,
2024), problem decomposition (Zhou et al., 2022),
reasoning ensemble (Wang et al., 2022), reasoner
with verification (Cobbe et al., 2021; Wang et al.,
2024b; Luo et al., 2023).

Multimodal Reasoning With the recent advance-
ments in vision-language models (Radford et al.,
2021; Yu et al., 2022; Li et al., 2023b; Liu et al.,
2024; Lin et al., 2024), multimodal large-language
models (MLLMs) have demonstrated exceptional
visual understanding capabilities. Several evalu-
ation benchmarks have been proposed, such as
VQAV2 (Goyal et al., 2017), OK-VQA (Marino
et al., 2019), ScienceQA (Lu et al., 2022), MMMU
(Yue et al., 2023), and MathVista (Lu et al., 2023).
Similar to LLMs, MLLMs can also be improved
through prompt-based methods. Various attempts
have been made to enhance MLLMs in this man-
ner (Zheng et al., 2024; Ganz et al., 2024; Yang
et al., 2023; Zhao et al., 2024; Zhang et al., 2023;
Chen et al., 2024; Hu et al., 2024). Despite the
effectiveness of these methods, they are often com-
plex to design and implement. In this paper, we
focus on improving multimodal reasoning using a
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multi-agent approach.

Al Feedback Bai et al. (2022b) first introduces
the idea of RLAIF, in which LLM is used to an-
notate harmlessness preference. Lee et al. (2023)
compares various Al annotation methods. Recent
work (Guo et al., 2024) also explores using Al
feedback for online reinforcement learning, demon-
strating the advantage of Al feedback for alignment
research.

3 Method

3.1 Communication Topology

Communication topology of MAD refers to the con-
nectivity structure among agents during the debate
process. Communication topology can be repre-
sented as a graph G = (V,E), where V is a set
of agents and £ is a set of communication chan-
nel. Presence of of any (e;, e;) in £ indicates that
agent ¢ can access agent j’s previous round solu-
tions during the debate process, and vice versa. We
focus on static graphs in this work, while we also
did exploratory experiments with dynamic graphs
(Appendix E).

We quantify the density of these graphs using
the ratio of the number of edges to the maximum
possible number of edges

L 28
VIV - 1)

A lower value of D indicates a sparser graph.
In the standard MAD framework, agents are fully
connected with each other, resulting in D = 1. In
contrast, a neighbor-connected MAD has |€] = |V,
yielding D = \Vl%l which is a sparse graph.
While the findings of this paper can be generalized
to communication topology with an arbitrary num-
ber of agents, we focus on regular graphs where
all agents have same degrees and are permutation
invariant, with |V| = 6 (Figure 2). This choice is
due to the limited spectrum of sparsity in scenar-
ios with fewer agents and the significantly higher
computational costs associated with analyzing sce-
narios with more agents. Additional experiment
results with |V| = 4 is shown in Appendix D.

3.2 Multi-Agent Debate Process

A typical MAD framework includes three steps:

(1) Individual Response Generation: In round 1,
agents are initialized with LLMs, and then inde-
pendently generate solutions to a given question.

KRR

Figure 2: Communication topology of 6 agents with
various sparsity. From left to right, the densities are 1
(fully-connected), 3, 2, and 2 (neighbor-connected).

Typically a random decoding strategy is applied to
diversify the solutions generated by agents.

(2) Multi-agent Debate: Starting round 2, each
agent incorporates the responses of its connected
peers from the previous round to critique or re-
fine its own response. We utilize the standard
Simultaneous-Talk communication strategy (Chan
et al., 2023) to facilitate asynchronous computa-
tion. This debating process can occur over multiple
rounds.

(3) Reaching Consensus: After the debate pro-
cess, agents may still have differing solutions. In
such cases, a majority vote is conducted among all
agents to determine a consensus solution.

4 Experiments Setup

4.1 Tasks

We aim to validate the effectiveness and efficiency
of sparse MAD on reasoning and alignment label-
ing tasks. For reasoning tasks, we consider two
text-only reasoning tasks and one multimodal rea-
soning task: (1) MATH (Hendrycks et al., 2021):
an arithmetic reasoning task containing challeng-
ing competition mathematics problems. We only
use the algebra linear 1d composed sub-task for
simplicity. (2) GSM8K (Cobbe et al., 2021): a high
quality grade school math reasoning task. (3) Math-
Vista (Lu et al., 2023): a benchmark designed to
combine challenges from diverse mathematical and
visual tasks. We only choose from free_form ques-
tion type for consistency. For alignment labeling
tasks, we consider Anthropic-HH dataset (Bai et al.,
2022a): human preference data on helpfulness and
harmlessness.

4.2 Models

Our experiments utilize three publicly available
models: GPT-3.5 (OpenAl, 2022), GPT-4 (Ope-
nAl, 2023), and Mistral 7B (Jiang et al., 2023).
Specifically, we employ GPT-3.5 for text-only rea-
soning tasks and GPT-4 for multimodal reasoning
tasks. For alignment labeling tasks, we use both
GPT-3.5 and Mistral 7B. We refrain from using
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GPT-4 for other tasks due to its significantly higher
cost, which is approximately 10 times that of GPT-
3.5. Additionally, we do not employ Mistral 7B
for other tasks because of its inferior zero-shot per-
formance on arithmetic reasoning. We randomly
select 100 examples for each experiments involv-
ing GPT, and 500 examples for experiments with
Mistral 7B.

4.3 Baselines

Our MAD setup employs 6 agents and engages
them in debate for 5 rounds. We compare sparse
MAD against the following baselines:

(1) Chain-of-Thought (CoT): CoT prompting
improves reasoning capabilities of LLMs with ex-
plicit intermediate reasoning steps.

(2) Self-consistency (SC): SC margins out in-
termediate reasoning paths by sampling diverse
reasoning paths and selecting the most consistent
answer. We sampled 6 responses for SC, where
each agent generates one response and we deter-
mine the final output by majority voting.

(3) Existing MAD (MAD (D = 1)): the stan-
dard approach for multi-agent debate, in which
agents can communicate with all other agents with
simultaneous-talk strategy. We also denote it as
fully-connected MAD.

4.4 Evaluation Metrics

For reasoning tasks, we use the accuracy with re-
spect to the ground truth answer to measure the
quality of MAD. For alignment labeling tasks, we
use Al Labeler Alignment (Lee et al., 2023) to mea-
sure the accuracy of MAD labeling with respect to
the human annotation.

Cost refers to the input inference cost of LLMs,
which typically involves handling the autoregres-
sive decoding mechanism and computational re-
sources. Considering that advanced LLMs use a
pay-per-token pricing model, we measure the in-
ference cost by the number of input tokens. No-
tably, while the input token cost is influenced by
the topology design, the output token cost remains
unaffected by it. As a result, we focus exclusively
on reporting input cost savings in our results.

4.5 Variance Reduction

Evaluating the significance of new communication
topology compared to existing one typically in-
volves running multiple random experiments to
estimate the mean and variance of performance.
However, this approach becomes impractical when

the signal-to-noise ratio is low and each experimen-
tal run is computationally expensive. To address
this, we employ two methods to reduce experimen-
tal variance and enhance the sensitivity of MAD
with respect to the changes in communication topol-
ogy: (1) As used by Wang et al. (2024a), we reduce
the temperature during language model decoding
to stabilize performance. While we use the default
temperature settings in API calls for most tasks, we
lower the temperature to 0.25 for text arithmetic
reasoning tasks to ensure robustness. (2) We em-
ploy conditional variance reduction (Ross, 2002).
Observing that most of the variance arises from the
first round of individual responses, we first gener-
ate a set of initial agent responses and then fix them
in all subsequent debate processes across various
communication topology designs. This approach
effectively minimizes variance and improves the
reliability of our experimental results.

5 Experiments: MAD with Single LLM

5.1 MAD on Text Reasoning Tasks

We build on existing work on MAD, exemplified
by reasoning tasks, by showing the advantages of
sparse MAD on top of the proven advantage of
fully-connected MAD. Sparse MAD significantly
saves computational cost while preserving compa-
rable or better performance.

Sparse MAD has similar or higher accu-
racy with significant cost saving on reasoning
tasks: For both the MATH and GSMSK tasks, we
demonstrate that sparse MAD produces compara-
ble or better accuracy than fully-connected MAD,
while significantly cutting down inference costs.
Both fully-connected and sparse MAD setups out-
perform Chain-of-Thought and self-consistency
methods. Specifically, in the MATH task, fully-
connected MAD shows a +4.0% quality gain
over self-consistency, while sparse MAD config-
urations achieve accuracy improvements ranging
from +3.0% to +7.5% (Table 1). Similarly, in
the GSMS8K task, fully-connected MAD demon-
strates a +4.5% quality gain over self-consistency,
whereas sparse MAD achieves accuracy improve-
ments between +3.5% and +6.5% (Table 2). Fur-
thermore, sparse MAD setups reduce costs by up
to —41.5% and —43.5%, respectively. It is im-
portant to note that we exclusively use the GPT-
3.5 model because Mistral 7B performs poorly on
these challenging tasks in a zero-shot setting. More
experiments on text-reasoning tasks are shown in
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Method Accuracy  Cost Saving Method Accuracy  Cost Saving
CoT 58.04+2.0 - CoT 524 4+26 -
SC 60.0 - SC 53.0 -
MAD (D =1) 640+ 14 baseline MAD (D =1) 582+ 1.5 baseline
MAD (D =4/5) | 67.5 +2.0 —14.6% MAD (D =4/5) | 57.8 £ 1.9 —9.1%
MAD (D = 3/5) | 63.0 + 1.8 —29.2% (—=11.5%)
MAD (D =2/5) | 66.0 +2.3 —41.5% MAD (D =3/5) | 554 +0.9 —20.0%
(—24.7%)
Table 1: Comparisqn of accuracy and cost savings of MAD (D = 2 / 5) | 59.4 + 0.6 _33.1%
MAD against baseline methods on the MATH dataset. (—40.6%)

All experiments were conducted using the GPT-3.5
model.

Method Accuracy  Cost Saving
CoT 77.5+4.2 -

SC 80.0 -
MAD (D =1) 845+ 15 baseline
MAD (D =4/5) | 83.5+0.5 —12.7%
MAD (D = 3/5) | 86.5 + 1.5 —29.1%
MAD (D =2/5) | 84.5+0.8 —43.6%

Table 2: Comparison of accuracy and cost savings of
MAD against baseline methods on the GSM8K dataset.
All experiments were conducted using the GPT-3.5
model.

Appendix B.

5.2 MAD on Multimodal Reasoning Task

MAD on multimodal reasoning tasks also demon-
strates notable improvements compared to Chain-
of-Thought and self-consistency approaches. This
suggests that MLLMs like GPT-40 can effectively
integrate step-by-step reasoning with visual content
to enhance final answers. Similar to text reason-
ing experiments, we examine various sparse MAD
configurations and report their performance.
Sparse MAD retains performance while in-
troducing significant cost savings on multi-
modal reasoning tasks. For the MathVista task,
we evaluate different MAD configurations, com-
paring them to each other as well as to Chain-of-
Thought (CoT) and self-consistency methods (Ta-
ble 3). We find that sparse MAD achieves simi-
lar or slightly better accuracy compared to fully-
connected MAD, with both outperforming CoT
and self-consistency. The best sparse MAD config-
uration achieves a +1.2% improvement over fully-
connected MAD and a +6.4% improvement over
self-consistency. Additionally, sparse MAD pro-
vides substantial cost savings, reducing the total
number of tokens used by up to 33.1%. Given that
multimodal inputs are typically much larger than

Table 3: Comparison of accuracy and cost savings
of MAD against baseline methods on the MathVista
dataset. All experiments were conducted using the
GPT-40 model with the default temperature 7' = 1.
The cost saving percentages in parenthesis are com-
puted without multimodal inputs.

textual inputs (e.g., in GPT-40, each image costs
at least 225 tokens and can grow to 400+, 600+,
or more tokens), we observe a total reduction of
40.6% in token usage, excluding the input image
tokens.

5.3 MAD on Alignment Labeling Tasks

Alignment labeling tasks involve annotating pref-
erences between pairs of responses generated for a
given question. Our prompt consists of three parts:
(1) a system prompt that informs the LLM of its
role as a rater and specifies the required answer
formatting; (2) a question description providing the
context of the question; and (3) an ending instruc-
tion that constrains the answer length and reiterates
the formatting requirements. During the debate,
reference solutions are included before the ending
instruction. See A for more details.

We use Al Labeler Alignment (Lee et al., 2023)
to measure the accuracy of MAD labeling with re-
spect to the human annotation. To prevent potential
position bias, we randomly assign the chosen re-
sponse to either the (A) or (B) option. We report
the accuracy and inference cost of MAD with vari-
ous level of sparsity in Table 4 for helpfulness and
Table 5 for harmlessness.

MAD outperforms single-agent on alignment
labeling tasks: We find that MAD consistently out-
performs single-agent methods, including CoT and
self-consistency. On the helpfulness task, fully-
connected MAD achieves a +1.5% and +2.9% im-
provement over self-consistency for GPT-3.5 and
Mistral 7B models, respectively. On the harmless-
ness task, fully-connected MAD achieves a +0.5%
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Method GPT-3.5 Mistral 7B
Accuracy  Cost Saving | Accuracy Cost Saving

CoT 56.5 +£3.1 - 60.8 £ 1.2 -
Self-Consistency 57.0 - 62.6 -
MAD (D =1) 585 +1.7 baseline 65.5+0.6 baseline
MAD (D =4/5) | 59.0 + 1.8 —17.5% 65.6 £ 0.9 —18.3%
MAD (D =3/5) | 570+ 1.6 —32.5% 64.6 £ 0.6 —352%
MAD (D =2/5) | 59.0 + 1.4 —50.0% 66.6 - 0.5 —53.5%

Table 4: Al labeler alignment accuracy and cost savings of MAD compared with baselines on the helpfulness
dataset for GPT-3.5 and Mistral 7B models.

Method GPT-3.5 Mistral 7B
Accuracy  Cost Saving | Accuracy Cost Saving

CoT 66.0 4.8 - 582+20 -
Self-Consistency 67.0 - 60.0 -
MAD (D =1) 67.5+0.6 baseline 60.7 £0.3 baseline
MAD (D =4/5) | 67.0+0.8 —17.3% 62.2 + 0.2 —17.9%
MAD (D = 3/5) | 67.5+ 1.0 —34.7% 60.4 + 0.4 —34.3%
MAD (D = 2/5) | 68.5 + 0.7 —53.3% 61.7+0.2 —52.2%

Table 5: Al labeler alignment accuracy and cost savings of MAD compared with baselines on the harmlessness

dataset for GPT-3.5 and Mistral 7B models.

and +0.7% improvement over self-consistency
for GPT-3.5 and Mistral 7B models, respectively.
These results suggest that the additional debate pro-
cess in MAD, followed by majority voting, allows
agents to incorporate perspectives from others and
refine their opinions toward the correct answers
during the debate process.

Sparse MAD can perform better with lower
inference costs: Most sparse MAD configura-
tions perform as well as or better than the fully-
connected MAD, with at least one sparse topology
outperforming the fully-connected MAD. Depend-
ing on the task, sparse MAD with GPT-3.5 can
enhance performance by approximately +0.5% to
+1.0%, and sparse MAD with Mistral 7B can im-
prove performance by about +1.1% to +1.5%. Ad-
ditionally, sparse MAD can reduce costs by up to
—53.3% and —53.5%, respectively.

We observed that GPT-3.5 exhibits lower align-
ment accuracy compared to Mistral 7B on the help-
fulness task. We attribute this discrepancy to the
differences in pre-training and post-training cor-
pora between the two models, which may lead
to varying default preferences in a zero-shot set-
ting. While we hypothesize that few-shot prompt-
ing techniques could mitigate this issue, exploring
this is beyond the scope of this work.

5.4 Why Does Sparse MAD Work?

The common explanation for the effectiveness of
MAD against single-agent setups is that agents can
consider different perspectives before arriving at an
answer. However, our experiment on the effective-
ness of sparse MAD seems challenge this intuition.
In this section, we aim to explain why sparse MAD
can achieve comparable or even superior perfor-
mance.

Impact of incorrect reference solutions: In a
MAD framework, we define Q(n, p) as the proba-
bility that a single agent delivers correct answers
given n reference solutions, where p percentage of
these are correct. This probability, Q(n, p), can be
estimated using Monte Carlo sampling with con-
structed in-context reference solutions. As a case
study, we selected three questions from the GSM8K
dataset and estimated Q(n, p) forn € {2,3,4,5}
and p € {0%, 25%, 50%, 75%, 100%}. Here, the
choice of n corresponds to the single-agent sce-
narios in MAD with D = %, %, %, 1. Results
shown in Figure 3 indicate that for easier ques-
tions, where most reference solutions are correct,
an increase in the number of observed reference
solutions (namely MAD becomes denser) improves
the likelihood of the agent arriving at the correct
answer. Conversely, for more difficult questions,
where most agents do not provide correct answers,

7286



Context Correctness

0% 50% o= 100%
25%  ~*= 75% == zero-shot
1.0 —
— T

P ‘_____________.___——/‘
o 0.8
o
=
3
< 0.6 o o o o
o
o]
>
< 0.4
[}
=
@)
Eo2
wn

0.0

2 5

3 4
Number of Reference Solutions

Figure 3: Probability of a single agent generating cor-
rect answers given n reference solutions, with p repre-
senting the correctness of these solutions. Monte Carlo
sampling was performed on three questions, each with
100 runs.
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Figure 4: Effective debate rounds for each topology de-
sign in reasoning and alignment labeling tasks.

an increase in the number of observed reference
solutions tends to mislead the agent into choosing
incorrect answers, thereby drastically reducing the
likelihood of reaching a correct response.

Sparser MAD allows more rounds of effec-
tive debate: We observe that once all agents con-
verge on the same answer, it becomes highly un-
likely for any of them to change their decision.
Sparser MAD addresses the convergence issue,
a primary limitation observed in fully-connected
MAD. We define the number of effective debates
as the number of rounds before all agents reach
the same answer. Figure 4 illustrates the effective
number of debate rounds for various topologies in
reasoning and alignment labeling tasks. Our results
show that sparse MAD tends to sustain longer de-

PEYNNPEIN

Figure 5: Isotropic communication topology with two
setups: the stronger LLM has low centrality (left) and
high centrality (right).

Centrality Accuracy

SC  Isotropic MAD
High 64.0 67.0 £ 0.8
Low 64.0 65.8 £0.5

Table 6: Comparison of accuracy depending on where
a stronger LLM is placed in debate, using the Harmless-
ness task as example. In both cases, there are 5 Mistral
models and 1 GPT-3.5 Model. Accuracy of Isotropic
MAD is calculated as the average over debate rounds.

bates before achieving consensus, indicating that
sparse MAD allows for more extensive deliberation
and in-depth discussion by preventing premature
convergence and encouraging a broader exploration
of potential solutions. We observe there are sim-
ilar findings in the Chain-of-Thought prompting
(Jin et al., 2024) and MAD (Du et al., 2023) that
the increase of reasoning length can significantly
improve the performance.

6 Experiments: MAD with Multiple
LLMs

Previous sections focus on the MAD with agents
instantiated by the same LLM. In this section, we
explore the scenario when multiple LLMs are avail-
able. With agents instantiated by different LLMs,
the permutation invariance symmetry is broken,
and the regular graph may not be optimal. A natu-
ral question is: how to design the communication
topology given a MAD framework of N agents, in
which M instantiated by the stronger LLM and
N — M instantiated by the weaker LLM?
Assigning stronger LLMs to agents with
higher centrality yields better performance: We
conducted experiments on harmlessness alignment
labeling task, involving 6 agents, with 1 agent utiliz-
ing GPT-3.5 (the stronger LLM) and the remaining
5 agents utilizing Mistral 7B (the weaker LLM).
We tested two setups on the isotropic communica-
tion topology: one where the stronger LLM had a
degree of 1 (indicating low centrality) and another
where it had a degree of 5 (indicating high central-
ity), as illustrated in Figure 5. The experimental
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Figure 6: Average accuracy of weaker agents across
different debate rounds.

results presented in Table 6 show that positioning
the stronger LLM at a node with higher centrality
(degree of 5) leads to better performance (43.0%
improvement) compared to placing it at a node with
lower centrality (degree of 1) which resulted in a
+1.8% improvement.

The results above underscore the importance of
information flow in the design of communication
topology. Figure 6 illustrates the average accuracy
of weaker agents with respect to the number of de-
bate rounds. When the stronger agent has a degree
of 5, it can effectively disseminate its knowledge to
weaker agents in just one debate round, resulting in
a sharp increase in the average accuracy of weaker
LLMs. In contrast, when the stronger agent has a
degree of 1, the process requires two rounds: first,
the information is transmitted to the central weaker
agent in the first debate round (round 2), which
then shares it with other weaker agents in the next
round (round 3). This two-step process leads to
greater information loss.

7 Conclusion

In this paper, we show that sparse communica-
tion topologies can improve the multi-agent de-
bate framework significantly. Our results indicate
that sparse MAD configurations achieve compa-
rable or superior performance to standard MADs
while greatly reducing computational costs. We
also extend the MAD framework to alignment la-
beling tasks, demonstrating the benefits of MADs
over single-agent setups and self-consistency and
further highlighting the benefits of sparse MADs
over fully-connected configurations. We present
case-study insights that explain the effectiveness
of sparse MADs. Additionally, we investigate the
impact of communication topology design with

multiple large language models (LLMs), finding
that assigning stronger LLMs to more connected
agents enhances overall performance.

In summary, our work paves the way for more ef-
ficient and effective multi-agent systems by leverag-
ing sparse communication topologies. Future stud-
ies could focus on deepening our understanding of
the underlying mechanisms and developing strate-
gies for optimal topology design in multi-agent
frameworks.

8 Ethical Considerations

In this work, several ethical considerations were
addressed to ensure the integrity and responsible
use of the system:

Public Datasets: The framework was built using
publicly available datasets that are designed for
academic research. We strictly adhered to ethical
guidelines by not using any personal or confidential
data.

License: Only public APIs that offer appropriate li-
censing were utilized. This ensures that all external
tools are used in a lawful and ethical manner.

Al assistant: Al tools were employed solely for
polishing writing and correcting grammar. The Al
was not used to generate content or ideas, maintain-
ing the authenticity and originality of the research
work.

9 Limitations

While our study provides valuable insights into the
communication topology analysis of multi-agent
debate, several limitations must be acknowledged:

Our analysis is primarily based on static graphs
where the communication topology remains un-
changed throughout the debate rounds. This con-
straint simplifies the analysis, but ignores the dy-
namic nature of real-world communication net-
works. Additionally, our study focuses on prompt
design under a zero-shot setting, utilizing only pub-
licly available GPT and Mistral models. This nar-
row scope may not fully capture the variability and
adaptability present in more diverse agent popula-
tions. Furthermore, we confined our analysis to
regular graphs, which do not encompass the full
spectrum of potential graph configurations. Future
work should consider dynamic graphs, a broader
range of models, and varied graph connectivity to
better reflect the evolving and complex nature of
multi-agent interactions.
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Our study relies on a subset of academic datasets
due to limited data access as well as computational
constraints. While these datasets provide a valuable
foundation for analyzing communication graph dy-
namics in multi-agent debates, they may not fully
represent the diversity and complexity found in
broader real-world data. The restricted scope limits
our ability to generalize findings across different
domains and contexts. Future research should aim
to include a wider range of datasets, potentially
leveraging more efficient computational resources,
to enhance the robustness and applicability of our
findings.

We lack a rigorous theoretical proof explaining
why sparse connectivity can lead to better perfor-
mance. This gap in our understanding limits our
ability to generalize our findings and apply them
with confidence in various settings. Secondly, we
do not have a definitive method for determining the
optimal topology design, which is crucial for max-
imizing the efficiency and effectiveness of multi-
agent systems. Addressing these questions is es-
sential for future research. Potential explanations
might involve theoretical insights, social and psy-
chological dynamics, or a combination of these
factors. Additionally, fine-tuning models could
offer further clarity and aid in optimizing commu-
nication topology. Future work should aim to de-
velop robust theoretical frameworks and empirical
strategies to better understand and leverage com-
munication topology in multi-agent debates.

The multi-agent debate framework holds signifi-
cant potential for various real-world applications.
However, it also carries the risk of misuse, includ-
ing the dissemination of biased information or mis-
information. Additionally, the framework requires
substantial computational resources, which could
impact energy consumption and environmental sus-
tainability. Future research should focus on de-
veloping robust, trustworthy, and energy-efficient
multi-agent systems to mitigate these risks and en-
sure ethical, reliable, and sustainable outcomes.
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A Prompt Templates

A.1 Text Reasoning Tasks

System Prompt:

You are a helpful assistant with expertise in math-
ematics and reasoning. Your task is to assist in
solving a math reasoning problem by providing
a clear and detailed solution. Limit your output
within 100 words, and your final answer should be
a single numerical number, in the form of {{an-
swer}}, at the end of your response.

Starting Prompt:

Can you solve the following math problem? {ques-
tion} Explain your reasoning. Your final answer
should be a single numerical number, in the form
of {{answer}}, at the end of your response.
Debate Prompt:

These are the solutions to the problem from other
agents:

One agent solution: {reference solution}

One agent solution: {reference solution}

One agent solution: {reference solution}

Using the solutions from other agents as additional
information, can you provide your answer to the
math problem? The original math problem is {ques-
tion}. Your final answer should be a single numeri-
cal number, in the form of {{answer}}, at the end
of your response.
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A.2 Multimodal Reasoning Tasks

System Prompt: Please answer the question re-
quiring an integer answer or a floating-point num-
ber with one decimal place and provide the final
value, e.g., 1,2, 3, 1.1, 1.2, 1.3, at the end.

When providing an answer,

1. Reason through the question step by step.

2. Keep each step concise, ensuring the total rea-
soning is under 400 words. Conclude with the final
answer in the format "**FINAL ANSWER:** (X)"
where X should be the numerical answer. Note that
the answer has to be surrounded by the parenthesis,
e.g., **FINAL ANSWER:** (1).

Starting Prompt:

{question}

Debate Prompt:

Below are responses from {number of visible
agents} other agents:

Response {agent index}: {reference solution}
Response {agent index}: {reference solution}
Response {agent index}: {reference solution}

These responses contain step-by-step reasoning.
Use the insights from all the responses to refine
and update your answer. When providing an an-
swer:

1. Take a close look at the question again.

2. Reason through the question, your previous
response and responses from other agents step by
step.

3. Keep each step concise, ensuring the total rea-
soning is under 400 words. Conclude with the final
answer in the format "**FINAL ANSWER:** (X)"
where X should be the numerical answer. Note that
the answer has to be surrounded by the parenthesis,
e.g., **FINAL ANSWER:** (1).

A.3 Alignment labeling Tasks

System Prompt:

You are an expert rater of helpful and honest as-
sistant responses. The user will give you two di-
alogues, please help user choose the one with the
most helpful and honest response. Limit your an-
swer within 100 words, and put your final answer
(either (A) or (B)) at the end of your response.
Starting Prompt:

The following are two dialogues. Which one is
more helpful and honest?

[Start of Dialogue A]
{Dialogue A}

[End of Dialogue A]

[Start of Dialogue B]

{Dialogue B}

[End of Dialogue B]

Limit your answer within 100 words, and put your
final answer (either (A) or (B)) at the end of your
response.

Debate Prompt:

These are the solutions to the problem from other
agents:

One agent solution: {reference solution}

One agent solution: {reference solution}

One agent solution: {reference solution}

Using the reasoning from other agents as additional
advice, can you provide an updated answer? Exam-
ine your solution and those of other agents step by
step. Limit your answer within 100 words, and put
your final answer (either (A) or (B)) at the end of
your response.

B Additional Experiments on Text
Reasoning Tasks

In addition to the two text-reasoning tasks we re-
ported, we conducted two additional tasks—an
arithmetic task and a chess move task—to align
with Du et al. (2023). The results presented in Ta-
ble 7 and Table 8, show similar improvements in
quality and cost savings.

Method Accuracy  Cost Saving
CoT 743 +£25 -

SC 84.0 -
MAD (D =1) 90.0+ 1.0 baseline
MAD (D = 4/5) | 88.7+0.6 —8.9%
MAD (D =3/5) | 88.0+ 1.0 —22.4%
MAD (D = 2/5) | 90.7 + 0.5 —34.5%

Table 7: Comparison of accuracy and cost savings
of MAD against baseline methods on the arithmetic
task. All experiments were conducted using the GPT-
3.5 model.

C Additional Experiments with Different
Temperature

For multimodal experiments, we also examined
how different temperatures affect the performance
of MAD. We compared the accuracy and cost
savings between the default temperature 7' = 1
for GPT-40 and a more conservative temperature
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Method APS Cost Saving
CoT 527453 -

SC 53.4 -
MAD (D =1) 56.5+0.9 baseline
MAD (D = 4/5) | 56.6 + 2.5 —-9.5%
MAD (D = 3/5) | 55.5+2.8 —20.5%
MAD (D = 2/5) | 56.6 + 2.7 —32.0%

Method | Accuracy Cost
SC 81.0 -
D=1 81.7+ 0.9 baseline
D=2/3|87+t12 -256%

Table 10: Accuracy comparison of MAD against base-

line methods on the GSM8K dataset.

Experiments

Table 8: Comparison of APS and cost savings of MAD
against baseline methods on the chess move task. All
experiments were conducted using the GPT-3.5 model.

T = 0.25, aiming to generate more consistent an-
swers. While Table 3 reports performance at 7" = 1,
we observed almost no difference in accuracy with
T = 0.25. However, T' = 0.25 resulted in slightly
greater cost savings, as shown in Table 9.

Method Accuracy  Cost Saving
MAD (D =1) 57.8 +1.0 baseline
MAD (D =4/5) | 57.4 +0.6 —11.8%
(—14.3%)
MAD (D = 3/5) | 57.4 +3.5 —21.1%
(—26.0%)
MAD (D = 2/5) | 59.0 + 1.0 —37.6%
(—46.5%)

Table 9: Comparison of accuracy and cost savings of
different MADs on the MathVista dataset. All exper-
iments were conducted using the GPT-40 model with
temperature set to 0.25. The cost saving percentages in
parenthesis are computed without multimodal inputs.

D Additional Experiments with 4 Agents

Regular graph with 4 agents only have two configu-
rations (as shown in Figure 7). Our experiments on
GSMBS8K shows similar pattern in accuracy between
these two setup, shown in Table 10.

Figure 7: Regular graph with 4 agents.

were conducted using the GPT-3.5model.

E ProbMAD: MAD with Probablistic
Topology

While we primarily focus on sparse MADs with
fixed communication topology, we also investigate
ProbMAD where communication is probablistic.
For any MAD with a given D, the ProbMAD coun-
terpart is a topology where the probability that a
given agent sees any reference solution from pre-
vious round is D. In Table 11, we use GPT-3.5
on GSMSK to show that the performance of Prob-
MAD is comparable to fully-connected MAD and
its cost-saving ability is similar to sparse MAD
topologies we discuss earlier. More work is to
be done to compare deterministic and probablis-
tic sparsity and explain the mechanism. In the
meantime, we show that the probablistic way of
thinking about communication topology allows our
approach to be even more generally applicable to
any number of agents.

Method Accuracy Cost
Saving
CoT 775+£42 -
SC 80.0 -
MAD (D =1) 84.5 + 1.5 Dbaseline
ProobMAD (D =4/5) | 845 £ 0.7 —14.3%
ProbMAD (D = 3/5) | 835+ 0.7 —29.6%
ProobMAD (D =2/5) | 840+ 1.7 —47.1%

Table 11: Comparison of accuracy and cost savings
of probabilistic MAD against baseline methods on the
GSMBK dataset. All experiments were conducted us-
ing the GPT-3.5 model.

F Rounds of Effective Debate for Mistral
7B

Similar to what we observe on GPT-3.5, the rounds
of effective debate using Mistral 7B model also
increases on both preference tasks when MAD be-
comes sparse (Figure 8).
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Figure 8: Effective debate rounds for each topology de-
sign in alignment labeling tasks using the Mistral 7B
model.

G Types of Agent Behaviors

During the multi-agent debate process, we observe
four common types of agent responses to reference
solutions (Figure 9). Agents may learn from other
agents’ reasoning, correct another agent’s mistake,
act as an arbitrator to evaluate others’ solutions, or
occasionally be misled by the input of their peers.

The Learner: “Considering the information from other agents,
[...] The error in the original solution was mistakenly calculating
the total number of times the doorbell rang. By correcting this,
we find that ...”

The Corrector: “Taking into account the solutions provided by
the other agents, we observe that they made a mistake by not
considering which friend was represented by the variable $x$
correctly. The first friend was incorrectly identified as the second
friend. Using the correct identification and reasoning, ...”

The Arbitrator: “We see inconsistencies in the mentioned
solutions. Let's correct it...”

The Gullible: “From the calculations provided, it seems the
correct total number of doorbell rings should be [wrong answer].
\n\nThus, the total number of doorbell rings the doorbell made is

wrong answer].”

Figure 9: Common types (with nicknames) of agent
behaviors when given reference solutions.

H Comparably budgeted SC and MAD

Method Helpful Harmless
SC (6 agents) 57.0 67.0
SC (12 agents) 57.0 66.0
SC (18 agents) 56.0 67.0
SC (24 agents) 56.0 66.0
SC (30 agents) 56.0 66.0
MAD(D=1) |585+17 67.54+0.6

Table 12: Accuracy comparison of MAD against
budget-increased SC as baseline on the alignment tasks.
Experiments were conducted using the GPT-3.5model.

Since MAD has a significantly higher token cost
than self-consistency, we ensure comparable com-
putational cost between SC and MAD by increasing
SC agent count. The results for alignment labeling
tasks are shown in Table 12. Increasing the number
of samplings for SC results in no significant impact
on the alignment labeling tasks. This finding is
consistent with Table 13 in Lee et al. (2023).
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