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Abstract

Large language models, such as ChatGPT,
achieve amazing performance on various lan-
guage processing tasks. However, they can
also be exploited for improper purposes such
as plagiarism or misinformation dissemination.
Thus, there is an urgent need to detect the texts
generated by LLMs. One type of most studied
methods trains classification models to distin-
guish LLM texts from human texts. However,
existing studies demonstrate the trained models
may suffer from distribution shifts (during test),
i.e., they are ineffective to predict the gener-
ated texts from unseen language tasks or topics
which are not collected during training. In this
work, we focus on ChatGPT as a representa-
tive model, and we conduct a comprehensive
investigation on these methods’ generalization
behaviors under distribution shift caused by a
wide range of factors, including prompts, text
lengths, topics, and language tasks. To achieve
this goal, we first collect a new dataset with hu-
man and ChatGPT texts, and then we conduct
extensive studies on the collected dataset. Our
studies unveil insightful findings that provide
guidance for future methodologies and data col-
lection strategies for LLM detection.

1 Introduction

Large language models (LLMs) have demonstrated
a great versatility to handle diverse language tasks,
including question answering (Tan et al., 2023),
creative writing (Bishop, 2023) and personal assis-
tance (Shahriar and Hayawi, 2023). Meanwhile, it
also gives rise to an urgent need for detecting LLM
generated texts from human written texts to regu-
late the proper use of LLMs. For example, they
can be misused to accomplish the tasks such as
producing fake news or generating fake reviews (Li
et al., 2023), leading to public deception. Similarly,
they can be also used for plagiarism, offending peo-
ple’s intellectual property (Falati, 2023), which can
cause severe negative consequences to society.

In this paper, we focus one type of the most pop-
ular methods (Guo et al., 2023; Chen et al., 2023),
which propose to train classification models to dis-
tinguish human and LLM generated texts, called
“training-based methods”. These methods do not
require the full knowledge of the parameter of the
source LLM, which enables them to detect contents
from black-box models like ChatGPT. However,
recent studies (Yu et al., 2023; Guo et al., 2023)
demonstrated that these training-based methods
tend to be overfitted to their training data distribu-
tion. For instance, Guo et al. (2023) show that a
RoBERTa classification model (Liu et al., 2019)
trained on HC-3 dataset (Guo et al., 2023) for de-
tecting ChatGPT answered questions will exhibit
a notable accuracy decrease if it is tested on some
specific topics (i.e., finance and medicine). Yu et al.
(2023) also find the detection models trained on
HC-3 struggle to detect ChatGPT written news or
scientific paper abstracts.

Therefore, we are motivated to have a systemat-
ical study on the generalization behavior of these
training-based methods. To achieve this goal, we
focus on ChatGPT (GPT-3.5-Turbo) as a represen-
tative model, and we consider the impacts from
four types of distribution shifts (between training
and test distribution). Specifically, in addition to
the topic and task shift as observed in previous
works, we consider two other factors which are not
identified or adequately discussed, including:
• Prompts to inquire ChatGPT outputs: A user

can have various prompts to obtain ChatGPT out-
puts. For example, when asking ChatGPT to
write a movie review, a user can ask “Write a
review for the movie <MovieTitle>”. Alterna-
tively, they can let ChatGPT give comments to
the movie via asking it to complete a dialogue
that reflects the preference of the talkers to this
movie (see Section 3 for details). In Section 4.1,
we find the texts from different prompts could
have significant distributional difference.
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• Length of ChatGPT outputs: The ChatGPT
user can designate and control the length of the
output to inquire longer or shorter generated out-
puts. It is also possible that the (distribution of)
lengths of test samples differ from training ones.

In practice, because only a limited number of
training data can be collected, the training data can-
not fully cover the distribution of test data. Thus, it
is critical to deeply understand the detection mod-
els’ generalization behaviors when the distribution
shifts occur. To achieve this goal, we first collect a
new text dataset, named HC-Var (Human ChatGPT
Texts with Variety), which contains human texts and
ChatGPT outputs by considering multiple types
of variety, including prompts, lengths, topics and
language tasks (see Section 3). Facilitated with
HC-Var, we conduct comprehensive analysis on
the models’ generalization, when facing the afore-
mentioned distribution shifts. Via extensive experi-
ments, we draw key conclusions:
• In Section 4, we analyze the generalization under

distribution shift due to the change of prompts
and length. We identify one factor that can hurt
the detection models’ generalization: the trained
classification models tend to overfit to some “ir-
relevant features” which are not principal for de-
tection. This overfitting issue can be originated
from the “incautious and insufficient” data col-
lection process, which collects ChatGPT texts
that are distinct from human texts in these “ir-
relevant features”. In Section 4.3, we conduct
a theoretical analysis to deeply understand the
consequence of this phenomenon.

• In Section 5, we analyze the generalization un-
der distribution shift due to the change of topics
and tasks. Although the trained models cannot
well generalize across various topics and tasks,
we find they are capable to provide useful prior
knowledge that help efficient adaption to unseen
topics and tasks. In particular, we show the mod-
els trained on existing topics or language tasks
can be leveraged as a source model to accom-
modate transfer learning (Pan and Yang, 2009;
Hendrycks et al., 2019), when it is adapted to
unforeseen topics and language tasks.
Notably, in Appendix E, we also validate these

findings are generalizeable to other source LLMs
such as GPT-4, LLaMA2 and PaLM2. However,
we didn’t consider the scenario that the texts are
generated from a new model which is different
from the source LLM considered during training, as

it is also a challenging problem in literature which
is also orthogonal to our focus in this paper. We
will defer the related study for future investigation.

2 Related Works

In this section, we introduce background knowl-
edge about existing methods for ChatGPT gener-
ated text detection, as well as other detection meth-
ods for open-source language models. We also
discuss existing research findings about the gener-
alization of ChatGPT detection methods.

2.1 LLM Generated Text Detection
For open-source language models such as GPT-
2 (Solaiman et al., 2019), and LLaMa (Touvron
et al., 2023), since their model parameters are pub-
licly available, information such as model probabil-
ity scores can be leveraged for detection. For exam-
ple, DetectGPT (Mitchell et al., 2023) assumes that
LLMs always generate the texts with high proba-
bility scores. Thus, it manipulates the candidate
texts (by editing or paraphrasing) to check whether
the model gives a lower probability score. Besides,
there are watermarking strategies (Kirchenbauer
et al., 2023) which intervene the text generation
process to inject watermarks into the generated
texts to make them identifiable.

For black-box LLMs like ChatGPT, the previ-
ously mentioned methods are not applicable due
to the lack of access to model parameter. There-
fore, plenty of works leverage the Training-based
Methods (Guo et al., 2023; OpenAI, 2019; Chen
et al., 2023), to train classification models to predict
whether a text x is from human or LLM:

min
f

E
[
1(f(x) ̸= y)

]
, y ∼ {0, 1}, x ∼

{
DH if y = 0

DC if y = 1

(1)

where DH and DC represent the collected human
and LLM generated texts, respectively. Besides,
there are “similarity-based” methods, such as GPT-
Pat (Yu et al., 2023) and DNA-GPT (Yang et al.,
2023) to compare the similarity of a text x with its
ChatGPT re-generated texts. Besides, “score-based
methods” such as GPT-Zero (GPTZero.com) and
GLTR (Gehrmann et al., 2019) detection ChatGPT
texts based on their specific traits. More details of
these methods are in Appendix D.

2.2 Detection under Distribution Shift
Notably, our work is not the first work studying or
identifying the generalization issues of the training-
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Table 1: Comparison of Different Datasets
Dataset Prompts Lengths Topics Tasks

HC-3 (Guo et al., 2023) ✗ ✗ ✓ ✗

M4 (Wang et al., 2023) ✗ ✗ ✓ ✓

OGT. (Chen et al., 2023) ✗ ✗ ✗ ✗

HC-Var (Ours) ✓ ✓ ✓ ✓

based ChatGPT detection models. For example,
the works (Wang et al., 2023; Yang et al., 2023; Yu
et al., 2023) have discovered that it is challenging
for the detection models to generalize to unseen
language tasks and topics. Different from these ex-
isting works, we collect a new dataset to include dif-
ferent varieties to support a comprehensive analysis
on their generalization. In Section 5, we discuss
potential strategies to overcome the distribution
shift. Besides, there are also previous works claim-
ing that the models can struggle to predict texts
with shorter lengths (Tian et al., 2023; Guo et al.,
2023). While, our paper finds it is related to a poor
HC-Alignment (Section 4.2) and we theoretically
understand (Section 4.3) this phenomenon.

3 Preliminary

In this section, we first introduce the details of our
proposed dataset, HC-Var: Human and ChatGPT
texts with Variety. Then we discuss the general
experimental setups and evaluation metrics used in
the paper. Next, we conduct a preliminary compar-
ison on existing methods under the “in-distribution”
setting, before we discuss their generalization.

3.1 Proposed Dataset, HC-Var
As discussed, we are motivated to study the general-
ization of ChatGPT detection when faced with var-
ious distribution shifts, including prompts, lengths,
topics and language tasks. Refer to Table 1, exist-
ing datasets do not sufficiently support this analysis,
because they don’t cover all types of considered
varieties. Therefore, in HC-Var, we create a new
dataset, collecting human and ChatGPT generated
texts to include these varieties. Overall, as shown
in Table 2, the dataset contains 4 different types of
language tasks, including news composing (news),
review composing (review), essay writing (writing)
and question answering (QA). Each task covers 1 to
4 different topics. In HC-Var, human texts are from
different public datasets such as XSum, IMDb.1.

Variety in Prompts & Lengths. In each task,
we design 3 prompts to obtain ChatGPT outputs to
ensure the variety of generated outputs and their

1We following existing datasets to take public available
datasets as human texts.

lengths. For example, to ask ChatGPT to compose
a review for a movie with title <MovieTitle>, we
have the prompts:

• P1: Write a review for <MovieTitle> in [50,
100, 200] words.

• P2: Develop an engaging and creative review
for <MovieTitle> in [50, 100, 200] words.
Follow the writing style of the movie com-
ments as in popular movie review websites
such as imdb.com.

• P3: Complete the following: I just watched
<MovieTitle>. It is [enjoyable, just OK,
mediocre, unpleasant, great]. [It is because
that, The reason is that, I just feel that, ...]. 2

The design of P3 will make ChatGPT texts look
much more casual and conversational than P1 and
P2 (see Appendix A for some examples). Notably,
previous studies (Guo et al., 2023; Kabir et al.,
2023) observe that ChatGPT texts are much more
formal and official compared with human texts.
However, our dataset includes the instances to em-
ploy ChatGPT to produce texts, which are casual
and close to spoken language. This can greatly en-
riches the collection of ChatGPT generated outputs.
Similarly, under “QA”, given a question <Q>, we
have the following prompts:

• P1: Answer the following question in [50,
100, 150] words. <Q>

• P2: Act as you are a user in Reddit or Quora,
answer the question in [50,100,150] words. <Q>

• P3: Answer the following question in [50,
100, 150] words. <Q> Explain like I am five.

The P3 (which is also used in (Guo et al., 2023))
also encourages the generated answers to be closer
to spoken language. Besides, for tasks such as es-
say writing and news writing where human texts
are originally formal, we design various prompts by
assigning different writing styles. For example, in
essay writing, one of the prompt is “Writing an arti-
cle with following title like a high school student”.
More details about prompt are in Appendix A.

3.2 In-distribution Evaluation
In this subsection, under our proposed dataset HC-
Var, we verify that the training-based detection
methods can indeed achieve advantageous detec-
tion performance under the “in-distribution” set-
ting, when compared with other detection methods.

2Each word / phrase in the gray list has the same chance
to be randomly selected. In P3, the each generated text is
randomly truncated to 50-200 tokens.
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Table 2: Summary of HC-Var
Task News News News Review Review Writing QA QA QA QA
Topic World Sports Business IMDb Yelp Essay Finance History Medical Science

ChatGPT Vol. 4,500 4,500 4,500 4,500 4,500 4,500 4,500 4,500 4,500 4,500
Human Vol. 10,000 10,000 9,096 10,000 10,000 10,000 10,000 10,000 10,000 10,000
Human Src. XSum XSum XSum IMDb Yelp IvyPanda FiQA Reddit MedQuad Reddit

Table 3: In-distribution ChatGPT Detection Performance
News Review Writing QA

Auc f1 tpr 1-fpr Auc f1 tpr 1-fpr Auc f1 tpr 1-fpr Auc f1 tpr 1-fpr
GPTZero 0.99 0.94 1.00 0.94 0.99 0.90 0.82 1.00 0.98 0.89 0.97 0.90 0.95 0.90 0.98 0.91

GLTR 0.94 0.87 0.88 0.86 0.90 0.82 0.85 0.80 0.99 0.95 0.94 0.98 0.88 0.81 0.78 0.82
DNA-GPT 0.92 0.90 0.89 0.89 0.93 0.90 0.88 0.89 0.97 0.92 0.88 0.95 0.87 0.82 0.86 0.80
GPT-PAT 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.95 0.97 0.94

RoBERTa-b 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.98
RoBERTa-l 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99

T-5 1.00 1.00 0.99 0.99 1.00 0.99 0.99 0.99 1.00 1.00 0.99 1.00 1.00 0.98 0.98 0.96

This part of experiments is also consistent with pre-
vious experimental studies (Guo et al., 2023; Chen
et al., 2023) which are conducted in other datasets.
The extraordinary in-distribution performance mo-
tivates us to study its generalization behavior.

Experimental Setup. Generally, each experi-
ment is focused on a specified language task, so
the detection models are trained and tested on the
texts from the same task. For example, under QA,
we train the detection models on human and Chat-
GPT answered questions, and test whether they
can distinguish these answers. Under each task,
we randomly sample from the datasets to obtain
class-balanced training, validation and test subsets
(each has an equal number of human and ChatGPT
samples). Thus, all training, validation and test
data contain various topics, prompts and lengths,
so distribution shift between training and test set is
negligible, namely “in-distribution” evaluation.

Evaluation Metrics. We evaluate the detection
performance using different metrics: True Positive
Rate (tpr) shows the detector’s power to identify
ChatGPT generated texts, 1 - False Positive Rate (1-
fpr) shows the detector’s accuracy on human texts,
F1 score considers the tpr and 1-fpr trade-off. All
F1 score, tpr and fpr are calculated under a fixed
decision threshold 0.5. We also include AUROC
that consider all thresholds for decision making.

Performance Comparison. In Table 3, we
report the performance of trained classification
models, which are based on model architectures
RoBERTa-base, RoBERTa-large and T-5. We
also include representative “similarity-based” meth-
ods DNA-GPT (Yang et al., 2023) and GPT-
PAT (Chen et al., 2023), and “score-based” meth-
ods including GLTR (Gehrmann et al., 2019) and
GPTZero (GPTZero.com). From the table, we can
see the training-based methods outperform non-

training methods for in-distribution evaluation. The
training-based methods present extraordinary “in-
distribution” detection performance. This moti-
vates us to have a further exploration on their gen-
eralization performance under out-of-distribution
scenarios. In the following, we design experiments
to analyze them when the training data cannot fully
cover the distribution of test data.

4 How Prompt & Length Affect Detection

4.1 Generalization to Unseen Prompts
To detect ChatGPT texts from a certain language
task with several interested topics, it is a realistic
and practical scenario that the model trainer col-
lects ChatGPT texts using certain prompts. How-
ever, they never know whether there are other un-
foreseen prompts used to obtain ChatGPT outputs
during test. Thus, we aim to analyze how the detec-
tion models can generalize to unseen prompts. In
detail, refer to Figure 1, we conduct experiment to
train the model for multiple trials (in each individ-
ual task with the topics in HC-Var). For each task
at each time, we train the model on ChatGPT gen-
erated texts from one prompt, and test the model
on each of three prompts (which we designed in
Section 3) individually. Besides, for each time of
training, the human texts are randomly sampled to
match the number of generated texts. In Figure 1,
we report the F1 score3of the trained classifiers.
Notably, for these trained models, they have simi-
lar (close to 100%) accuracy on human texts (see
Appendix B.1). Therefore, these F1-scores are ma-
jorly determined by their True Positive Rate, which
measure their ability to identify ChatGPT texts.

3We report F1 score instead of AUROC, as AUROC con-
siders all thresholds for decision making, which is impractical
under unseen distribution shift. All experiments are conducted
by 5 times, the average is reported.
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(a) News (b) Review (c) Writing (d) QA

Figure 1: Generalization of RoBERTa-base models among various prompts. Note that each row denotes the prompt during
training and each column is the test prompt. F-1 score is reported by color score.

(a) News (b) Review (c) Writing (d) QA
Figure 2: Prompt Similarity between ChatGPT Texts among Different Prompts

In this section, we study the ChatGPT detec-
tion generalization in terms of prompts and lengths
under the same topic and domain. Note that we
only report the result of a representative model,
RoBERTa-base, and results for other models such
as RoBERTa-large and T5 are in Appendix B.

Observations. From Figure 1, we can observe
a great disparity among models that trained and
tested on different prompts. For example, under
QA, the model trained on P1 or P2 has low F1
scores 0.64 and 0.79 on P3 respectively. While, the
model trained on P3 has a better generalization with
F1 score 0.89 and 0.93 on P1 and P2 respectively.
Thus, a natural question raises: Why does such
disparity happen? Next, we unveil two reasons.

Reason 1. Prompt Similarity: Intuitively, the
generalization performance can be highly depen-
dent on the “similarity” between the generated texts
from two different prompts. In other words, if Chat-
GPT responds to two prompts in a similar way, it is
very likely that the models trained on one prompt
can also correctly recognize the texts from the other.
Therefore, for two given prompts Pi and Pj (in the
same task), we propose the concept of “prompt
similarity”, denoted as S(DPi

C ,DPj

C ), which refers
to the similarity between the generated texts DPi

C

and DPj

C from prompts Pi and Pj . In this work,
we calculate this similarity using MAUVE (Pil-
lutla et al., 2021), which is a well-known similarity
metric for text distribution, and we report every
S(DPi

C ,DPj

C ) in Figure 2. From figures, we can see
that the “prompt similarity” has a great impact on
generalization. Take QA as an example, the gen-
erated texts from P1 and P2 has a high MAUVE

similarity 0.97. Meanwhile, in Figure 1d, the gen-
eralization between P1 and P2 is also high.

Reason 2. Human-ChatGPT Alignment: A
more interesting study is about generalization be-
tween dissimilar prompts. In each task, there are
cases where the training and test prompts are not
similar but have a good generalization. For exam-
ple, in review, P1 and P3 are not similar but the
model trained on P3 has a high F1 score 0.99 on
P1. It suggests that there are other reasons beyond
prompt similarity that also affect the generaliza-
tion performance. In this work, we find: for the
training datasets which contain ChatGPT outputs
closer to human written texts, the trained model
has better generalization. We called this property
as the “Human-ChatGPT (HC) alignment”, which
refers to the similarity between DPi

C and DH , and
denoted as S(DPi

C ,DH). In Figure 3a, for each
task, we measure HC-alignment for each prompt
Pi, also using the MAUVE similarity. In Figure 4
(b)-(e), we re-organize the result in Figure 1 using
bar plots to show the F1 score of the model trained
and tested on each prompt. From the result, we note
that the prompts with high “HC Alignment” have
better generalization to other prompts. For prompts
with low HC-Alignment, they have poorer general-
ization to other prompts unless they are tested on
the prompts with high “prompt similarity” (which
we give them a gray color in Figure 3 (b)-(e)). Inter-
estingly, the calculated HC-alignment also reflects
our idea during prompt designing in data collection
phase. Refer to Section 3.1, in “review” and “QA”,
P3 is designed to guide the ChatGPT generate texts
more conversational in QA and review. Figure 3a

7227



(a) HC Align. (b) News (c) Review (d) Writing (e) QA

Figure 3: HC-Alignment for different prompts and Generalization.

shows HC alignment of P3 is also the highest.
Conclusion. Our studies draw key insights to

bring cautions to the data collection during model
training, which is the pitfall of only collecting
samples far away from human data. This mis-
alignment between human and generated texts
could result in the overfitting of trained detection
models, which consequently hurt the generaliza-
tion. Next, we further support this claim by show-
ing the mis-alignment in the length distribution can
compromise the detection generalization.

4.2 Generalization to Length Shift

Recall that in Section 3, we explicitly control the
lengths of the generated texts. In this subection, we
utilize this feature to study the impact of lengths on
the model’s generalization. To have an overview
on the length distribution of human and ChatGPT
texts, in Figure 4a, we plot the density of human
texts (blue) and ChatGPT texts (green) in HC-Var
in one language task “review”. Additionally, we
include ChatGPT# (yellow) to show the length dis-
tribution if we do not designate the lengths in the in-
quiries (i.e., by removing “in [50, 100, 200] words”
in the prompts). From Figure 4a, we can see the
generated texts from ChatGPT# are much longer
compared to human texts.

In our study, we find this difference in length will
make a noticeable impact on the trained model’s
performance. For example, in Figure 4b, we re-
port the performance (TPR, 1-FPR) of the model
trained on our dataset when it is tested on samples
with various lengths. In Figure 4c, we conduct
the same experiment, by replacing the ChatGPT
texts in training set to ChatGPT# (without length
designation). From the result, we can see the sec-
ond model struggles on classifying short ChatGPT
texts. In other words, the second model tends to
predict short ChatGPT texts as human written. A
likely reason is that this model is trained to heavily
rely on the lengths of the texts for prediction. If a
candidate text is short, the model will predict it as
human-written. However, text lengths should be
“irrelevant” for detection, as ChatGPT can gener-

ate shorter or longer texts. In Figure 4b, this issue
can be greatly alleviated, because our collected
dataset HC-Var has a much slighter length differ-
ence between human and ChatGPT texts. Overall,
we can conclude that if the generated and human
texts have distinct length distribution, the trained
model will have a compromised generalization.

(a) Length Dis-
tribution.

(b) Under HC-
Var.

(c) No Length
Designation.

Figure 4: Impact of Lengths on ChatGPT Detection

4.3 Theoretical Analysis
From previous discussions, when the ChatGPT
texts and human texts are not well-aligned, it is
likely that the model has a poor generalization. In
this section, we use a simple theoretical model to
deeply understand this phenomenon. Before intro-
ducing our theorem, we first assume ChatGPT texts
and human texts can differ in two types of features.

Definition 1 (Relevant Features vs. Irrelevant Fea-
tures). Relevant features are the principal features
to determine whether a sample belongs to human
or ChatGPT. On the opposite, “Irrelevant Features”
are the features that are irrelevant for ChatGPT
detection, such as the “length” of a text.

Theoretical setup. We consider the scenario
that human texts and ChatGPT texts are two clus-
ters of Gaussian samples lying in a two dimensional
data space, but differing in the relevant & irrele-
vant features. As illustrated in Figure 5, we define
the region to the right of line x1 = C(C > 0)
as ChatGPT generated, and we define the left
of x1 = H(H > 0) as human written. Un-
der this data space, we define the human training
data are sampled following a Gaussian distribution
DH = N (0, σ2I). For ChatGPT data, we also as-
sume that they are sampled following a Gaussian
distribution in the space x1 ≥ C. In our analysis,
we aim to compare two data collection strategies,
with different distances (alignment) to human data.

7228



			"!

ChatGPT RegionHuman Region

!! = #

!! = −$

!! = $

#"

!!"

!!#

!!

%": ChatGPT Direction

%#: Irrelevant Direction

!! = $

Relevant Feature

Irrelevant Feature

Figure 5: Theorem illustration.

In detail, we compare the strategies to make sam-
plings from DC1 and DC2:

{
DC1 = N (θ1, σ

2I), ||θ1||2 = d,

DC2 = N (θ2, σ
2I), ||θ2||2 = K · d, (2)

where d ≥ C,K > 1. The key difference between
the two data distributions is the existence of the
term K, which decides their distance to the human
data. For the centers θ1 and θ2, they are uniformly
distributed in the ChatGPT region, as long as they
have distances d and K · d to the origin. Next, we
will study the generalization performance for bi-
nary classification models trained on human and
ChatGPT texts. Before that, we first define a neces-
sary evaluation metric of model generalization.

Definition 2 (False Negative Area). For a given
model f , it could make errors in ChatGPT region
under area surrounded by f , x1 = C and x2 =
±T , where T > 0 is a threshold value controlling
the limitation of x2. We define the False Negative
Area (FNA) as the area of the enclosed region.

As an illustration in Figure 5, S1 and S2 repre-
sent the corresponding FNA of f1 and f2, respec-
tively. In our analysis, we denote the FNA of a
model f as Γ(f). We use it to measure the mod-
els’ error rate on unforeseen ChatGPT generated
data, which are not covered by the collected train-
ing data. Next, we formally state our main theory
by analyzing the FNA of the models f1 and f2:

Theorem 1. Given the human training data DH ,
ChatGPT training data DC1, DC2. For two classi-
fiers f1 and f2 which are trained to minimize the
error under a class-balanced dataset:

fi =argmin
f

Pr.(f(x) ̸= y),

where

{
x ∼ DCi, if y = 1

x ∼ DH , if y = 0

Suppose the maximal FNA that f1 can achieve is
denoted as supΓ(f1). Then, with probability at

least
(
1 −

(
π
2 − C

d + Ω(Cd )
3
)
/
(
π
2 − C

Kd

))
, we

have the relation:
( Γ(f2)

supΓ(f1)

)2

≥
(
1 + (K − 1) · 1

1 + 2T · Ω(1/d)
)
> 1.

(3)

The proof is deferred to Appendix C. This the-
orem suggests that the FNA of f2 is likely to be
larger than the worst case of f2 (with a moderate
probability), since their FNA ratio is larger than 1.
Moreover, both the probability term and the FNA
ratio term (Eq.5) are monotonically increasing with
the term K. It suggests the larger K it is, the higher
chance of f2 can have a poorer generalization than
f1. Refer to Figure 5, compared with f1, the model
f2 has a larger FNA, because its decision boundary
has a smaller slope since f2’s prediction is more
relied on the irrelevant features. This result further
demonstrates the benefit of collecting ChatGPT
texts that are sufficiently close to human texts.

5 Generalization across Topic & Tasks

In this section, we discuss the circumstances that
the models can face texts from unforeseen lan-
guage tasks or topics. Overall, our claim in Sec-
tion 5.1 shows that the trained models could have
high errors on unseen topics & tasks (which is
consistent to previous works such as (Guo et al.,
2023)). However, in Section 5.2, we also observe
that these models can still provide valuable infor-
mation which helps fast adaptation. Notably, here
we only provide the results for task-level general-
ization, and we leave the topic-level study in Ap-
pendix B, where we draw similar conclusions.

5.1 Detection May Not Well Generalize across
Topics & Tasks

In this subsection, we conduct experiments to test
the RoBERTa-base classification method’s general-
ization across language tasks (and topics). In partic-
ular, in Table 4 (no transfer), we train the model on
the human and ChatGPT texts from each language
task individually and we check whether it can cor-
rectly classify texts from other tasks. Since these
tasks have different number of samples in HC-Var,
we randomly sample 4,000 ChatGPT and 4,000
human samples for training in all experiments. In
each training set, the ChatGPT texts will contain
various topics (if exist) and various prompts. In
the experiments, we report the evaluation metrics
including F1-score. In Table 4, “r → n” means the
model transferred from “review” for a downstream
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Table 4: Transfer Learning (Task-level) Performance via Linear Probing and Fine-Tuning
Target news review writing QA

r→n w→n q→n n→r w→r q→r n→w r→w q→w n→q r→q w→q
No Transfer 0.946 0.835 0.927 0.854 0.980 0.981 0.681 0.858 0.827 0.819 0.789 0.771

LP-5 0.991 0.990 0.972 0.901 0.958 0.987 0.901 0.967 0.902 0.772 0.860 0.849
FT-5 0.952 0.923 0.932 0.965 0.952 0.940 0.871 0.898 0.835 0.848 0.893 0.869

LP-Scratch-5 0.959 ± 0.019 0.839 ± 0.057 0.871 ± 0.024 0.697 ± 0.082
FT-Scratch-5 0.946 ± 0.033 0.925 ± 0.033 0.867 ± 0.021 0.687 ± 0.047

LP-10 0.993 0.992 0.993 0.938 0.986 0.984 0.916 0.971 0.934 0.839 0.887 0.859
FT-10 0.978 0.978 0.983 0.951 0.968 0.967 0.936 0.956 0.936 0.870 0.913 0.909

LP-Scratch-10 0.979 ± 0.005 0.934 ± 0.013 0.906 ± 0.023 0.764 ± 0.071
FT-Scratch-10 0.983 ± 0.006 0.941 ± 0.020 0.939 ± 0.018 0.778 ± 0.051

We use the blue color to highlight the case that transfer learning outperforms training from scratch.

(a) News (b) Review (c) Writing (d) QA
Figure 6: Representation space visualization on models trained on each task

task “news”. Based our reported results in Figure 6,
we can see that the trained models will have a per-
formance drop on either human texts or ChatGPT
texts. For example, the model trained on “writing”
cannot effectively detect the ChatGPT generated
texts in “QA”. This result shows that models could
make errors on both human or ChatGPT texts. In
Appendix B, we provide results for topic-level gen-
eralization and we draw similar conclusions.

5.2 Fine-tuning Can Help Detection
In this part, we identify a ponteitial way to improve
the ChatGPT detection in the unforeseen tasks (or
topics). As an evidence, in Figure 6, we visualize
the learned representations for various tasks ren-
dered by the trained model in Section 5.1. From
these figures, we note that the ChatGPT and hu-
man texts from unseen tasks during training are
also well-separated in the representation space. It
demonstrates the models can indeed learn useful
features which are helpful to distinguish human
and ChatGPT texts in other domains.

Moreover, we conduct experiments to investi-
gate transfer learning (Hendrycks et al., 2019) for
domain adaption. In reality, if the model trainer
encounters test samples from the language tasks (or
topics) which are not involved in the training set,
it is a practical and feasible solution for them to
collect several samples in the same task as the test
sample by themselves. Therefore, in our study, we
consider two types of transfer learning strategies:
Linear Probing (LP), which refers to the strategy
that only the linear classifier (based on extracted
features) is optimized; and Fine Tuning (FT) which

refers to the strategy that all layers are optimized.
In our experiment, we consider there are 5 and

10 more samples from both human data and Chat-
GPT texts are sampled for fine-tuning the mod-
els. In Table 4, we report the tuned models perfor-
mance (F1 score) when tested on different targeted
(downstream) tasks from various source models.
Besides, we also include the original performance
before transfer learning (denoted as “No Transfer”
in Table 4). For comparison, we report the result
if these models are tuned from scratch (on pre-
trained RoBERTa-base model without training for
detection). From the result, we can see transfer
learning can benefit the detection performance in
general. For example, when compared with “No
Transfer”, linear probing (LP) or Fine-tuning (FT)
can improve the downstream task performance in
most cases (except for w → r with 5 training sam-
ples). Moreover, when compared to the models
training from scratch, the transferred models also
achieve higher performance in all considered lan-
guage tasks. It suggests that those pre-trained mod-
els can offer helpful knowledge beyond the col-
lected data samples for down-stream tuning.

6 Conclusion
In this paper, we conduct a comprehensive analysis
on the generalization behavior of training-based
ChatGPT detection methods. We first show the
trained models could overfit to irrelevant features
which leads poor generalization. However, we also
show the trained models can usually provide use-
ful information that helps fast adaption to unseen
topics and language tasks.
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7 Limitation

In this paper, there are other factors that could influ-
ence the detection. For example, we have not inves-
tigated the scenarios that a text is first generated by
ChatGPT and then manipulated (i.e., rephrased) by
other language models. It is also likely that a text
is partially written by ChatGPT and partially by hu-
man. In these cases, the performance of detection
could be possibly degraded. Therefore, we will
leave the related studies for further investigation.
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A Design of Dataset

A.1 Prompts
In this part, we provide the details of our prompt design.

For news, with a news summary <Summary> from AG-News Dataset, we consider the prompts:
• P1: Write a [150, 300] words article following the summary: <Summary>

• P1: Write a [150, 300] words article like a commentator following the summary: <Summary>

• P1: Write a [150, 300] words article like a journalist following the summary: <Summary>
For Review, with a movie title <MovieTitle>, we consider the prompts:

• P1: Write a review for <MovieTitle> in [50, 100, 200] words.

• P2: Develop an engaging and creative review for <MovieTitle> in [50, 100, 200] words. Follow the
writing style of the movie comments as in popular movie review websites such as imdb.com.

• P3: Complete the following: I just watched <MovieTitle>. It is [enjoyable, just OK, mediocre,
unpleasant, great]. [It is because that, The reason is that, I just feel that, ...]. 4

For writing, with a essay topic <EssayTitle>, we consider the prompts:
• P1:Write a [200, 300] words essay like a novelist with the following title: <EssayTitle>.

• P2:Write a [200, 300] words essay with the following title: <EssayTitle>.

• P3:Write a [200, 300] words essay like a high school student with the following title: <EssayTitle>.
For QA, with a question <Q>, we consider the prompts:

• P1: Answer the following question in [50, 100, 150] words. <Q>

• P2: Act as you are a user in Reddit or Quora, answer the question in [50,100,150] words. <Q>

• P3: Answer the following question in [50, 100, 150] words. <Q> Explain like I am five.

A.2 Examples
In this part, we also provide example texts from both human and ChatGPT, in review (for the movie
“Interstellar”), and QA (for the question “Buying a house, how much should my down payment be? ”). We
include the examples about news and writing because they are longer. From these example, we find that
the human texts can be indeed more conversaional and informal than ChatGPT texts. Some of our prompts
like “P3” in reviews and ChatGPT can successfully make the generated texts to be more conversational
and casual.

Table 5: Example for Human Texts and ChatGPT texts in IMDb Review for movie “Interstellar”

Class Prompt Texts
Human N/A I think just about everything has been said about this film

now. But, I can still tell you what this masterpiece is to me.
To me, this movie is possibly the most relevant movie ever,
because it questions our own humanity relative to the Uni-
verse. Whether that’s our ability to love, think, or persevere
and walk into the unknown. We are explorers, and curious
at heart. This untameable curiosity is not our end, but our
beginning. It is what advanced this civilization and it will
continue to do so. So never, never let anybody tell you that
we shouldn’t look towards the stars and wonder, because
that’s what makes us human. Without this stargazing we are
merely animals, accepting our fate in the dust.

4Each word / phrase in the gray list has the same chance to be randomly selected. In P3, the each generated text is randomly
truncated to 50-200 tokens.
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ChatGPT P1 "Interstellar" is a cinematic masterpiece that transcends time
and space. Christopher Nolan’s visionary direction, paired
with Hans Zimmer’s haunting score, delivers an epic journey
through the cosmos. The film’s scientific accuracy and emo-
tional depth are nothing short of awe-inspiring. Matthew
McConaughey’s performance as Cooper is a tour de force,
grounding the story’s grandeur with genuine humanity. The
visual effects are breathtaking, immersing viewers in worm-
holes and distant planets. While the plot can be complex, it
rewards those willing to delve into its intricate layers. "In-
terstellar" is a thought-provoking, visually stunning odyssey
that will leave you pondering the mysteries of the universe
long after the credits roll.

ChatGPT P2 "Interstellar" is a mind-bending journey through the cosmos
that will leave you awestruck and pondering the myster-
ies of the universe long after the credits roll. Christopher
Nolan’s visionary direction takes us on a rollercoaster ride
through wormholes, black holes, and the very fabric of time
and space. Matthew McConaughey delivers a stellar perfor-
mance as Cooper, a father willing to sacrifice everything for
the survival of humanity. Hans Zimmer’s haunting score
adds an emotional depth that tugs at your heartstrings. With
stunning visuals and a thought-provoking narrative, "Inter-
stellar" is a cinematic masterpiece that transcends space
and time to become an unforgettable exploration of human
resilience and the power of love.

ChatGPT P3 The movie’s exploration of space and time has left me with
a sense of awe and wonder. Christopher Nolan’s direction
and Hans Zimmer’s hauntingly beautiful score created a cin-
ematic experience that was truly immersive. The way the
film delves into complex scientific concepts like black holes,
time dilation, and the theory of relativity was both mind-
boggling and intellectually stimulating. It’s one of those
rare movies that not only entertains but also challenges your
understanding of the universe. The emotional depth of the
story, particularly the bond between Cooper (Matthew Mc-
Conaughey) and his daughter Murph (Jessica Chastain and
Mackenzie Foy), tugged at my heartstrings. Their relation-
ship, which spans across time and space, added a profound
layer to the film’s narrative.

Table 6: Example for Human Texts and ChatGPT texts in QA. The question is “Buying a house, how much should
my down payment be? ”

Class Prompt Texts
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Human N/A How much should my down payment be? Ideally 20% of
the purchase price because with 20% of the purchase price,
you don’t have to pay a costly private mortgage insurance
(PMI). If you don’t have 20% down and come across a
good property to purchase, it is still a good idea to go
forward with purchasing with what you are comfortable
with, because renting long term is generally never a good
idea if you want to build wealth and become financially
independent. How much should I keep in my emergency
fund? People say 3-12 months of living expenses. Keep
in mind though, in most cases, if you lose your job, you
are entitled to unemployment benefits from the government.
How long should my mortgage be? 30 year amortization is
the best. You can always opt to pay more each month. But
having that leverage with a 30 year loan can allow you to
invest your savings in other opportunities, which can yield
more than mortgage interest. Best of luck!.

ChatGPT P1 The ideal down payment for buying a house typically ranges
from 10% to 20% of the home’s purchase price. A 20%
down payment is often recommended because it helps
avoid private mortgage insurance (PMI), reduces monthly
mortgage payments, and demonstrates financial stability
to lenders. However, some loan programs allow for lower
down payments, such as 3.5% for FHA loans or 5% for
conventional loans. The specific amount depends on your
financial situation, credit score, and the housing market. A
higher down payment can offer financial security and lower
long-term costs, but it’s essential to balance it with your
overall financial goals and budget.

ChatGPT P2 For a down payment on a house, aim for 20% of the home’s
purchase price. This percentage helps you avoid private
mortgage insurance (PMI), which can save you money in
the long run. However, some programs allow as low as 3.5%
or 5%, like FHA or conventional loans. The ideal amount
depends on your financial situation and goals. A higher
down payment offers financial security, while a lower one
may be more accessible upfront. Balance your budget and
future plans to decide what works best for you.

ChatGPT P3 When you want to buy a house, you need to save some
money to give to the people who are selling the house. This
money is called a "down payment." Imagine it’s like when
you want to trade your toys with a friend; you might need to
give them a few of your toys to get their cool toy. Usually,
grown-ups suggest giving about 20% of the house’s price
as a down payment. So, if the house costs $100, you’d
give $20 as a down payment. This helps because the more
you give upfront, the less money you need to borrow (like
borrowing toys), and it can also make it easier to get a loan
to buy the house. But remember, it can vary, so talk to a
grown-up or a financial expert to decide what’s best for you.
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(a) News (b) Review (c) Writing (d) QA

Figure 7: Generalization of RoBERTa-base models among various prompts.

(a) News (b) Review (c) Writing (d) QA

Figure 8: TPR Generalization of RoBERTa-base models among various prompts.

(a) News (b) Review (c) Writing (d) QA

Figure 9: 1 - FPR Generalization of RoBERTa-base models among various prompts.

B Additional experiments

In this part, we provide additional experimental results which we mentioned in the main text. In
Section B.1, we provide discussions on the reason we choose F1-score as the universal metric in Section 4.1.
In Section B.2, we analyze the generalization performance for various model architectures. In Section B.3,
we include the whole results about the study of generalization on lengh distribution shift. In Section B.4,
we provide the transfer learning results about topic-level generalization.

B.1 Additional Results about Section 4.1

In the main text in Section 4.1, we choose F1-score as the standard for model performance evaluation.
We also mentioned that the all trained models (under various prompts) have a similar False Positive Rate.
Therefore, the True Positive Rate decides the F1-score. In this part, to support our claims, we provide the
complete results in Figure 7, Figure 8 and Figure 9. From the results, we can find all the models have
similar (1-fpr) in all considered tasks.

B.2 Additional results on other models

In Figure 10, Figure 11 and Figure 12, we conduct experiments to repeat the similar study as in Section 4.1,
under different model architectures, RoBERTa-large and T5-base. From the results, we can see that these
two models share a similar generalization behavior as RoBERTa-base, which is majorly discussed in
the main text. This result suggest that the data distribution make a significant influence on the model
generalization. However, the generalization performance between the models is also slightly different,
for example, RoBERTa-large models tend to have higher performance than T5-base, which suggests that
the model architecture can also make a differene. In Figure 13, Figure 14 and Figure 15, we conduct a
similar study for topic-level generalization. In Figure 16, Figure 17 and Figure 18, we conduct a study
for task-level generalization. These results can consistently validate our analysis in the main context,
regardless of the model architecture.
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(a) News (b) Review (c) Writing (d) QA

Figure 10: Generalization of RoBERTa-base models among various prompts.

(a) News (b) Review (c) Writing (d) QA

Figure 11: Generalization of RoBERTa-large models among various prompts.

(a) News (b) Review (c) Writing (d) QA

Figure 12: Generalization of T-5-base models among various prompts.

B.3 Detailed results for Lengths

In Section 4.2, we only report the study about the impact from length in one task, “review”. In this part,
we provide the complete results for all tasks in HC-Var. In Figure 19, Figure 20 and Figure 21, we provide
the same results as in Section 4.2, where we compare the length distribution of human texts and ChatGPT
texts (with and without length designation). From the results, we can see that: in Review and QA, our
collected dataset has a better alignment with human texts, compared to ChatGPT#. They meanwhile have
a better performance especially on shorter texts. For news and writing. As a result, there is a negligible
impact from controlling the length, because all human and ChatGPT texts are long texts.

B.4 Additional results on Topic Level Transferability

In Figure 22 and 13, we conduct experiments to demonstrate the “topic-level” generalization for RoBERTa-
base detection model, and its latent space feature visualization. From the results, we can also see that the
original models may face performance drop on either human or ChatGPT textst. However, the feature
representations of the samples in unforeseen tasks are also well-separated, which is similar to the analysis
about “task-level” generalization. Moreover, in Table 7, we conduct an experiment using transfer learning,
similar to Table 4. From the table, we can also see that the pre-trained models can significantly help the
downstream tasks.

C Theory proofs

In this section, we provide the detailed proofs for our theoretical study. Recall the discussion in Section 1,
we aim to compare the strategies to make samplings from DC1 and DC2:

{
DC1 = N (θ1, σ

2I), ||θ1||2 = d,

DC2 = N (θ2, σ
2I), ||θ2||2 = K · d, d ≥ C,K > 1 (4)

Theorem 1. Given the human training data DH , ChatGPT training data DC1, DC2. For two classifiers
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(a) F1 Score (b) TPR (c) 1 - FPR

Figure 13: Generalization of RoBERTa-base across Various Topics in QA

(a) F1 Score (b) TPR (c) 1 - FPR

Figure 14: Generalization of RoBERTa-large across Various Topics in QA

(a) F1 Score (b) TPR (c) 1 - FPR

Figure 15: Generalization of t5-base across Various Topics in QA

f1 and f2 which are trained to minimize the error under a class-balanced dataset:

fi = argmin
f

Pr.(f(x) ̸= y), where

{
x ∼ DCi, if y = 1

x ∼ DH , if y = 0

Suppose the maximal FNA that f1 can achieve is denoted as supΓ(f1). Then, with probability at least(
1−

(
π
2 − C

d +Ω(Cd )
3
)
/
(
π
2 − C

Kd

))
, we have the relation:

( Γ(f2)

supΓ(f1)

)2

≥
(
1 + (K − 1) · 1

1 + 2T · Ω(1/d)
)
> 1. (5)

Proof. We first aim to find the worst model that f1 can achieve largest FNA. To achieve this goal, we first
define its center θ1 has a location (h, a) where h2 + a2 = d2, h ≥ C. We can suppose a ≥ 0 without loss
of generality since the data space is symmetric on x2 = 0. Therefore, given two classes for classification,
with the negative class DH = N (0, σ2I) and positive class: DC1 = N ((h, a), σ2I), we can find the
optimal classifier f has a decision boundary which is orthogonal to this line that passes (0, 0) and (h, a)
and passes their center point (h2 ,

a
2 ). In specifics, we can get the expression of f1’s decision boundary:

l1 : y = −h

a
x+

a2 + h2

2a
(6)

Next, we will show that this model f1 will achieve the worst case with largest FNA (the area of the region
enclosed by l1, x2 = C and x1 = ±T ), when h = C. To calculate the area of the enclosed region (which
is a triangle), we find it has a tall and height:

Tall : −d2 − a2

a
· C +

d2

2a
− C, Height :

d2

2h
+

√
d2 − h2

h
· T − T (7)
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(a) F1 Score (b) TPR (c) 1 - FPR

Figure 16: Generalization of RoBERTa-base across Various Tasks

(a) F1 Score (b) TPR (c) 1 - FPR

Figure 17: Generalization of RoBERTa-large across Various Tasks

(a) F1 Score (b) TPR (c) 1 - FPR

Figure 18: Generalization of t5-base across Various Tasks

It is easy to see the tall is monotonously increasing as a increases, and height is monotonously decreasing
as h increases (by calculating their derivatives). This fact suggests that the tall is also a decreasing
function for h, as a and h has the relation a2 + h2 = d2. Therefore, FNR of f1, which is decided by the
multiplication of tall and height, is a decreasing function in terms of h. Given that h ≤ C, the worst case
is achieved when h = C. Under h = C, the model f1 has an FNR:

supΓ(f1) =
(B2 + 2BT − C2)2

8BC
, where B2 + C2 = d2. (8)

Next, we discuss one special case about model f2, which is denoted as f∗
2 . Then, we calculate the

probability that other possible f2 is worse than this specific case f∗
2 . In detail, we consider that θ2 = K ·θ1,

which means they are in the same direction from origin. For the model f∗
2 , we can calculate the model for

this special case of f∗
2 :

y = −C

B
+K · B

2 + C2

2B
(9)

and it has an FNR:

Γ(f∗
2 ) =

(2BT +KB2 + (K − 2)C2)2

8BC
(10)
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(a) News (b) Review (c) Writing (d) QA

Figure 19: Length Distribution in Human, ChatGPT (in HC-Var), and ChatGPT#

(a) News (b) Review (c) Writing (d) QA

Figure 20: TPR and 1-FPR of RoBERTa-base model trained under ChatGPT from HC-Var.

(a) News (b) Review (c) Writing (d) QA

Figure 21: TPR and 1-FPR of RoBERTa-base model trained under ChatGPT#.

Next, we calculate the ratio between Γ(f∗
2 ) and supΓ(f1):

( Γ(f∗
2 )

supΓ(f1)

)2
=

2BT +KB2 + (K − 2)C2

2BT +B2 − C2
= 1 + (K − 1) · B2 + C2

B2 − C2 + 2BT

= 1 + (K − 1) · 1

1 + 2T B
d2

− 2C2

d2

≥ 1 + (K − 1) · 1

1 + 2T d
d2

= 1 + (K − 1) · 1

1 + 2T/d
> 1

Note that K is a number larger than 1, we have shown that the FNA relationship in the theorem. Next,
we calculate the chance that f2 has a worse error than f∗

2 . Based on the previous calculation, the FNR
of any model is an increasing function w.r.t to the x1 coordinate. Moreover, the model f2’s center θ2 is
uniformly distributed, under the arch ||θ2|| = K · d. The possibility of f2 is worse than f∗

2 lies on the arch
between x1 = KC and X1 = C. Therefore, we find the probability of θ2 lying in this arch:

1− arccos C
d

arccos C
Kd

= 1−
(π
2
− C

d
+Ω(

C

d
)3
)
/
(π
2
− C

Kd
+Ω(

C

Kd
)3
)

≥ 1−
(π
2
− C

d
+Ω(

C

d
)3
)
/
(π
2
− C

Kd

)

D Other Detection Methods

In this section, we discuss other methodologies which can be used for ChatGPT text detection.
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(a) Finance (b) History (c) Medical (d) Science

Figure 22: Representation space visualization on models trained on each topic (in QA)

Table 7: Transfer Learning (Topic-level) Performance via Linear Probing and Fine-tuning in QA

Target finance history medical science
h→f m→f s→f f→h m→h s→h f→m h→m s→m f→s h→s m→s

No Transfer 0.953 0.859 0.977 0.982 0.852 0.991 0.809 0.729 0.802 0.979 0.955 0.873
LP-5 0.970 0.881 0.971 0.989 0.889 0.991 0.942 0.923 0.930 0.980 0.978 0.875
FT-5 0.952 0.904 0.945 0.940 0.952 0.958 0.873 0.836 0.840 0.931 0.925 0.879

LP-Scratch-5 0.816 ± 0.025 0.813 ± 0.027 0.786 ± 0.057 0.710 ± 0.068
FT-Scratch-5 0.820 ± 0.034 0.806 ± 0.037 0.786 ± 0.084 0.677 ± 0.097

LP-10 0.976 0.906 0.974 0.988 0.901 0.992 0.942 0.926 0.936 0.982 0.976 0.886
FT-10 0.965 0.935 0.969 0.962 0.951 0.976 0.894 0.852 0.864 0.946 0.927 0.898

LP-Scratch-10 0.859 ± 0.029 0.844 ± 0.025 0.792 ± 0.060 0.798 ± 0.025
FT-Scratch-10 0.891 ± 0.049 0.901 ± 0.035 0.865 ± 0.046 0.834 ± 0.055

D.1 Score-based methods
The work of (Gehrmann et al., 2019) proposes the GLTR method. It records the rank (based on the
probability score of an accessible model such as GPT2) of each token (in the vocabulary) and group them
to 4 categories, which are top 10, top 100, and top 1,000 and others. Then, a linear model is trained using
these 4 numbers as features for prediction.

GPTZero (GPTZero.com) is a public available tool designed for detecting LLM-generated texts
by employing two principal linguistic metrics, which are “perplexity” and “burstiness”. Specifically,
perplexity is a measurement of how easy or difficult to understand and predict the next words in a
sentence. A sentence with a lower perplexity typically flows smoothly and naturally, and allows humans
to anticipate what might come next. Instead, sentences with higher perplexity are often regarded as
confusing, difficult to follow, or unnatural in their structures and meanings. GPTZero estimates perplexity
through the output score from a fine-tuned5 GPT-2 model. In detail, given a passage x = (w1, .., wk), it
calculates the perplexity score as:

Perplexity ∝
k∑

i=1

log p(wi|w1, wi−1),

where p(·) is the output probability of GPT-2. Notably, to test if a passage is generated from other LLMs
like ChatGPT, the perplexity is also calculated by the same GPT-2 model. Beyond the perplexity, a high
burstiness sentence refers to a sentence that exhibits a sudden, unexpected change or deviation from the
typical language patterns or topic. GPTZero incorporates a “burstiness” check to analyze the text style
as the content generated by LLMs tends to maintain consistency throughout the full passage. GPTZero
calculates burstiness by using the standard deviation of the perplexity scores of each sentence in a given
passage. GPTZero predicts a sentence or passage as LLM generated if the passage has a high perplexity
or low burstiness.

D.2 Model-Based Methods.
The model-based methods train deep learning models, which directly take the test passage as an input of
the classification model. The GPT-2 Detector (Solaiman et al., 2019) fine-tunes a pre-trained language

5https://gptzero.me/technology
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model RoBERTa (Liu et al., 2019) models (RoBERTa-base and RoBERTa-large) for a binary classification
task to distinguish GPT2-output data samples and human written samples from OpenWebText dataset.
With the similar idea, GPT-Sentinel (Chen et al., 2023) and the work (Guo et al., 2023) also fine-tune
existing text classification models, such as RoBERTa models, to detect ChatGPT texts. In detail, GPT-
Sentinel (Chen et al., 2023) trains a RoBERTa-base or a T5 model on a binary classification dataset,
with human texts from OpenWebText and LLM generated texts obtained by using ChatGPT to rephrase
texts from OpenWebText. Beyond RoBERTa, GPT-Sentinel also proposes a similar classification strategy
based on another text model structure, called T5 model. The work (Guo et al., 2023) trains a RoBERTa
classification model on HC-3 dataset, which includes human answers and ChatGPT answers to questions
from sources such as Wikipedia and Reddit.

D.3 Similarity Based methods
GPT Paternity Test (GPT-Pat) (Yu et al., 2023) proposes a different detection strategy beyond binary
classification tasks. In particular, it assumes that if an LLM like ChatGPT is asked a same question for
twice to generate two answers, these two answers tend to have a high similarity. Based on this assumption,
given a test passage x, GPT-Pat first queries the ChatGPT model to generate a question based on the
content of x, and inputs the question to ChatGPT again to query another answer x′. Then, it trains a
similarity model (fine-tuned from RoBERTa) to measure the similarity of x and x′. If x and x′ are highly
similar, it predicts x as LLM generated. Similarly, DNA-GPT (Yang et al., 2023) also propose a strategy
to let ChatGPT re-generate texts for comparison. However, the method in (Yang et al., 2023) does not
involve the training process.

E Ablation Study on Other LLMs

In this part, we provide additional empirical results to validate the conclusions in our paper for other
LLMs, including GPT-4, Llama-2 (7b-chat) and PaLM2. In this part, we majorly repeat the experiment in
Section 4.1 and Section 5 where we draw our main conclusions.

E.1 Generalization to unseen Prompts
Recall Section 4.1, we claim: training with prompts with higher HC-Alignment can have better generaliza-
tion to unseen prompts. Thus, in Figure 23, we repeat the similar experiment to study the generalization
across prompts similar to Figure 1 (only focus on QA). In Figure 24, we calculate the HC-Alignment of
different prompts generated by different models. In Figure 25, we also get a similar finding which is the
prompts with higher HC-Alignment can have better generalization. Notably, an interesting finding is that
the HC-Alignment of different prompts are not same in different LLMs. For example, in the task QA, the
prompt P3 has highest HC-Alignment in ChatGPT. However, in other models like Llama-2 and PaLM2,
the prompt P2 has the highest HC-Alignment.

E.2 Generalization to unsee topics / tasks
We conduct a similar experiment under Llama-2 generated texts to study the detection model’s general-
ization to unseen topics. The table below reports the result for Llama-2 where the experimental setup
resembles Table 7 in our paper. From our result in Llama-2, we can draw similar conclusions: the model
can have a compromised performance when test on samples from unseen topics, which is denoted as “no
transfer” in table below. However, if we apply transfer learning, such as fine-tuning (FT) or linear probing
(LP) with a few samples, we can significantly improve the detection performance in the target domain.
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(a) ChatGPT (b) GPT-4 (c) Llama-2-7b-Chat (d) PaLM2

Figure 23: Generalization across prompts in various LLMs in QA.

(a) ChatGPT (b) GPT-4 (c) Llama-2-7b-Chat (d) PaLM2

Figure 24: HC-Alignment across prompts in various LLMs in QA.

(a) ChatGPT (b) GPT-4 (c) Llama-2-7b-Chat (d) PaLM2

Figure 25: HC-Alignment vs. Generalization across prompts in various LLMs in QA.

Table 8: Transfer Learning (Topic-level) Performance via Linear Probing and Fine-tuning in QA under Llama2

Target finance history medical science
h→f m→f s→f f→h m→h s→h f→m h→m s→m f→s h→s m→s

No Transfer 0.979 0.841 0.980 0.977 0.902 0.994 0.762 0.885 0.796 0.975 0.991 0.881
LP-5 0.975 0.898 0.975 0.977 0.926 0.995 0.923 0.955 0.965 0.979 0.990 0.910
FT-5 0.952 0.921 0.911 0.974 0.942 0.958 0.873 0.956 0.887 0.952 0.962 0.930

LP-Scratch-5 0.725 ± 0.028 0.702 ± 0.020 0.792 ± 0.031 0.751 ± 0.052
FT-Scratch-5 0.821 ± 0.044 0.740 ± 0.067 0.734 ± 0.041 0.689 ± 0.087

LP-10 0.980 0.912 0.974 0.979 0.932 0.995 0.936 0.956 0.970 0.986 0.986 0.912
FT-10 0.961 0.942 0.974 0.975 0.966 0.988 0.903 0.970 0.890 0.960 0.980 0.945

LP-Scratch-10 0.820 ± 0.062 0.794 ± 0.015 0.789 ± 0.050 0.818 ± 0.021
FT-Scratch-10 0.903 ± 0.055 0.842 ± 0.043 0.865 ± 0.047 0.838 ± 0.046
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