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Abstract

Large language models (LLMs) are utilized
in various studies, and have demonstrated po-
tential to function independently as a recom-
mendation model. However, training on user-
item interaction sequences and additional tex-
tual information such as reviews often modi-
fies the pre-trained weights of LLMs, diminish-
ing their inherent strength in constructing and
comprehending natural language sentences. In
this study, we propose a reconstruction-based
LLM recommendation model (ReLRec) that
harnesses the feature extraction capability of
LLMs, while preserving LLMs’ sentence gen-
eration abilities. We reconstruct the user and
item pseudo-labels generated from user reviews
while training on sequential data, aiming to ex-
ploit the key features of both users and items.
Experimental results demonstrate the efficacy
of label reconstruction in sequential recommen-
dation tasks.

1 Introduction

Recommender systems have achieved significant
advancement, becoming essential in various do-
mains such as e-commerce, streaming services, and
social media. Despite their widespread applica-
tion, traditional methods face several limitations,
particularly in extracting and effectively utilizing
textual information, such as user reviews, in addi-
tion to interaction data. Traditional models, (Kang
and McAuley, 2018; Jannach and Ludewig, 2017;
Sun et al., 2019; Ma et al., 2019; Tang and Wang,
2018), while effective in leveraging numerical data
such as ratings and purchase history, often strug-
gle with capturing the nuanced contextual infor-
mation present in user reviews and other textual
data. This limits their ability to fully understand
user preferences and provide highly personalized
recommendations.

Large language models (LLMs), like GPT
(Brown et al., 2020), have transformed the field

of recommender systems by excelling in under-
standing and generating natural languages. They
effectively address the limitations of traditional
models in handling textual data and are actively
studied for their potential in various recommenda-
tion tasks. Several efforts have leveraged LLMs for
zero/few-shot recommendation by incorporating
user history and candidate items as input prompt
(Zheng et al., 2023; Zhu et al., 2024; Zhao et al.,
2024). Additionally, LLMs have been employed to
address cold-start problem (Xi et al., 2023; Wang
et al., 2024b) and have been utilized for data aug-
mentation purposes (Wei et al., 2024; Ning et al.,
2024; Ren et al., 2024). Moreover, studies that
have aimed to train LLMs via efficient measures
(Li et al., 2023a,b; Yu et al., 2024; Kaur and Shah,
2024) have demonstrated their potential to function
as recommendation models.

LLM-based recommender systems leverage pre-
trained knowledge to understand diverse textual
inputs and generate rich textual representations
(Acharya et al., 2023; Wang et al., 2024a). This al-
lows LLMs to provide contextually relevant sugges-
tions that align closely with user preferences. How-
ever, training LLMs on recommendation datasets
can disrupt their pre-trained weights, especially
their generation capabilities (Li and Hoiem, 2017;
Luo et al., 2023). Therefore, new methods are
needed to use LLMs effectively while preserving
their strengths.

Our proposed methodology addresses such chal-
lenges by leveraging LLMs’ advanced textual rep-
resentation generation in a sequential recommenda-
tion framework. To preserve the pre-trained knowl-
edge of the LLM, we implemented separate em-
beddings for users and items while freezing the
LLM’s transformer layers and the word embedding.
This ensures that the model retains its ability to
construct coherent sentences. To train user and
item embedding, we generated pseudo-labels for
users and items based on their reviews. Finally, we
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(a) User’s review on an item.
(b) User/item pseudo-label
generation.

Figure 1: Pseudo-label generation. (a) refers the review
from a user to an item and (b) shows how reviews are
concatenated to generate pseudo user/item label.

trained the model using both sequential data and
the pseudo-labels simultaneously.

The main contributions of this paper are: (1)
proposing a reconstruction-based LLM model
(ReLRec) that captures and effectively integrates
user/item label features for next item predictions;
(2) introducing a methodology that leverages the
feature extraction capabilities of LLMs while pre-
serving their inherent sentence generation abilities;
and (3) demonstrating that encapsulating rich con-
textual information in labels and integrating it into
sequential recommendations enhance the model’s
ability to understand and predict user preferences.

2 Proposed Approach

In this study, we propose ReLRec, a model com-
posed of two primary components: the creation of
user/item embeddings with pseudo-labels, and the
training process that incorporates both sequential
data and textual labels.

2.1 Pseudo-label Generation

We employed the RLMRec profile generation
method (Ren et al., 2024) to create pseudo-labels
for both users and items. As depicted in Fig. 1,
we first aggregated and concatenated reviews asso-
ciated with each item to construct an item profile.
Similarly, user profiles were generated by concate-
nating the reviews submitted by each user. These
concatenated reviews were subsequently passed
to ChatGPT (i.e., gpt-3.5-turbo), which was uti-
lized to produce labels for both items and users.
Furthermore, the initially generated labels were re-
processed through ChatGPT to obtain variations
in different formats. To capture diverse and mean-
ingful features in the labels, we generated multiple
label versions, all maintaining consistent contex-
tual meaning, and randomly selected one for each

Figure 2: Illustration of ReLRec, sequential recommen-
dation with label reconstruction.

Dataset #User #Item #Inter. #Avg. Sparsity

Yelp 11,092 11,011 321,581 29.0 99.737%
Book 10,830 9,333 211,909 19.6 99.790%

Table 1: Dataset statistics. #User, #Item, #Inter., #Avg.
denote the number of users, items, total interactions,
and average user interactions respectively.

training iteration. This approach ensures that the
model is exposed to varied yet coherent label rep-
resentations during training.

2.2 RelRec Architecture

LLM-based sequential recommender systems tend
to overlook the LLM’s capability to construct co-
herent sentences, focusing primarily on analyzing
sequential data. The implementation of fine-tuned
transformer layers and adapters to capture sequen-
tial patterns frequently results in a diminished ca-
pacity to generate relevant sentences and accurately
capture contextual meaning. ReLRec leverages the
capabilities of LLMs to comprehend and utilize
textual information, incorporating rich, nuanced
data encapsulated in pseudo-labels generated from
user reviews. As shown in Figure 2, we imple-
mented separate embeddings for users and items,
initialized with the average of the word token em-
bedding weights. A unique token is assigned to
each user/item id (i.e., "iid-1" is a single token) to
represent the attributes of each user/items. With the
transformer layers and word embeddings frozen to
preserve the LLM’s inherent ability to understand
and generate natural language, we added a projec-
tion layer to each embedding to map and integrate
the pre-trained knowledge with newly trained text
labels.
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Models Yelp Amazon-book
R@5 N@5 R@10 N@10 R@20 N@20 R@5 N@5 R@10 N@10 R@20 N@20

STAMP 0.0232 0.0145 0.0393 0.0196 0.0673 0.0267 0.0699 0.0564 0.0908 0.0631 0.1217 0.0709
HGN 0.0229 0.0140 0.0433 0.0205 0.0764 0.0288 0.0356 0.022 0.0633 0.0309 0.1082 0.0422

GRU4Rec 0.0269 0.0161 0.0504 0.0237 0.0881 0.0331 0.0646 0.0441 0.0989 0.0552 0.1473 0.0673
SASRec 0.0210 0.0135 0.0386 0.0190 0.0730 0.0276 0.0624 0.0355 0.0959 0.0463 0.1443 0.0585

BERT4Rec 0.0153 0.0093 0.0283 0.0135 0.0540 0.0200 0.0380 0.0267 0.0585 0.0333 0.0869 0.0405
NARM 0.0272 0.0165 0.0527 0.0246 0.0910 0.0341 0.0650 0.0458 0.0947 0.0553 0.1424 0.0673

CL4SRec 0.0277 0.0171 0.0449 0.0226 0.0793 0.0312 0.0396 0.0235 0.0595 0.0299 0.0888 0.0372
ICLRec 0.0181 0.0117 0.0295 0.0154 0.0485 0.0202 0.0352 0.0236 0.0520 0.0290 0.0779 0.0356

P5 0.0240 0.0150 0.0390 0.0198 0.0587 0.0247 0.0318 0.0230 0.0445 0.0271 0.0629 0.0318
E4SRec 0.0180 0.0102 0.0541 0.0212 0.0902 0.0306 0.0369 0.0317 0.0831 0.0467 0.1570 0.0650

Ours 0.0338 0.0208 0.0599 0.0292 0.1048 0.0406 0.0758 0.0570 0.1011 0.0651 0.1377 0.0741

Improvement 24.3% 26.1% 10.7% 18.7% 15.2% 19.1% 8.4% 1.1% 2.2% 3.2% -12.3% 4.5%

Table 2: Performance comparison of sequential recommendation models. R stands for Recall, and N refers to
NDCG. Bold indicates the best result, while the underline is the runner-up.

2.3 Label-based Recommendation
ReLRec simultaneously trains on sequential inter-
action and user/item labels, ensuring that the con-
text and features captured in the labels are reflected
in the model’s next item prediction. Each batch
comprises of the sequential interaction and label of
a user, along with a randomly selected item label.

Suppose I and U denote entire set of items and
users. Let ik1:t = {ik1, . . . , ikt } represent the user-
item interaction sequence, where ikp ∈ I is the
item interacted with by user uk at timestamp p, and
uk ∈ U . The goal is to predict the next item ikt+1

by training on ik1:t. For the next item prediction, we
utilized cross-entropy loss of our backbone LLM.

Lseq = −
|U |∑

k=1

1

Tk

Tk∑

t=1

logP (it+1 | i1:t, uk). (1)

Here, T is the total number of time steps for each
user. The labels of each user and item are recon-
structed along with the next item prediction. Simi-
larly, with S referring the entire set of word tokens,
the label reconstruction aims to predict the token
st+1 given tokens s1:t = {s1, . . . , st}.

Litem = −
∑

i∈I

1

Ti

Ti∑

t=1

logP (sit+1 | si1:t), (2)

Luser = −
∑

u∈U

1

Tu

Tu∑

t=1

logP (sut+1 | su1:t), (3)

where su and si denotes tokens within the labels of
user u and item i, respectively. The overall learning
objective function of ReLRec is the sum of the
losses for the next item prediction and user/item
label reconstruction.

L = αLseq + βLitem + γLuser, (4)

where α, β and γ are the loss weights for each
task. During inference, we evaluate the model not
only on sequential prediction, but also on user/item
label reconstruction, to ensure that the model has
learned the textual labels of users and items. We
provide a randomly selected prompt to the model
to reconstruct the user/item label. The Appendix
A.1 provides example labels.

3 Experiment

3.1 Experimental Settings
Datasets and metrics We conducted experi-
ments on two public datasets: Yelp (Asghar, 2016)
and Amazon-book (McAuley et al., 2015). Each
dataset includes user’s reviews on items that user
interacted with. We filtered out interactions with
a rating below 3 and excluded users with less
than 5 interactions. The statistics of each dataset
are provided in Table 1. We evaluated recom-
mendation performance using two widely adopted
ranking metrics: Recall@k and NDCG@k with
k ∈ {5, 10, 20}.

Baselines We compared our model with ten base-
line sequential recommendations: STAMP (Liu
et al., 2018), HGN (Ma et al., 2019), GRU4Rec
(Tan et al., 2016), SASRec (Kang and McAuley,
2018), BERT4Rec (Sun et al., 2019), NARM
(Li et al., 2017), CL4SRec (Xie et al., 2022),
ICLRec (Chen et al., 2022), P5 (Geng et al., 2022)
and E4SRec (Li et al., 2023a). STAMP, HGN,
GRU4Rec, SASRec, BERT4Rec and NARM ex-
periments are conducted using RecBole v1.2.0 (Xu
et al., 2023).

Setup ReLRec uses Llama-2-7b (Touvron et al.,
2023) as the backbone model. Dimension for each
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Methods Yelp Book
User PL Recon. R@20 N@20 R@20 N@20

X X - 0.0764 0.0302 0.1086 0.0609
X O - 0.0750 0.0299 0.1044 0.0556

O X X 0.0727 0.0289 0.1035 0.0592
O O X 0.0755 0.0302 0.1049 0.0586
O O O 0.0969 0.0371 0.1309 0.0706

Improvement 28.3% 22.8% 20.5% 15.9%

Table 3: Comparing methods for using user embedding
(User), projection layer (PL) and reconstruction loss
(Recon.). All embeddings are randomly initialized.

projection layer is set to 512 for all datasets. α,
β and γ are set to 0.75, 0.3 and 0.9, respectively.
ReLRec was trained with RTX A6000.

3.2 Performance Comparison

Table 2 presents the experiment results of ReLRec
compared to sequential recommendation baselines.
Our model outperforms baseline models in most
metrics, by up to 24.3% in Recall and 26.1% in
NDCG. The performance increase is highlighted
especially in Yelp dataset. By incorporating con-
textual label information into the sequential recom-
mendation, ReLRec suggests items that are similar
to the labels of user and answer item. Additional
examples and analysis are in the Appendix A.2.1.

3.3 Ablation and Effectiveness Analysis

Reconstruction loss We conducted an analysis to
evaluate the effectiveness of our model, specifically
examining whether implementing the user embed-
ding and label reconstruction loss enhance perfor-
mance. As shown in Table 3, simply adding user
embedding to train each user did not necessarily
improve results. However, including label recon-
struction loss significantly boosted performance,
indicating that encapsulating textual information
in the labels and integrating it into the sequence
prediction was effective. Effect of text projection
layer is in the Appendix A.2.2.

Label inconsistency To evaluate the robustness
of our reconstruction-based method, we conducted
experiments analyzing the impact of label incon-
sistency on model performance. Noise was intro-
duced by switching item and user labels across
datasets, and the model’s ability to learn from these
inconsistent labels was assessed. As shown in Ta-
ble 4, even with the introduction of label noise,
the reconstruction method demonstrated notable

Methods Yelp Book
Recon Item User R@20 N@20 R@20 N@20

X O O 0.0842 0.0372 0.1004 0.0417
O X O 0.0973 0.0377 0.1374 0.0718
O O X 0.1026 0.0382 0.1353 0.0711
O O O 0.1048 0.0406 0.1377 0.0741

Table 4: Effect of label inconsistency. X in Item
and User column indicates that the label of dataset is
switched.

Methods Yelp Book
Recon. Avg. 2-stage. R@20 N@20 R@20 N@20

X X - 0.0755 0.0302 0.1049 0.0586
X O - 0.0842 0.0327 0.1004 0.0417

O X O 0.0969 0.0371 0.1309 0.0706
O O X 0.0972 0.0361 0.1242 0.0682
O O O 0.1048 0.0406 0.1377 0.0741

Table 5: Effect of average embedding initialization
(Avg.) and 2-stage pseudo-label generation (2-stage.)
for Yelp and Amazon-book datasets.

improvements compared to scenarios without re-
construction. Although label inconsistency led to a
decline in performance relative to consistent-label
conditions, the model still captured meaningful pat-
terns, underscoring the resilience and effectiveness
of the label reconstruction approach under subopti-
mal conditions.

Pseudo-label Quality To examine the effect of
pseudo-label quality on performance, we con-
ducted experiments refining the label generation
process with a two-stage method. In the first stage,
user and item profiles were generated by aggregat-
ing relevant reviews to produce initial labels. In the
second stage, these labels were refined by remov-
ing noise. Notably, even with the one-stage pro-
cess, our reconstruction method showed significant
improvements in overall performance despite the
presence of noise. As shown in Table 5, applying
the two-stage label generation further enhanced per-
formance, demonstrating the added value of refined
labels, with single-stage process already providing
substantial gains.

Embedding initialization We initialized the user
and item embeddings in our model with the aver-
age value of pre-trained LLM word embedding.
Table 5 compares the effectiveness of this average
initialization both with and without reconstruction
loss. The results show that average initialization
was only consistently effective when reconstruc-
tion loss was included. We believe this is because,
as ReLRec trains on user/item textual labels, the
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Metrics Sequence Weight α
0.25 0.50 0.75 1.00

R@20 0.0856 0.1000 0.1000 0.0956
N@20 0.0337 0.0390 0.0396 0.0373

Table 6: Performance variation with different sequence
weight α value on Yelp dataset.

(a) Item Recon. Loss Weight (b) User Recon. Loss Weight

Figure 3: Recall/NDCG@20 on change of β and γ.

average value of the pre-trained word embeddings
provides a better initialization point compared to
random initialization.

Weight parameter To evaluate the impact of
each loss hyperparameters, we conducted exper-
iments with different values of hyperparameters
on Yelp dataset. Table 6 shows the performance
variations with different values of next item pre-
diction loss weight α. The results indicate that an
α value of 0.75 yields the best performance. This
suggests that a balanced emphasis on sequential
interactions and label reconstruction is crucial in
optimal performance. Increasing α beyond this
point leads to a decline in performance, likely due
to overemphasizing sequential data at the expense
of label information.

Fig. 3 illustrates the performance changes as the
item label weight β and user label weight γ vary, re-
spectively. Initially, increasing β improves perfor-
mance as the item label information integrates into
the sequential pattern. However, beyond a certain
point, further increases in β cause performance to
drop significantly, likely because excessive weight
on item labels hinders the item embedding’s ability
to predict the next item. This is evident from the
decline in both Recall and NDCG metrics as shown
in Figure 3a.

For γ, the performance trends differently. As
shown in Figure 3b, the best performance is ob-
served at the highest value of γ. This indicates
that a higher weight on user labels effectively en-
hances the model’s ability to capture user-specific
preferences.

Dataset #User #Item #Inter. #Avg. Sparsity

Steam 23,311 5,238 596,560 113.9 99.511%

Table 7: Dataset statistics of Steam dataset.

4 Conclusion

In this paper, we proposed ReLRec, a reconstruc-
tion based LLM recommendation model which in-
tegrates features of user/item text labels to the next
item prediction. Our proposed model, ReLRec,
effectively utilizes pseudo-labels generated from
user reviews to capture nuanced information and
enhance recommendation accuracy by label recon-
struction. Experimental results demonstrates the
effectiveness of ReLRec.

Acknowledgments

This work was partly supported by the National
Research Foundation of Korea (NRF) [No. RS-
2023-00243243] and Institute of Information &
communications Technology Planning & Evalua-
tion (IITP) [NO. RS-2021-II211343, Artificial In-
telligence Graduate School Program (Seoul Na-
tional University)], both grant funded by the Korea
government (MSIT). Also, the ICT at Seoul Na-
tional University provided research facilities for
this study.

Limitation

We conducted additional experiments on Steam
(Kang and McAuley, 2018) dataset and analyzed
our results. The experiments on Steam indicated
that the performance of the label reconstruction-
based approach may dependent on the quality of
the labels, and it might not lead to performance
improvements on certain conditions.

Experimental Settings

Statistics about Steam dataset are provided in Ta-
ble 7. Similar to Yelp and Amazon-book, Steam
dataset includes user reviews on items that users
have interacted with. However, Steam features
a much higher user-to-item ratio, a significantly
larger average number of interactions per user, and
a much higher total number of interactions. More-
oever, unlike Yelp and Amazon-book, Steam does
not provide user ratings for each item. Therefore,
we could not filter interactions based on ratings and
only excluded users with fewer than 5 interactions.
The evaluation metrics, baselines, and setup are
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Models Steam
R@10 N@10 R@20 N@20

STAMP 0.1613 0.1317 0.1924 0.1395
HGN 0.0840 0.0443 0.1261 0.0548

GRU4Rec 0.1732 0.1301 0.2176 0.1413
SASRec 0.1814 0.1392 0.2277 0.1508

BERT4Rec 0.1288 0.0871 0.1767 0.0991
NARM 0.1775 0.1311 0.2256 0.1432

Ours 0.1521 0.1135 0.2002 0.1255

Improvement -16.2% -18.5% -12.1% -16.8%

Table 8: Performance comparison of sequential recom-
mendation models on Steam dataset.

Methods Steam
User PL Recon. R@10 N@10 R@20 N@20

X X X 0.1443 0.1108 0.1842 0.1209

O X X 0.1424 0.1077 0.1811 0.1174
O O X 0.1398 0.1060 0.1789 0.1160
O O O 0.1534 0.1143 0.2001 0.1260

Improvement 6.3% 3.2% 8.6% 4.2%

Table 9: Comparing methods for using user embedding
(User), projection layer (PL) and reconstruction loss
(Recon.). All embeddings are randomly initialized.

identical to those used for Yelp and Amazon-book
dataset.

Experiment Analysis

Table 8 shows the performance comparison be-
tween our model and baseline models on Steam
dataset. We can observe that our model did not
achieve the best or the second-best results in any
of the metrics on Steam dataset.

We conducted a similar analysis to that of Yelp
and Amazon-book datasets to evaluate the effec-
tiveness of the reconstruction loss on Steam. The
results are shown in Table 9. The performance im-
provement on Steam was much smaller compared
to Yelp and Amazon-book.

Label quality and noises The inclusion of a high
volume of interactions without filtering the dataset
can introduce noises. Since Steam dataset does not
have rating, all reviews were included in the train-
ing. This means the model may be learning from
labels and interactions that are not truly indicative
of user preferences, reducing the effectiveness of
the label reconstruction-based approach.

Limitation Conclusion

The performance of ReLRec model on Steam
dataset underscores the challenges of handling high
interaction volumes and the need for mechanisms

that can effectively differentiate and manage low-
quality interactions. Future work should focus on
enhancing the model’s ability to understand and
mitigate the impact of negative or irrelevant interac-
tions. By improving the model’s capacity to handle
diverse interaction data, we can enhance its robust-
ness and overall performance in high-interaction
environments like Steam dataset.
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A Appendix

A.1 Pseudo Labels
This section provides additional examples related
to the generation and training of pseudo labels. Fig.
4 shows examples of user and item input prompts
and their answer labels. A random prompt is se-
lected from the list of prompts, and inserted into
the model along with a user/item token. During
evaluation, the similarity score between the recon-
structed label and the answer label is measured
using cosine similarity. The similarity in user and
item label reconstruction was assessed using "all-
MiniLM-L6-v2" model (Wang et al., 2020).

A.2 Further Analyses
A.2.1 Sequential Prediction Results
Based on our experiments with the Yelp and
Amazon-book datasets, most of our performance
metrics exceeded those of the baseline models. We
examined the user labels and the labels of the top N
recommended items. Fig. 5 shows example labels
for users, the correct answer items and candidate
items, included in the top-5 recommendations.

From these examples, we can assume that the
contextual information of both the user and the

Figure 4: Examples of user/item reconstruction.

Methods Yelp Similarity
R@20 N@20 Item User

w/o proj. 0.0995 0.0385 0.5261 0.7507
1-layer 0.1048 0.0406 0.4538 0.7211
2-layer 0.1039 0.0394 0.0875 0.3579

Table 10: Comparing methods for using linear projec-
tion attached to word token embedding.

items is effectively integrated into the sequential
prediction results. ReLRec suggests items that
closely match the labels of the users and the correct
answer items. The suggested candidates had labels
that closely resembled those of the answer items
and aligned well with the user’s preferences.

This alignment indicates that ReLRec is capable
of capturing and utilizing rich textual information
to enhance recommendation accuracy. By integrat-
ing both user and item labels into the prediction
process, ReLRec is able to provide recommenda-
tions that are more likely to match the user’s pref-
erences, achieving higher rankings compared to
models that only utilize sequential data.

A.2.2 Text Projection Layer

To preserve the knowledge of LLMs, we froze the
word embedding and transformer layers and exam-
ined the impact of adding a projection layer. As
Table 3 demonstrates, adding projection layer was
effective when ReLRec trains textual labels. Ad-
ditionally, we investigated the optimal number of
layers required for the model to effectively train
on the contextual information of users/items. As
detailed in Table 10, using more than one layer
resulted in a decline in performance. This suggests
that adding more layers can disrupt the model’s
ability to reconstruct textual information and de-
grade overall performance.

We also conducted experiment to determine the
optimal projection layer dimension for ReLRec’s
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Figure 5: Example labels for user, answer item and candidate item (C) labels from Yelp dataset. Underlined words
are features that overlaps with the user and the answer item.

Dimension Yelp
R@10 N@10 R@20 N@20

64 0.0393 0.0198 0.0657 0.0264
128 0.0514 0.0255 0.0865 0.0344
256 0.0620 0.0300 0.1034 0.0401
512 0.0599 0.0292 0.1048 0.0406

1024 0.0530 0.0256 0.0899 0.0349
2048 0.0487 0.0233 0.0889 0.0334
4096 0.0455 0.0220 0.0793 0.0304

Table 11: Comparing dimensional size of linear projec-
tion on Yelp dataset.

Model Inference Speed

Llama2-seq 0.2521 batch/s
Ours 0.2579 batch/s

Table 12: Comparison on inference speed of Llama2
and ReLRec.

embedding, ranging from 64 to 4096 dimensions.
11 presents the performance results on the Yelp
dataset across different dimension sizes. The re-
sults demonstrate that a dimension size of 512
achieved the highest performance. While increas-
ing the dimension size from 64 to 512 led to im-
proved performance, further increasing it beyond
512 resulted in diminishing returns. This suggests
that while larger dimensions provide more capac-
ity, they may reduce model’s ability to generalize
effectively. Consequently, we selected 512 as the
optimal dimension size for the projection layer in
our final model configuration.

A.3 Inference

In ReLRec, the pre-trained word embeddings and
transformer layers remain frozen, with the main
modifications being the addition of a linear projec-
tion layer, user embedding, and item embedding.
Consequently, as shown in Table 12,the inference
speed of our model closely matches that of Llama2-
seq, which refers to recommendation prediction
using Llama2-7b (Touvron et al., 2023) with only
the item embedding attached. The inference exper-
iments were conducted on a single NVIDIA RTX
A6000 with a batch size of 16. This minimal dif-
ference in inference speed highlights the efficiency
of our approach, allowing for the potential appli-
cation of existing techniques to further accelerate
the process. Future work will focus on exploring
additional methods to optimize inference without
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altering the core transformer architecture.
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