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Abstract

Modern natural language generation (NLG)
systems have led to the development of syn-
thetic human-like open-ended texts, posing con-
cerns as to who the original author of a text
is. To address such concerns, we introduce
DeB-Ang: the utilisation of a custom DeBERTa
model (He et al., 2021) with angular loss and
contrastive loss functions for effective class
separation in neural text classification tasks.
We expand the application of this model on
binary machine-generated text detection and
multi-class neural authorship attribution. We
demonstrate improved performance on many
benchmark datasets whereby the accuracy for
machine-generated text detection was increased
by as much as 38.04% across all datasets.

1 Introduction

There has been considerable activity in the field of
detecting machine-generated text. Driven by the
significant growth and the increasing prevalence
of large language models (LLMs) and natural lan-
guage generation (NLG) models. This has led to
the production of high-quality human-like texts that
have brought about useful applications in many
domains such as machine translation, text sum-
marisation and data generation (Kieuvongngam
et al., 2020; Goyal et al., 2022; Iyer et al., 2023;
Uchendu et al., 2021). Irrespective of the many
useful applications, the deployment of NLG mod-
els has concurrently given rise to serious concerns
such as plagiarism, and spreading misinformation
and hate speech (Pu et al., 2022; Hu et al., 2023;
Qadir, 2022; Solaiman et al., 2019). Therefore, the
need to discriminate between human and machine-
generated text becomes paramount, especially in
light of the growing sophistication and rapid up-
dates of these models.

Given the diverse applications of NLG models,
authorship attribution (AA) methods have been in-
creasingly employed to detect the original author

of synthetic data generated by machines (Ai et al.,
2022; Uchendu et al., 2020; Jawahar et al., 2020).
The main concern with traditional AA methods
is that, typically, they are feature-based systems
and consist of largely document-specific features.
Therefore, the application of this traditional model
is often author, dataset and model-specific (Sari,
2018; Ai et al., 2022). Previous research addressed
the need for generalisable detection systems to
identify machine-generated text (Fagni et al., 2021;
Jakesch et al., 2023; He et al., 2024; Jawahar et al.,
2020). Research involving the use of LLMs in
authorship attribution has demonstrated that the
simple fine-tuning of pre-trained language models
can surpass the accuracy of traditional methods sig-
nificantly (Fabien et al., 2020; Mitrović et al., 2023;
Fagni et al., 2021).

In particular, we introduce DeB-Ang, a pre-
trained DeBERTa model with a specialised angular
loss and contrastive loss integration. Additionally,
we demonstrate improved classification when ap-
plying DeB-Ang to several well-known machine-
generated text and authorship attribution datasets.
Contrastive learning is an unsupervised representa-
tion learning technique, aiming to learn a represen-
tation of data such that similar instances are close
in the representation space whereas dissimilar in-
stances are far apart (Aljundi et al., 2022). Loss
functions are crucial in contrastive learning as they
quantify the similarity and dissimilarity between
pairs, guiding the model to learn meaningful repre-
sentations for class discrimination (Hadsell et al.,
2006; Gao et al., 2022; Wang et al., 2017). How-
ever, recent studies suggest that various loss func-
tions, including cross-entropy loss, contrastive loss
and triplet loss, fail to consider the intrinsic angular
distribution exhibited by the low-level and high-
level feature representations (Choi et al., 2020),
which contributes to our choice of using angular
loss in DeB-Ang. Angular loss is a scale-invariant
loss function designed to improve the learning sim-
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ilarity metrics by considering the angle between
vectors (Wang et al., 2017).

In summary, the contributions of this work are
four-fold:

1. We propose a novel customisable contrastive
learning framework that combines a custom
fine-tuned DeBERTa model (He et al., 2021)
with contrastive and angular loss functions.
We assess the difference in classification per-
formance when utilising various combinations
of the aforementioned loss functions for the
proposed task.

2. We assess the application of the proposed
model on multi-class authorship attribution
and binary machine-generated text detection.

3. We introduce three new large-scale datasets
for evaluating text classification models.
These datasets were constructed by leveraging
state-of-the-art language models, including
Gemma-7b (Team et al., 2024), GPT4-Turbo
(OpenAI, 2023) and Flan-T5-Large (Chung
et al., 2022).

4. We conduct linguistic error analysis of incor-
rectly and correctly classified examples.

2 Related Work

2.1 Machine-generated text detection

Studies have demonstrated that human partici-
pants were unable to distinguish between machine-
generated texts and human written texts (Jakesch
et al., 2023; Islam et al., 2023; Ippolito et al., 2020;
Dugan et al., 2020, 2022). Previous work high-
lighted that disambiguating between human and
LLM-generated texts is increasingly difficult (Pu
and Demberg, 2023; Jakesch et al., 2023; Cox,
2005). Automatic detection of machine-generated
text has thus gained popularity and can be cate-
gorised according to their underlying method (So-
laiman et al., 2019; Uchendu et al., 2020; Fagni
et al., 2021; Bakhtin et al., 2019; Ippolito et al.,
2020). Simple classifiers often involve linguistic
feature analysis (Dugan et al., 2020, 2022) or in-
corporate a psycholinguistics statistical measure
(Venkatraman et al., 2024). Other methods include
zero-shot detection (Solaiman et al., 2019), and
fine-tuned model detection (Uchendu et al., 2020;
Ippolito et al., 2020; Fagni et al., 2021; Adelani
et al., 2019; Tay et al., 2020; Zellers et al., 2021).
Irrespective of the large number of approaches to
identifying machine-generated texts, detection re-
mains a challenge (Crothers et al., 2023; Ai et al.,

2022).

2.2 Authorship Attribution

Traditional attribution approaches utilise linguistic
features in a univariate (utilising a single linguis-
tic feature, e.g. function words) (Martindale and
McKenzie, 1995) or multivariate (utilising multi-
ple linguistic features, e.g Writeprints) approach
(Abbasi and Chen, 2008; Sari, 2018). As aforemen-
tioned, feature-based linguistic identification re-
quires dataset-specific engineering, displaying lim-
ited scalability (Sari, 2018; Ai et al., 2022). More
recently, the use of learning-based approaches has
grown with the use of pre-trained LLMs (Fabien
et al., 2020). These approaches have demonstrated
the power of LLMs in significantly surpassing the
accuracy of traditional approaches with little analy-
sis required beforehand (Ai et al., 2022).

2.3 Research gaps

Existing approaches in detecting synthetic texts
created by LLMs have many limitations. For exam-
ple, these detection tools are now outdated due to
rapid technological advancements, e.g., DetectGPT
classifies texts only generated by GPT2 (Mitchell
et al., 2023). This necessitates classifier retrain-
ing which could negatively affect the accuracy of
these models (OpenAI, 2023). Additionally, the
increased advancements of NLG models have led
to more human-like texts. Further, these models are
LLM-specific and therefore, do not detect synthetic
texts generated by other language models. Also,
these methods have a black-box nature, making it
difficult for humans to understand their output for
correctly and incorrectly classified texts. Given the
increasing prevalence of machine-generated texts,
it is vital that we are able to distinguish which NLG
model was used to generate a given text. We extend
this to being able to detect the exact model version.

3 Data

3.1 Data collection

There is a strong consensus that datasets must be
diverse and representative (Tang et al., 2023). To
this end, we chose to utilise datasets with original,
human-written texts; different versions of each text
are then generated with the aid of LLMs which
were given carefully designed prompts. Datasets
were taken from Kaggle and the Turing Test bench-
mark known as TuringBench (Uchendu et al.,
2021). The TuringBench dataset consists of ar-
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ticles generated by 20 authors. There are a total of
20 datasets from 19 different NLG model versions
and one human author. The DAIGT-V2 dataset
consists of 37 authors (36 NLG models and one
human author, with 60K texts). Further dataset
details can be seen in Appendix A in Table 7. All
datasets utilised were generated for the proposed
tasks.

Specifically, we utilised 5 randomly selected
datasets from TuringBench datasets. We opted
to use one dataset per model. For example,
there are two datasets generated by XLNET. The
exact model verions are XLNET_base and XL-
NET_large. Therefore, we employ only one of
these model versions. We randomly sampled the
dataset due to limited computational resources. De-
tails of the specific processing steps and size of
the data taken for each of the different datasets
are provided in Section 5. Table 7 in Appendix
A presents—for each dataset that we utilised—the
dataset name, source and the models that were used
to generate the texts contained in each dataset.

3.2 Data Generation

We also generated our own datasets by using GPT4-
Turbo (OpenAI, 2023), Gemma-7b (Team et al.,
2024) and Flan-T5-large (Chung et al., 2022). The
TuringBench dataset set consists of 19 different
NLG model versions however, these models are
no longer considered state-of-the-art models. We
decided to generate three additional datasets from
more recent models which are considered to be the
current state-of-the-art and were not included in
the original TuringBench dataset. This dataset set
is referred to as TuringExtended. This enables the
examination of MGT and AA within the context
of newer NLG models, underpinning the explo-
ration as to whether newer NLG models are more
challenging to identify as machine-generated.

Specifically, additional datasets were generated
as an extension of TuringBench (Uchendu et al.,
2021). Considering only the human-written texts
from the original AA dataset from TuringBench,
we extracted only a total of 7678 (non-duplicated)
rows of text. The models that we employed
are GPT4 Turbo1 (He et al., 2021), Gemma-7b2

(Team et al., 2024) and Flan-T5-large3 (Chung
et al., 2022), resulting in the creation of three new

1https://platform.openai.com/docs/models
2https://huggingface.co/google/Gemma-7b
3https://huggingface.co/google/flan-t5-large

GPT4-Turbo Gemma-7b Flan-T5-Large
BERTScore P 83.30 92.32 90.51
BERTScore R 84.11 95.55 83.98
BERTScore F1 83.70 93.88 87.08

IAA 88.64 89.30 84.64

Table 1: Averaged BERTScore Precision (P), Recall
(R) and F1-score (F1) for the datasets generated by the
specified models. Inter-annotator agreement (IAA) is
also provided.

datasets. The models were given the prompt “gen-
erate a similar article”, which is slightly similar
to what was used in TuringBench (“generate an
article similar to the human-written one”).

The three models for generation (GPT4-Turbo,
Gemma-7b and Flan-T5-large) were chosen on the
basis that they were either the current state-of-the-
art models, or that they were not previously em-
ployed in creating the TuringBench datasets.

3.3 Data Evaluation

We evaluated the quality of the generated data
using a combination of the automated metric
BERTScore (Zhang et al., 2020) and human eval-
uators. BERTScore calculates token similarity us-
ing contextual embeddings to calculate the similar-
ity between tokens in the candidate and reference
text. This metric has demonstrated an advanced
performance by correlating strongly with human
judgement in various evaluative tasks (Zhang et al.,
2020). In parallel, four human annotators were
trained on evaluating generated text and were pro-
vided with some background information on text
generation. Each annotator assessed 250 rows from
each dataset and was asked to label the data as co-
herent (0) or incoherent (1). For a data sample to
be labelled as coherent it had to meet two criteria:
texts should be semantically and grammatically
sound. Inter-annotator agreement (IAA) was then
measured between all annotators for each dataset.
The averaged BERTScore precision, recall and F1-
scores, and IAA results are presented in Table 1.

4 Methodology

4.1 Loss Functions

Previous studies have focussed on increasing sim-
ilarity between representations by using vary-
ing loss functions (Ai et al., 2022; Vygon and
Mikhaylovskiy, 2021). However, many approaches
focus on the utilisation of a single loss function.
In this paper, we propose a multi-loss fusion by
using the weighted sum of a combination of vari-
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ous loss functions: angular loss, cross-entropy loss
and contrastive loss. Cross-entropy loss measures
probability distributions; the objective is to min-
imise the error between the predicted probability
and true distribution (Mao et al., 2023). This is
used in updating the model weights during optimi-
sation. Angular loss, often used in deep learning
tasks (Wang et al., 2017; Kim et al., 2023, 2021;
Choi et al., 2020), considers the angle between
vectors to enhance learning for an improved simi-
larity metric. The utilisation of angular loss in text
classification often leads to more adaptable and
robust models capable of handling linguistic diver-
sity (Gao, 2022; Hui et al., 2019; Wang et al., 2017;
Deng et al., 2019). Contrastive learning focusses
on learning representations of data so that similar
instances are closer in the embedding space and
dissimilar instances are apart (Tan et al., 2024).

4.2 Problem Statement

The goal of our approach is to capture nuanced
semantic representations and to effectively discrim-
inate learned embeddings. We propose leveraging
the DeBERTa model with angular and contrastive
loss integration (DeB-Ang). This process aims to
enhance the discriminative capabilities and quality
of embeddings to improve the model’s performance
on downstream classification tasks.

4.3 Implementation

Our textual datasets underwent cleaning and pre-
processing procedures. A 70:10:10 split was ap-
plied to partition the data into a training, validation
and test sets for model evaluation.

Building upon the DeBERTa base model
(microsoft/deberta-base), we implemented a
new model, DeB-Ang, that integrates the angu-
lar and contrastic loss into the training step. The
model was implemented using PyTorch (Paszke
et al., 2019) and Simple Transformers4 and was
configured with specific hyperparameters (See Ap-
pendix B); additionally, early stopping criteria were
set to improve training efficiency.5

4.4 Angular Loss Computation

The angular loss function begins by computing
the cosine similarity between all pairs of extracted
embeddings. Positive and negative pairs are then

4SimpleTransformers: https://simpletransformers.
ai/docs/classification-specifics/

5Code and data: https://github.com/iqrazahid05/
DeB-Ang/

generated to ensure the model can distinguish be-
tween embeddings with the same and different la-
bels. Subsequently, we compute the loss for pos-
itive and negative pairs in order to optimise em-
beddings to have lower similarity for pairs with
different labels and higher similarity for those with
the same. This ultimately decides their position
in the embedding space. The sum of positive and
negative loss creates a complete loss function. This
function, given below, guides the optimisation to
achieve embeddings that have properties of similar-
ity and dissimilarity.

LAngular =

n∑

i=1

log


∑

j ̸=i

esij


− log


∑

j ̸=i

esji




where:
• n is the number of embeddings;
• sji is the cosine similarity between embed-

dings i and j;
• The first term encourages embeddings from

different classes (negative pairs) to have lower
cosine similarity;

• The second term encourages embeddings
from the same class (positive pairs) to have
higher cosine similarity.

4.5 Contrastive Loss Computation

Generating positive pairs facilitates the learning of
intra-class relationships by allowing embeddings
with the same labels but different indices to be con-
sidered for optimisation. Generating negative pairs
enhances the discrimination capability of these em-
beddings. We compute the loss for positive and
negative pairs. This allows embeddings of similar
instances to be pushed closer to each other in the
embedding space, whereas negative embeddings
push them apart thus improving intra-class clus-
tering and inter-class separation. Combining the
positive and negative loss, as shown below, guides
the model to learn embeddings that capture both
intra-class relationships and inter-class distinctions.

LContrastive =
∑

i,j

yijdij+(1−yij)max(0,m−dij)

where:
• yij is a binary label indicating whether em-

beddings i and j belong to the same class (1)
or different classes (0);
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• dij is the distance between embeddings i and
j;

• m is a margin hyperparameter;
• For positive pairs (yij = 1), the loss is dij , en-

couraging embeddings to be closer together;
• For negative pairs (yij = 0), the loss is
max(0,m − dij), encouraging embeddings
to be apart by at least a distance of m.

4.6 Our DeB-Ang Model

In the DeB-Ang model, we utilise three loss func-
tions, as shown in the equation below: angular loss,
cross-entropy loss and contrastive loss. Angular
loss is used to facilitate intra-class compactness
and inter-class separation. Within our model, we
utilise cross-entropy loss to penalise the models’
misclassification by computing the difference be-
tween predicted and actual labels. Cross-entropy
is the standard loss function that was incorporated
into the DeBERTa model. Constrastive loss en-
hances the embeddings’ discriminative abilities by
encouraging similarity for positive pairs and dis-
similarity for negative pairs.

LTotal = wCELCE

+ wAngularLAngular

+ wContrastiveLContrastive

where:
• LTotal is the total loss function used for train-

ing the DeBERTa model;
• LCE is the standard cross-entropy loss for

classification tasks, calculated as LCE =
−∑n

i=1 logP (yi|X), where X is the input
sequence and yi is the true label for the i-th
example;

• LAngular is the angular loss based on cosine
similarity;

• LContrastive is the contrastive loss;
• wCE , wAngular, and wContrastive are the cor-

responding weights for each loss component,
allowing for fine-tuning the contribution of
each loss value during training.

This combined loss function incorporates three
learning objectives:

1. The cross-entropy loss which ensures that the
model learns to correctly classify the input
sequences based on the true labels.

2. The angular loss which encourages the model
to learn more separated representations for dif-

Tokenizer

DeBERTa 
Transformer Layers

Token
Embeddings

Classification
Layer

Angular 
Loss

Contrastive 
Loss

Cross-
Entropy Loss 

= Total Loss 

Back 
PropogationInput text

Logits

True Labels

++

Figure 1: Architecture of the DeB-Ang model highlight-
ing loss computation within DeBERTa.

ferent classes, based on the cosine similarity
between the embeddings.

3. The contrastive loss further enforces the sepa-
ration between inter-class embeddings, while
bringing intra-class embeddings closer to-
gether, based on the similarity calculations
and a specified margin.

By combining these three loss components, the
DeBERTa model can potentially learn more robust
and discriminative representations, leading to im-
proved classification performance on various natu-
ral language processing tasks.

As shown in Figure 1, the DeB-Ang model in-
tegrates angular and contrastive loss computations
within the DeBERTa model, detailing the flow from
data input to loss calculation and backpropagation.

4.7 Evaluation and Error Analysis
Considering the scale of the datasets, some accu-
racy values, when taken at face value, may not
demonstrate any meaningful improvement in per-
formance. Therefore, we utilise McNemar’s test
(Sundjaja et al., 2023) to demonstrate the statistical
significance of our results. McNemar’s test is a
non-parametric test that can be used in comparing
the performance of two classification models.

For error analysis, we extracted both incorrectly
classified and correctly classified data samples and
performed an in-depth linguistic analysis of the
outputs. We also computed the semantic similarity
between correctly and incorrectly classified data
by measuring the cosine similarity between the em-
beddings of the text pairs. We extracted contextual
embeddings using the same DeBERTa model.

5 Results and Discussions

5.1 Machine-generated Text Detection
In this section, we investigate binary machine-
generated text detection, whereby the task is
focussed on differentiating between human and
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Accuracy and F1-score

Contra-X Baseline DeBERTa DeB-Ang SS
(Y/N)

Min-Max
Improvement

PPLM-gpt2 99.34 99.32 99.66 99.66 99.98 100 Y 0.32 0.64
GPT1 52.66 52.66 99.89 99.93 97.92 97.92 Y 2.01 47.27

FAIR-wmt20 61.95 60.94 99.39 99.36 99.99 99.98 Y 0.60 38.04
GPT-3 97.85 97.85 98.80 98.8 99.73 99.73 Y 0.93 1.88

Grover-large 99.26 99.26 99.76 99.77 99.99 99.99 Y 0.23 0.73
transfo-xl 97.85 97.85 99.69 99.69 99.99 99.99 Y 0.30 2.14

GPT-2 small 96.57 96.57 99.82 99.82 99.52 99.54 Y -0.3 2.95

Table 2: Accuracy and F1-score for the baseline Contra-X, DeBERTa, and the proposed DeB-Ang model on various
TuringBench datasets containing texts generated by different NLG models (rows). Min-Max refers to the minimum
and maximum classification accuracy that DeB-Ang obtained for each dataset. Statistical significance (SS) between
baseline DeBERTa and DeB-Ang is either yes (Y) or no (N) according to McNemar’s test.

machine-written texts. Table 2 presents the results
for this task on a variety of datasets from Turing-
Bench. From the table, it is evident that the pro-
posed model outperforms both Contra-X (Ai et al.,
2022) and a baseline DeBERTa model with a min-
imum improvement of 0.23% and maximum im-
provement of 47.27% in accuracy. Statistical signif-
icance was computed by comparing DeB-Ang with
the baseline DeBERTa model, as they exhibited
the closest performance. The results for machine-
generated text detection for the TuringExtended
data is presented in Table 3. This demonstrates that
the DeB-Ang model can differentiate between hu-
man and machine-generated texts even if the latter
were generated by the newer NLG models, display-
ing detection accuracy over 96% for texts generated
by Flan-T5-Large, GPT-4Turbo and Gemma-7b.

From our initial experimentation, we noted that
the baseline DeBERTa model outperforms other
approaches in binary machine-generated text detec-
tion; therefore, for the remaining experiments we
proceed with baseline DeBERTa.

Accuracy and F1-score
Baseline

DeBERTa
DeB-Ang

SS
(Y/N)

Min-Max
Improvement

Flan-T5-Large 92.14 92.14 96.99 96.99 Y 4.85
Gemma-7b 99.96 99.96 99.98 99.99 N 0.02

GPT4-Turbo 72.14 72.14 99.94 99.97 Y 27.80

Table 3: Accuracy and F1-score for the baseline De-
BERTa and the proposed DeB-Ang model for TuringEx-
tended. Min-Max refers to the minimum and maximum
classification accuracy that DeB-Ang obtained for each
dataset. Statistical significance (SS) between baseline
DeBERTa and DeB-Ang is either yes (Y) or no (N) ac-
cording to McNemar’s test.

The results for the DAIGT-V2 dataset can
be seen in Table 5. This improvement demon-

Accuracy F1 SS (Y/N)
Syntax-CNN 66.13 64.80 Y
BERT-AA 78.12 77.58 Y
Contra-X 80.73 80.54 Y
Baseline DeBERTa 77.71 77.56 Y
GPT-who 65.89 65.39 Y
DeB-Ang 83.61 82.68 -

Table 4: Accuracy and F1 for the authorship attribution
(AA) dataset from TuringBench (Uchendu et al., 2021)
comparing various AA approaches. McNemar’s test
was conducted to see if the result between DeB-Ang
and all other models is statistically significant (SS) or
not.

strates the models’ generalisability across various
NLG datasets, for both older and newer models.
Uchendu et al. (2021) comments “No one size fits
all” in their study as they used several models on
these datasets and found that different models ob-
tain different levels of performance, depending on
the dataset. However, as presented in Table 2, it is
clear that the model consistently outperforms our
baseline models on all datasets.

5.2 Authorship Attribution

In assessing the generalisability of the DeB-Ang
approach on various text classification settings, we
present the following authorship attribution tasks:

1. Authorship attribution for human and
machine-generated text detection.

2. Authorship attribution for model variation de-
tection, e.g. differentiating between GPT-3.5
and GPT-4.

3. Authorship attribution for model developer
detection, e.g. OpenAI for GPT-4 and GPT-
3.5.

The results for each task is presented in Table 5

7194



Baseline DeBERTa DeB-Ang Accuracy
ImprovementTask Model Accuracy F1 Accuracy F1

Machine-generated text detection 82.69 90.53 91.36 92.31 8.66
Authorship attribution [37] 86.00 85.96 87.80 87.79 1.80

Model detection

Open AI [10] 88.64 88.64 91.75 91.75 3.11
Meta [13] 42.27 42.29 47.95 47.51 5.68
Google [7] 56.96 56.55 57.60 57.78 0.64

Anthropic [2] 95.63 95.58 99.03 99.03 3.40
Mistral [4] 93.15 93.39 93.96 95.12 0.81

Developer detection All [5] 89.78 89.78 92.98 92.98 3.20

Table 5: Table presenting evaluation results on the DAIGT-V2 dataset, including authorship attribution scores for all
NLG models, machine-generated text detection (human vs. machine), model detection (distinguishing between
different model variations), and authorship attribution for model developers. The numbers in brackets (e.g., “Open
AI [10]”) indicate the number of classes (i.e., the number of models).

under authorship attribution, model detection and
developer detection, respectively.

From Table 4, it is evident that our approach
also surpasses prior attempts on the TuringBench
dataset. As previously mentioned, this dataset con-
sists of texts generated by 20 different authors (a
total of 200K texts from 19 NLG models and 1
human author) with high topical dissimilarity be-
tween each model. This dissimilarity is expected
as the dataset was generated in certain topic set
(Ai et al., 2022; Uchendu et al., 2021). Results for
Syntax-CNN were taken from Ai et al. (2022) and
all experiments were run using the full dataset. For
the DAIGT-V2 dataset, we downsized the data to
approximately 10K rows per model. This reduction
was necessitated due to the dataset’s size, which de-
manded significant computational resources. In Ta-
ble 5, it can observed that the DeB-Ang model out-
performs the baseline DeBERTa model with an ac-
curacy improvement of 1.80% in authorship attribu-
tion and 8.66% in machine-generated text detection.
To delve deeper into the machine-generated text re-
sults from the baseline DeBERTa, we conducted
an analysis focussing on the disparity between the
accuracy and F1-score. This involved computing
the Area Under the Receiver Operating Characteris-
tic (AUROC) score and assessing misclassification.
Our analysis revealed that the model exhibited a
considerable number of false positives, incorrectly
predicting a majority of human-written texts. The
AUROC score was determined to be 50.12 whereas
the AUROC score for DeB-Ang was 88.14 indi-
cating DeB-Ang’s superior discrimination capabil-
ities. We also address the previously mentioned
limitation regarding the scarcity of research in clas-
sifying models from a single developer; our results
are provided in Table 5. We investigate a range

of developers and models varying from older to
newer model versions. We were able to improve
results from baseline DeBERTa for this task by
0.64% to 5.68%. The low accuracy observed for
Meta and Google models can be attributed to the
high similarity between the model variations used,
e.g., Llama-2-7b and Llama-2-13b. This makes
distinguishing between these version challenging,
leading to misclassification. Further investigation
is necessary to comprehensively understand the
reasons for misclassification. We were also able to
classify generated texts according to model devel-
oper with an accuracy as high as 92.98%.

As mentioned in prior research, classifying a
range of outputs, e.g. texts with high topic varia-
tion, is an increasingly difficult classification task
(Uchendu et al., 2021; Juola, 2008). Furthermore,
it is important to note that TuringBench consists
of texts from multiple sources. Additionally, some
models generate many texts; this can decrease per-
formance as there can be semantics and stylistic
overlap between generated texts. This similarity
between texts can blur distinctions thus, reducing
classification capabilities.

5.3 Assessing loss functions

To assess the significance of the loss functions used,
we investigated various combinations of loss func-
tions on the multi-class authorship attribution and
binary machine-generated text detection tasks. The
results are presented in Table 6. We provide the ac-
curacy, F1-score and AUROC scores for these tasks
obtained by the DeB-Ang model. We ran each ex-
periment for one epoch for initial benchmarking to
assess each models performance. This allowed us
to identify the which approaches we would use for
further investigations. We identified the optimal
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parameter combination for the loss functions for
each task and re-ran the experiment for 8 epochs.
The aim of this investigation is to assess the perfor-
mance improvement resulting from the various loss
functions. This also highlights the customisability
of the model. We extend the metrics by adding the
AUROC score as this metric considers the trade-
off between precision and recall (McDermott et al.,
2024).

Task Loss function Accuracy F1 AUROC

Authorship
Attribution

ANG 86.37 86.42 97.88
CL 86.72 86.63 98.11
CE 86.87 86.71 98.00

ANG + CE 86.51 86.54 98.12
CL + CE 86.72 86.78 98.07

ANG + CL 87.02 87.08 98.12
ANG + CE + CL

(1.0; 1.0; 1.0)
86.35 86.41 97.97

ANG + CE + CL
(1.0; 0.25; 1.0)

87.13 87.22 98.15

8 epoch ANG + CE + CL
(1.0; 0.25; 1.0)

88.8 88.06 98.5

Binary machine-generated
text detection

ANG 94.49 94.86 95.61
CL 88.15 89.19 72.58
CE 91.69 92.33 92.83

ANG + CE 90.87 91.89 77.00
CL + CE 91.6 92.47 90.89

CL + ANG 94.18 94.61 95.61
ANG + CE + CL

(1.0; 1.0; 1.0)
90.76 91.92 87.57

ANG + CE + CL
(1.0; 0.75; 0.75)

82.69 90.53 78.71

8 epoch ANG + CE + CL
(1.0; 0.75; 0.75)

93.76 88.23 90.94

Table 6: Comparison of single and combined loss func-
tions for authorship attribution and binary machine-
generated text detection using the DeBERTa-based
model with varying numbers of epochs. Parameter val-
ues for all loss functions were set to 1.0 unless otherwise
specified. Key: AUROC = area under the receiver op-
erating characteristic, CE = cross-entropy loss, CL =
contrastive loss, and ANG = angular loss. The values in
brackets refer to the parameter values.

We found that a certain loss function combina-
tion may ascertain significant results at one epoch
given a simple model. However, once the model or
dataset complexity increases then a different loss
combination would be more appropriate. Angu-
lar loss has the advantage of learning embeddings
such that similar samples have a smaller angular
separation. It is vital to understand that angular
loss focusses on learning embeddings (Wang et al.,
2017) whereas cross-entropy focusses on measur-
ing the dissimilarity between predicted and true
probability distribution of classes (Teahan, 2000).
This difference may account for the accuracy differ-
ence. It is vital to note that each loss function has a
different contribution and the combination of these,
without careful tuning, may lead to sub-optimal
results.

5.4 Analysing the misclassified data

For our error analysis, 100 instances of incorrect
and correct classifications were extracted for the
binary classification task. We found that texts
were being labelled as machine-generated more
frequently than human data; this could be due to
the class imbalance or due to the NLG model’s
ability to create human-like text. While F1-scores
account for class imbalance, an imbalanced train-
ing set can still bias the model toward the majority
class.

Based on the manual analysis, there was no spe-
cific linguistic category which would clearly lead
to the misclassification. Therefore, we extracted
features from varying categories (see Table 9 in Ap-
pendix C). A total of 250 features were extracted.
100 random features were sampled and the raw
counts and mean for each feature was plotted (see
Figure 2 in Appendix C). From this plot, it is ev-
ident that there is a clear discrepancy in feature
usage. The correctly classified data points exhibit
lower feature counts and an overall lower mean
whereas the incorrectly classified data is slightly
more sporadic and exhibits an overall higher mean.
The statistical significance for these differences for
all features was computed using the Mann-Whitney
U test (Nachar, 2008) as the data was not normally
distributed (as affirmed by the Shapiro-Wilk test)
(Aryadoust and Raquel, 2020). The statistical sig-
nificance was less than 0.05 thus rejecting the null
hypothesis and confirming the difference between
the feature counts and mean for the correctly clas-
sified and incorrectly classified data is significant.

We then measured the semantic similarity be-
tween correctly classified and incorrectly classified
instances using contextual embeddings obtained
using DeBERTa. The mean similarity score for all
data points is 85.54 (minimum score of 63.22 and
maximum score of 92.64). Figure 3 in Appendix C
presents a correlation coefficient of -0.03 indicat-
ing a very weak negative linear relationship almost
suggesting no linear relationship between the data
points. This indicates that any observed differences
or similarities in the similarity score are likely due
to random variation and not a meaningful underly-
ing relationship. We conclude that the similarity
scores do not provide useful information to distin-
guish between correctly and incorrectly classified
instances.
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6 Conclusion and Future Work

In this research, we have created a custom De-
BERTa model integrating contrastive and angular
loss. To our knowledge, this is one of the first at-
tempts at this integration and we have demonstrated
the success of the proposed DeB-Ang model on sev-
eral datasets. We investigated more fine-grained
machine-generated text detection by classifying
model variations and developers. We were able to
outperform prior approaches in machine-generated
text detection with a minimum improvement of
0.23 % and a maximum improvement of 38.04%
across all datasets. We were able to classify model
variations with accuracy scores ranging from 0.64%
to 5.68%, and to identify developers with an accu-
racy improvement of 3.20%. For authorship at-
tribution, we were able to improve classification
with a maximum accuracy of 17.48% on the exten-
sive TuringBench dataset which is characterised by
high topical dissimilarity. Future work will involve
identifying texts in which multiple NLG models
or humans have been used to intentionally mask
the writing style of a text. Additionally, a more
extensive examination of linguistic features of syn-
thetic data across generations of LLMs can provide
insights into language evolution these models.

7 Limitations

Guerrero and Alsmadi (2022) lists several research
gaps in the field of machine-generated text detec-
tion e.g. domain-specific text detection. It would
be interesting to investigate texts that are cross-
domain, genre or multimodal. Further, we investi-
gated misclassified instances but did not use this
information to improve the model due to time con-
straints. The limitations associated with data gen-
eration are model-related. Data generation is a
time-consuming process and requires many com-
putational resources; we were only able to extend
our evaluation data with three datasets.

Ethics Statement

The materials used for this study did not require hu-
man participation and the data does not contain any
harmful or sensitive information. The datasets used
in this study were acquired from prior research.
The dataset generated using NLG models (Open
AI’s GPT-4 model, Gemma-7b and Flan-T5-large)
was evaluated to ensure that there is no overtly
harmful text. Data was annotated and evaluted by

PhD students, the task was explained in regards to
how data will be used and proposed tasks. Never-
theless, the potential negative use of this research
should not be ignored. The insights provided by
this work have the potential to be exploited for
malicious purposes, potentially undermining the
effectiveness of these detectors. However, we hope
that this research will be used to support the ef-
forts in detecting neural machine-generated used
in applications with malicious intent.
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Appendix A Dataset model breakdown

Dataset Source Language Models Link
TuringBench TuringBench GPT-1, GPT-2, GPT-3, GROVER, CTRL, XLM, FAIR, Transformer_XL, XLNET, PPLM TuringBench
DAIGT-V2 Kaggle LlaMa2, Darragh_Claude, Mistral7binstruct, Gemma, opt DAIGT-V2

TuringExtended Github Gemma, Flan-T5, GPT To be added

Table 7: Overview of datasets utilized in the study, detailing dataset name, source, and the language models used
to generate text. Note: While not exhaustive, datasets may encompass various iterations of a single model (e.g.,
LlaMa-7b and Llama-13b).

Appendix B Hyperparameter settings for the DeBERTa model

Hyperparameter Amended value
num_train_epochs 1 - 8
train_batch_size 16
eval_batch_size 16

gradient_accumulation_steps 4
n_gpu 1

max_seq_length 512
class_weight Equal weighting specified

early_stopping_patience 2
early_stopping_delta 0.01

contrastive_loss_weight [0.05 - 0.25 - 0.50 -0.75 - 1.00]
angular_loss_weight [0.05 - 0.25 - 0.50 -0.75 - 1.00]

crossentropy_loss_weight [0.05 - 0.25 - 0.50 -0.75 - 1.00]

Table 8: The hyperparameters used in training the DeB-Ang model. Parameter values for the epochs and loss
functions varied and the specific values used are detailed in Section 5.

Appendix C Error analysis: linguistic analysis

C.1 Linguistic features extracted

Linguistic category Feature

Character-level features
uni, bi and tri-grams, word length distribution,
number counts, text length, average word
sentence length, casing, type-token ratio

Syntactic features Part-of-speech tags, dependency tags
Word-level features Function words

Table 9: Linguistic features extracted from the correctly and incorrectly classified texts for the task of binary
machine-generated text detection.

C.2 Linguistic feature groups

7201

https://huggingface.co/datasets/turingbench/TuringBench/tree/main
https://www.kaggle.com/datasets/thedrcat/daigt-v2-train-dataset


Figure 2: Scatterplot displaying the raw counts and mean feature usage of incorrectly and correctly classified
samples.

Figure 3: Scatterplot displaying the similarity scores between each correctly and incorrectly classified data samples.
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