Ada-Instruct: Adapting Instruction Generators for Complex Reasoning

Wanyun Cui and Qianle Wang
Shanghai University of Finance and Economics
cui.wanyun@sufe.edu.cn, wql20000111@stu.sufe.edu.cn

Abstract

Instructions augmentation is a crucial step for
unleashing the full potential of large language
models (LLMs) in downstream tasks. Existing
Self-Instruct methods primarily simulate new
instructions from a few initial instructions with
in-context learning. However, our study identi-
fies a critical flaw in this approach: even with
GPT4o, Self-Instruct cannot generate complex
instructions of length > 100, which is neces-
sary in complex tasks such as code completion.

To address this issue, our key insight is that
fine-tuning open source LLMs with only fen ex-
amples can produce complex instructions that
maintain distributional consistency for complex
reasoning tasks. We introduce Ada-Instruct,
an adaptive instruction generator developed
through fine-tuning. We empirically validated
Ada-Instruct’s efficacy across different appli-
cations. The results highlight Ada-Instruct’s
capacity to generate long, intricate, and distri-
butionally consistent instructions.'

1 Introduction

Supervised fine-tuning (SFT) is crucial for harness-
ing the potential of pre-trained Large Language
Models (LLMs) in downstream tasks. Addressing
SFT’s demand for extensive training data, recent
research has employed advanced LLMs, such as
ChatGPT, to generate instructions. A prevalent ap-
proach is called “Self-Instruct” (Wang et al., 2022),
which involves having ChatGPT sequentially gener-
ate both instructions and answers (Sun et al., 2023;
Peng et al., 2023; Taori et al., 2023; Schick and
Schiitze, 2021; Honovich et al., 2022; Ye et al.,
2022; Meng et al., 2022, 2023). It efficiently gen-
erates substantial novel training samples from a
minimal number of initial samples.

However, our observations reveal a fundamen-
tal and critical limitation of Self-Instruct — it no-
tably struggles to generate complex instructions.

!Code is available at https://github.com/wangitu/
Ada-Instruct

Despite being demonstrated with long and com-
plex examples, Self-Instruct predominantly pro-
duces disappointingly brief and overly simplistic
instructions. This is evident in Figure 1(a) and Fig-
ure 1(d), where we present the length distribution
of instructions by Self-Instruct on HumanEval (pro-
gramming) and GSM8k (mathematics). The figures
expose a glaring gap: Self-Instruct fails to produce
instructions that exceed 100 and 60 tokens for Hu-
manEval and GSMBK, respectively. This limitation
significantly undermines the use of self-instruct in
more complex tasks.

Is Prompt Engineering a Solution? Despite its
widespread use in enhancing in-context learning,
prompt engineering is not the panacea it is often
made out to be (Wang et al., 2022; Sun et al., 2023;
Zhou et al., 2022; Yang et al., 2023). To encour-
age the generation of longer and more complex
instructions, we explored infusing prompts with
extra requirements, such as “generate algorithms
of intermediate level” (for HumanEval) and “the in-
structions should not be too easy” (for GSM8k).
However, as shown in Figure 1(b)1(e), this ap-
proach did not effectively solve the problem of
producing short instructions. A more advanced
variant of prompt engineering, Evol-Instruct, em-
ploys multiturn strategies to incrementally enhance
the complexity and variety of instructions. How-
ever, we will show in § 4.4.1 that Evol-Instruct is
unable to generate instructions that semantically
align with the target instruction distribution.

Has the Problem Been Solved by the More
Advanced GPT40? We performed additional eval-
uations using the advanced GPT40 model, which is
equipped with superior reasoning and long-text pro-
cessing capabilities. Figures 1(c)1(f) illustrate that
while GPT4o0 outperforms gpt-3.5-turbo-instruct in
terms of average output length on the HumanEval
benchmark, it still falls short of generating instruc-
tions longer than 100 tokens. Similarly, on the
GSM8k benchmark, GPT40 shows no marked im-

6967

Findings of the Association for Computational Linguistics: EMNLP 2024, pages 6967-6984
November 12-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/wangitu/Ada-Instruct
https://github.com/wangitu/Ada-Instruct

25 HumanEval 25 HumanEval 25 HumanEval
Self-Instruct Self-Instruct Self-Instruct
:\.; 2.0 § 2.0 ;\? 2.0
> - ;
E 15 Lc) 15 E 15
[ll) [
3 3 3
g 1.0 é‘,’ 1.0 g 1.0
w w w
0.5 0.5 0.5
0.0 0.0 0.0
] 50 100 150 200 250 300 0 50 100 150 200 250 300] 50 100 150 200 250 300
Tokens Tokens Tokens
(a) Self-Instruct with GPT-3.5-turbo- (b) Self-Instruct (prompt engi- (c) Self-Instruct with GPT-40 on Hu-
instruct on HumanEval. neered) with GPT-3.5-turbo-instruct manEval.
on HumanEval.
4.0 4.0 4.0
GSM8K GSM8K GSM8K
35 Self-Instruct 35 Self-Instruct 35 Self-Instruct
30 3.0 30
X X X
T 25 25 25
> > >
2 2 2
o 2.0 o 2.0 o 2.0
=] 3 3
T 15 o115 o 15
< < 0
[=, %10
0.5 0.5 0.5
0.0 0.0 0.0
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Tokens Tokens Tokens
(d) Self-Instruct with GPT-3.5-turbo- (e) Self-Instruct (prompt engineered) () Self-Instruct with GPT-40 on
instruct on GSMS8k. with GPT-3.5-turbo-instruct on GSMB&Kk.
GSMB&k.
4.0
HumanEval GSM8K
25 35
Ada-Instruct Ada-Instruct
g 20 @ 3.0
g 25
z o
c 15 c 2.0
[[
3 =]
T 1o g1s
I.I‘: u‘: 1.0
0.5
0.5
0.0 0.0
0 50 100 150 200 250 300 0 20 40 60 80 100 120 140
Tokens Tokens

(g) Ada-Instruct on HumanEval.

(h) Ada-Instruct on GSM8Kk.

Figure 1: Length Distribution of Different Methods. The length is measured by the number of tokens. All methods
start with the same 10 instructions. (a)(d): Self-Instruct struggles to generate complex instructions with more
tokens, even being explicitly asked to do so (b)(e). (c)(f): The more advanced GPT-4o still has this issue. (g)(h):
Ada-Instruct successfully produces instructions whose length is consistently aligned with the target distribution.

provement in its capacity to produce longer instruc-
tions. Consequently, the challenge of generating
complex instructions remains with the more ad-
vanced GPT4o.

In this paper, we unveil a novel insight into the
instruction generation capabilities. Surprisingly,
we find that even when relying solely on 10 sam-
ples, a straightforward fine-tuned model is capable
of generating instructions that align with the tar-
get task distribution. In Figure 1(g), FT models
generate instructions of length > 100 tokens for
HumanEval, and in Figure 1(h), of length > 60
tokens for GSM8k, both matching the actual distri-
bution. In addition, the generated instructions span
the target distribution (§ 4.4.1), and exhibit high
diversity (§ 4.4.2).

Based on these findings, we introduce Ada-
Instruct, a few-shot instruction generation proce-
dure for downstream tasks. We fine-tune open-
source LL.Ms using few-shot task samples for in-
struction generation, instead of ICL as in Self-
Instruct.

In summary, our contributions include (1) We
uncover a new insight into the sample generation
capabilities of self-instruct, showing that it can-
not generate complex instructions. (2) We intro-
duce Ada-Instruct, a few-shot instruction genera-
tion methodology with fine-tuning. (3) We verify
the effectiveness of Ada-Instruct through empirical
validations, showcasing its superiority in generat-
ing complex instructions that are not only longer,
but also aligned with the target distributions.

6968

Step 1:Ada-Instruct

E \ fine-tune (/) generate
£ y ' t)
few-shot open-source LM massive
initial samples as instruction generator instructions
Step 1: Previous methods
| 0,0
in-context RRRY generate
prompt
few-shot closed-source LM massive

initial samples as instruction generator instructions

Step 2: Step 3:
generate)
labels . fine-tune
IOIOI LLM
massive training

task-specific

samples model

Figure 2: How Ada-Instruct works. We fine-tune LLMs as instruction generators from few-shot initial samples (step
1), while previous self-instruct methods use in-context prompting and closed-source LLMs. We then use ChatGPT
to generate labels (step 2), and fine-tune a task-specific model with the labeled samples (step 3).

2 Related Work

Sample Generation via LLMs Recent works have
explored the use of LLMs for sample generation,
often within the self-instruction framework (Chen
et al., 2023). This typically involves starting from
an initial pool of instructions and having the LLMs
iteratively generate new instructions along with
the corresponding answers. Most prior work in
the realm of instruction generation has relied on
ICL (Wang et al., 2022; Taori et al., 2023; Sun et al.,
2023; Xu et al., 2023; Honovich et al., 2022; Meng
et al., 2022). Various studies have focused mainly
on improving the self-instruct approach in different
problem scenarios.

However, a limitation of this paradigm, as we
have observed, is that ICL lacks the capacity to gen-
erate complex samples based solely on in-context
examples. Although more intricate samples could
potentially be produced using evolutionary strate-
gies, such as Evol-Instruct (Xu et al., 2023; Luo
et al., 2023a,b), these manually designed tactics
risk generating samples that do not align with the
target task distribution.

FewGen (Meng et al., 2023) is the only method
we have identified that substitutes fine-tuning
for In-Context Learning (ICL) in sample gener-
ation. However, FewGen requires sophisticated
metalearning and is limited to classification tasks.
In contrast, Ada-Instruct is substantially simpler
and more general.

ICL vs. FT Previous exploratory studies have
aimed to compare the performance of ICL and FT
methodologies. Some research suggests that ICL

exhibits a more robust out-of-distribution general-
ization compared to FT (Si et al., 2022; Awadalla
et al., 2022; Utama et al., 2021). However, some
recent studies (Mosbach et al., 2023) argue that
these earlier comparisons may be biased. The un-
fairness arises from using different model archi-
tectures for comparison (e.g., GPT-3-based ICL
versus RoBERTa (Liu et al., 2019)-based FT) or by
basing results on small-scale models. In more eq-
uitable experimental setups, the researchers found
that FT outperforms ICL (Mosbach et al., 2023),
thereby supporting our strategy of using FT models
for instruction generation.

3 Method

Ada-Instruct is divided into three steps: 1) Learn-
ing an instruction generator and generating massive
instructions (§ 3.1), 2) generating labels with Chat-
GPT (§ 3.2), and 3) training LLMs for downstream
tasks (§ 3.3). In the following, we dive into the
details of each step. The overall workflow is shown
in Figure 2.

3.1 Learning to Generate Instructions (Step 1)

The first step focuses on learning an instruction
generator using a small set of samples. In most real-
world scenarios, obtaining large labeled datasets for
every new downstream task is infeasible. Hence,
an instruction generator serves as an intermediary,
converting small sets of samples into sufficient in-
structions for data labeling or task understanding.
Given a target downstream task 7" and a small set

of samples S = {(z1,1), (x2,42); - - -, (Tn, Yn)}
the objective is to fine-tune an initial LLM M (0)

6969

with parameters 6 to produce instructions [that
have the same distribution as the instruction X of
task 71" and are beneficial for fine-tuning.

The goal of fine-tuning is learning to generate
instructions X. Thus its objective is to optimize
the parameters 6 of the LLM to maximize the con-
ditional likelihood of the target sequences given
their corresponding instructions::

1
Lina(0) = =~ > log Pu(xilf) (1)

(z:,y:)€S

Here, Py/(x;|0) denotes the probability of observ-
ing the target instruction x; under the current model
parameters 6. 6 is initialized as the pre-trained pa-
rameters. In causal language modeling, the prob-
ability of the target instruction is represented as
the product of the conditional probabilities of the
individual tokens in it.

Generating Massive Instructions: After fine-
tuning, the instruction generator is used to generate
a large volume of instructions. The templates in
this step are provided in Appendix G.1. These
instructions serve as the basis for the subsequent
phases for generating high-quality samples.

Filtering Duplicate Instructions: As massive
instructions are generated from the LLM trained
by a few samples, one issue is whether these in-
structions are duplicated. We assume that if two
instructions are highly similar, using the two in-
structions to fine-tune the final LLM will be less
effective. To further ensure the uniqueness of gen-
erated instructions, a simple filtering mechanism
is used. This mechanism uses a pre-trained sen-
tence embedding model to calculate the semantic
similarity between generated instructions. If the se-
mantic similarity between two instructions is above
a predetermined threshold, the latter instruction
is filtered out to avoid redundancy. In this paper,
we use MPNet (Song et al., 2020) to compute the
semantic similarities.

3.2 Label Generation (Step 2)

In the second step, we leverage a high quality
closed-source LLM, ChatGPT 2, to generate la-
bels for the instructions produced in step 1. Using
ChatGPT alleviates the need for extensive man-
ual labeling, providing a cost-efficient and time-
effective way to accumulate labeled data based on
the instructions generated in step 1 (Gilardi et al.,
2023).

>We use gpt-3.5-turbo-instruct in this paper

Given the set of instructions [=
{z1,29,...,2y}, the objective here is to
generate their corresponding labels y1,y2, . - . , Ym.
For each instruction I in the set, ChatGPT gener-
ates a corresponding response, transforming I into
anew training set S = {(z1,41), -+, (Tm, Ym) }-

3.3 Training LLMs for Downstream Tasks
(Step 3)

The final step utilizes the complete training samples
S’ obtained from Step 2 to train LLMs for the target
downstream tasks.

The objective function is also a casual language
modeling loss over the given samples, adjusted to
fit the labels of the new set of samples S from Step
2. A new LLM M(0) is used for fine-tuning with
the pre-trained parameter initialization:

1

Las(0) =—— > log u(uileis6) ()

(w3,y:)€S
4 Experiments

In our experiments, we evaluate the effectiveness
of Ada-Instruct in code completion (§ 4.1), mathe-
matics (§ 4.2), and commonsense reasoning (§ 4.3).
We further analyze its distributional consistency
with the target task, assessing (1) Semantic Con-
sistency (§ 4.4.1): the alignment of generated ex-
amples with the target distribution, and (2) Diver-
sity (§ 4.4.2): the variety in instructions from 10
initial samples. We also address the concern re-
garding whether fine-tuning an open-source model
could result in diminished performance, consider-
ing that open-source models are often perceived as
less qualified compared to closed-source models
(§ 4.5). All experiments ran on a single node with
8 x A100 80GiB GPUs.

4.1 Code Completion

Setup: We utilize two widely recognized bench-
marks: HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021). For both benchmarks,
our experiments began with an initial set of 10
samples. Specifically for MBPP, these samples
were randomly extracted from its development set.
For HumanEval, which does not have a develop-
ment set, we selected 10 representative problems
from LeetCode and the MBPP development set.
This selection was aimed at closely mirroring the
difficulty level as in HumanEval. These chosen
samples were then appropriately formatted to align
with HumanEval’s query structure. We developed

6970

Model Initial SFT o 0 | HumanEval| MBPP
Data Data
Base model - - 1BB| 433 | 490
SOTA baselines
PalLM - - 540B 26.2 36.8
PaLM-Coder - - 540B 36.0 47.0
PalLM 2-S - - - 37.6 50.0
StarCoderpyhon - - 155B 33.6 52.7
StarCoderprompted - - 155B 40.8 49.5
Code-Cushmang; - - 12B 33.5 459
GPT-3.5 - - - 48.1 52.2
GPT-4 - - - 67.0 -
Self-Instruct baselines
Self-Instructyg 10 10k 13B | 47.0 (+8.5%) -
Self-Instructyppp 10 10k 13B - S1.2 (44.5%)
Evol-Instruct 20k 78k 13B 64.0(+47_8%) 55.6(+13_5%)
Ada-InstructHE 10 10k 13B | 65.2 (+50.6%) -
Ada-InstructMBpp 10 10k 13B - 55.6 (+13.5%)

Table 1: Results of pass@1 (%) on HumanEval and
MBPP, showcasing relative improvements over the
base model. Results related to Code LLAMA are
from (Roziere et al., 2023). Results of other base-
lines and from (Luo et al., 2023b). We follow (Roziére
et al., 2023) to adopt a greedy decoding strategy in Ada-
Instruct.

two models based on the instructions generated
for HumanEval and MBPP, named Ada-Instructyg
and Ada-Instructygpp, respectively. We use Code
LLAMA-Python (13B) (Roziere et al., 2023) as
our base model.

Baselines: The primary baseline is Self-Instruct.
We ensure that it utilized an identical set of initial
samples and the same quantity of SFT samples for a
fair comparison. We denote two models built on the
two generated instruction sets as Self-Instructyg
and Self-Instructyppp, respectively. Another vi-
tal baseline was Evol-Instruct (WizardCoder (Luo
et al., 2023b)), selected to evaluate the impact of
sophisticated multi-turn prompt engineering tech-
niques. We use the WizardCoder-Python-13B ver-
sion, which also uses Code LLAMA-Python (13B)
as the base model. Furthermore, our analysis in-
cluded comparisons with leading-edge models in
the field, such as PaLM (Chowdhery et al., 2022),
PalLM-Coder (Chowdhery et al., 2022), PaLM 2-
S (Anil et al., 2023), StarCoder (Li et al., 2023), and
GPTs (OpenAl, 2023), to establish a comprehen-
sive comparison with the current state-of-the-art.

Main Results: Effect of Ada-Instruct: We
show the results in Table 1. Compared to state-
of-the-art baselines, Ada-Instruct maintains a sig-
nificant advantage in effectiveness. Its pass@1

rate is second only to GPT-4. Compared to the
base model (Code LLAMA-Python), Ada-Instruct
exhibits a notable improvement in performance.
This enhancement is particularly significant on
HumanEval, where the relative increase reaches
50.6%, even when initiated with as few as 10 sam-
ples. This substantial boost underscores the adapt-
ability of Ada-Instruct, illustrating its ability to
adapt LLMs to downstream tasks. The results lend
evidence to Ada-Instruct’s efficacy in optimizing
language models for specific tasks.

Comparison with Self-Instruct We compared
the performance of Ada-Instruct with Self-Instruct
baselines. It is clear that with the same initial
samples and the same amount of SFT data, Ada-
Instruct significantly surpasses Self-Instruct in ef-
fectiveness. Ada-Instruct also shows superior per-
formance compared to WizardCoder, which uses
multi-turn prompting. Notably, WizardCoder re-
quires 20k initial samples and 78k SFT data, which
is considerably more than the sample size used
by Ada-Instruct. These comparisons validate the
superiority of Ada-Instruct over Self-Instruct in
terms of effectiveness. We will further elaborate
in Sec 4.4 that the instructions generated by Ada-
Instruct exhibit greater semantic consistency, diver-
sity, and coverage compared to those produced by
Self-Instruct and Evol-Instruct.

Generalization Abilities for Multiple Tasks
To validate its generalization ability, we also adapt
Ada-Instruct to target a domain of multiple tasks
rather than a single task. This is achieved by ex-
panding the initial sample pool to include initial
samples from different tasks. We conducted a di-
rect experiment: We used an initial sample set com-
prising 10 initial HumanEval samples and 10 initial
MBPP samples. Using these 20 initial samples, our
Ada-Instruct framework generated 10k instructions
in total. We then trained a domain model, termed
Ada-Instructpyogram. For comparison, we also tested
the performance of Self-Instruct using the same 20
initial samples and the same amount of SFT sam-
ples, denoted as Self-Instructprogram. As shown in
Table 2, it is evident that Ada-Instruct still achieves
a significant performance improvement in the tar-
get domain with just 20 initial samples, surpassing
the results of Self-Instruct.

Effect on Unseen Tasks We also assessed the
generalization capability on unseen tasks within the
code completion domain. Specifically, we tested
two scenarios:

6971

Initial SFT

Model HumanEval MBPP
Data Data

Base model - - 433 49.0

Self-Instructprogram 20 10k | 51.8196%) 47.8(:2.5%)

Ada-Instructpmgmm 20 10k 62.8(+45_()%) 54.0(+1()_2%)

Table 2: Results of pass@1 (%) on multiple code com-
pletion tasks.

Training Evaluation
Model Pass@1
ode Data Task ass
Base model - HumanEval 433
Self-Instruct 10k HumanEval HumanEval 47.0
Ada-Instruct 10k MBPP HumanEval 60.4
Base model - MBPP 49.0
Self-Instruct 10k MBPP MBPP 51.2
Ada-Instruct 10k HumanEval MBPP 524

Table 3: Results of pass@1 (%) on unseen code com-
pletion tasks.

1. Utilize 10 initial HumanEval instructions and
generate 10k SFT instructions. Then evaluate
the fine-tuned model on MBPP.

2. Utilize 10 initial MBPP instructions and gen-
erate 10k SFT instructions. Then evaluate the
fine-tuned model on HumanEval.

As presented in Table 3, Ada-Instruct demon-
strates robust generalization abilities on unseen
tasks, even outperforms self-instruct which was
trained on the target task.

4.2 Math

Setup: We evaluated Ada-Instruct on two bench-
marks: GSM8k (Cobbe et al., 2021) (easier) and
MATH (Hendrycks et al., 2021) (harder). We
randomly sampled 10 instructions from the train-
ing set of each benchmark as the initial samples.
We require that the 10 MATH samples not be re-
lated to drawing scripts. We developed two mod-
els based on the instructions generated for each
benchmark, named Ada-Instructgsmgy and Ada-
Instructyiaty, respectively. The base model used
here was LLAMA 2.

Baselines: We employed Self-Instruct as the
baseline. The models developed using initial in-
structions from GSM8k and MATH are respec-
tively denoted as Self-Instructgsmgx and Self-
Instructyary. We have omitted the compari-
son with Evol-Instruct, as its implementation in

WizardMath (Luo et al., 2023a) already incorpo-
rates GSM8k and MATH as part of their training
datasets.

Initial SFT

Model Data Data Size GSMS8k MATH
Base model 8 - 13B 28.7 39
SOTA Models
Falcon - - 40B 19.6 2.5
Baichuan-chat - - 13B 23.9 -
Vicuna v1.3 - - 13B 27.6 -
GPT3 - - 175B 34.0 52
Text-davinci-002 - - 175B 40.7 19.1
Chinchilla - - 70B 43.7 -
LLAMA 2 - - 34B 422 6.2
LLAMA 2 - - 0B 56.8 13.5
GPT-3.5 - - - 57.1 -
PalLM 2 - - 540B 80.7 343
GPT-4 - - - 92.0 42.5
Self-Instruct Baselines
Self-Instructgsmsk 10 10k 13B | 30.8 (+7.3%) -
Self-Instructyiata 10 10k 13B - 5.8 (+48.7%)
Ada-InstructGSMSk 10 10k 13B |48.7 (+69.7%) -
Ada-Instructyjarg 100 10k 13B - 8.8 (1125.6%)

Table 4: Results on GSM8k and MATH, demonstrating
relative improvements over the base model (LLAMA 2).
For the base model, we follow (Touvron et al., 2023) to
deploy 8-shot in-context learning. Results of baselines
are from (Luo et al., 2023a). The decoding strategy of
Ada-Instruct was sourced from (Luo et al., 2023a).

Effect: In Table 4, we observed a signifi-
cant performance enhancement of Ada-Instruct in
comparison with the base model. Ada-Instruct
demonstrated a relative improvement of 69.7% and
125.6% on GSM8k and MATH, respectively, com-
pared to the base model (LLAMA 2-13B). This
surpassed the performance of LLAMA 2-34B and
achieved state-of-the-art results in few-shot instruc-
tion generation models.

Comparison with Self-Instruct: In Table 4, we
also compare the performance of Ada-Instruct and
Self-Instruct. The settings for both Self-Instruct
and Ada-Instruct are kept consistent. Ada-Instruct
markedly surpasses Self-Instruct.

4.3 Commonsense Reasoning

Setup: We evaluated the effectiveness of Ada-
Instruct on CommonsenseQA (Talmor et al., 2019),
a benchmark for commonsense reasoning. We ran-
domly selected 10 samples from the training set
to serve as initial samples. We choose LLAMA
2-13B as our base model.

6972

Initial

SFT

Model Data Data Size Accuracy
Base Models
LLAMA 2 (0-shot) - - 13B 59.0*
LLAMA 2 (1-shot) 1 - 13B 62.8*
LLAMA 2 (7-shot) 7 - 13B 67.3
LLAMA 2 (10-shot) 10 - 13B 68.1*
SOTA Models
GPT-NeoX - - 20B 60.4
BLOOM - - 176B 64.2
OPT - - 66B 66.4
BloombergGPT - - 51B 65.5
ChatGPT - - - 74.0
Self-Instruct Baselines
Self-Instruct 10 10k 13B T1.4%421.0%)
Evol-Instruct 52k 250k 13B 64.0% 48 5%)
Ada-Instruct 10 10k 13B | 75.5% (25.0%)

Table 5: Results on CommonsenseQA. Results related
to LLAMA 2 are from (Touvron et al., 2023). Results
of other baselines are from (Wu et al., 2023). *: results
are tested on the dev set.

Baselines: We compare with Self-Instruct with
the same initial samples and the same amount of
SFT data. We also compare with Evol-Instruct with
the implementation of WizardLM (Xu et al., 2023)).
For a fair comparison, we used the WizardLM-13B-
V1.2 version, which also employs LLAMA2-13B
as its base model.

Results: Based on the results presented in Ta-
ble 5, we observe a substantial improvement in per-
formance attributed to Ada-Instruct. Ada-Instruct
also demonstrated superior performance compared
to both Self-Instruct and Evol-Instruct.

4.4 Analysis of Distributional Consistency

We have already illustrated in Figure 1 that Ada-
Instruct is capable of generating instructions whose
length distribution aligns with the target task. We
will now proceed to further analyze their semantic
consistency. Given that we only used 10 initial sam-
ples, our investigation particularly focuses on two
critical concerns: (1) the extent to which the gener-
ated instructions encompass the entire distribution
of the target task, rather than merely echoing these
initial examples (§ 4.4.1), and (2) the diversity of
the generated instructions, specifically examining
whether they demonstrate a broad spectrum of vari-
ation (§ 4.4.2).

301 ® s MBPP
> Initial
Ada-Instruct
201 % o, Evol-Instruct
% X
109 _ ’)
X °
ol o X X
o X X o
~10 o
—20
—301
-20 -10 0 10 20
(a) Semantic distribution of MBPP
151 HumankEval o
X Initial 2 .
Ada-Instruct
101 Evol-Instruct ° 8
‘ e X
i . ° Y (s
5 X X M AN
¢ X X . o
0 X Pa)
—54 .
-10 ‘ P .
-15 T T T T T T T
=15 -10 -5 0 5 10 15

(b) Semantic distribution of HumanEval

Figure 3: Semantic distribution of generated instructions
by t-SNE. Ada-Instruct shows better semantic distribu-
tion consistency than Evol-Instruct.

4.4.1 Semantic Distribution

We plot the semantic distribution of the initial in-
structions and the generated instructions. Addi-
tionally, we plot the distribution of the target task
for comparison, to verify whether the generated
instructions align with the target distribution. For
comparison, we also plot the distribution of instruc-
tions by Evol-Instruct. We represent the semantics
of the instructions using text-embedding-ada-002
API from OpenAl and visualized their distribution
using t-SNE (Van der Maaten and Hinton, 2008).
Figure 3 shows that the generated instructions
exhibit a consistent distribution with the target task.
The instructions of Ada-Instruct are not confined
to the vicinity of the ten initial samples but demon-
strate the capability to expand to broader regions,
aligning with the actual instruction distribution of
the target task. In contrast, the Evol-Instruct distri-
bution shows noticeable deviations from the target
instruction distribution. Such gaps are not unusual -
Evol-Instruct, which is based on multi-turn prompt

6973

5001 Self-Instruct
Ada-Instruct
4001

Count

200 4

100 -

—04 -02 00 02 04 06 08
Similarity (BERTScore)

Figure 4: Similarity score distribution. Ada-Instruct
generally has lower similarity scores than Self-Instruct,
indicating that it has high diversity.

engineering, can generate long and complex in-
structions. However, crafting prompts manually
without learning makes it difficult to fit the intended
distribution. Ada-Instruct is capable of learning to
adapt to the downstream instruction distribution.
which is essential for instruction generation. These
observations validate both Ada-Instruct’s distribu-
tional consistency with respect to semantics, and
the motivation of adapting LLMs as instruction
generators for intended tasks.

4.4.2 Diversity

Given that our instruction generator was trained
from merely 10 examples, another concern is
whether the generated instructions are sufficiently
diverse or if they overfit to a limited number of
training samples. To address this, we assessed the
diversity of the generated samples. Specifically,
we randomly sampled 10000 pairs of generated
samples for MBPP and calculated their similarity
scores. A high similarity score for a pair of instruc-
tions indicates redundancy. Therefore, for a more
diverse set of generated samples, we desire a lower
similarity score distribution. We compared the di-
versity of instructions generated by Ada-Instruct
and by Self-Instruct.

We followed the approach used in a previ-
ous work (Honovich et al., 2022) to employ
BERTscore (Zhang et al., 2019) to measure the sim-
ilarity between instruction pairs. The visualization
of the results can be seen in Figure 4. The sam-
ples from Ada-Instruct exhibited lower similarity
between pairs. This indicates that Ada-Instruct pro-
duces instructions with greater diversity. Given that
the expressive capacity of the base model for Ada-
Instruct (Code LLAMA) is evidently weaker than

56 —o— noisy
| —e— correct

100 200 400 1000 2000 4000 10000

SFT samples

Figure 5: All generated instructions (noisy) vs correct in-
structions only on MBPP. The correctness is verified by
test cases generated from gpt-3.5-turbo-instruct. Using
noisy instructions does not cause a significant perfor-
mance decline.

that of ChatGPT, this underscores the effectiveness
of Ada-Instruct in generating diverse instructions.

4.5 The Impact of Instruction Quality

Ada-Instruct typically employs fine-tuning on open-
source models, whereas Self-Instruct often uses
closed-source models (like ChatGPT) for generat-
ing instructions. It is important to note that, as of
now, the quality of open-source models generally
lags behind that of closed-source models. There-
fore, a concern with Ada-Instruct is that the quality
of individual instructions might be lower, partic-
ularly for complex tasks. In this subsection, we
investigate the actual impact on instruction quality.
We take MBPP as the object and examine how
a decline in instruction quality affects the results.
Specifically, we analyze the impact of using po-
tentially erroneous instructions generated by Ada-
Instruct (denoted as noisy samples) compared to
using correct instructions. To determine the correct-
ness of the instructions, given that MBPP samples
include both code and use cases, we test whether
the generated code passes through these cases suc-
cessfully. Instructions that do so are considered
correct samples. Among all noisy samples gener-
ated, we found that 46.9% are correct. We sampled
different scales of generated noisy samples and
correct samples, respectively, and compared the
effects of training models on them in Figure 5.
We observed that the effects on the originally
generated noisy samples are comparable to those
based on correct samples, echoing a similar find-
ing in (Honovich et al., 2022). This indicates that
the difference in effectiveness between noisy sam-

6974

80" _o_ GSMB8k (10 seed instrutions)

—6— GSM8k (200 seed instructions)

70

50

—

5k 10K 20k 50k 100k
SFT samples

Figure 6: Impact of increasing both the number of seed
samples and the number of SFT samples. Both = and y
axes are presented on a log scale.

ples produced by open-source LLMs and those
produced by closed-source LLMs might not be a
significant concern in sample generation. Even for
complex tasks like programming, the impact of us-
ing noisy instructions generated by Ada-Instruct ap-
pears to be minimal. This confirms Ada-Instruct’s
adaptability in handling instructional noise.

4.6 Scaling Up the Instructions

We further validate the efficacy of Ada-Instruct by
increasing both the number of seed samples (for
example, 200 seed instructions) and the scale of
SFT samples. Figure 6 illustrates our experimental
results on GSM8k. A larger set of seed instruc-
tions leads to improved performance. Under the
condition of 200 seed instructions, the P@1 and
the number of SFT samples exhibit a clear scal-
ing law, with room for further improvement. This
evidence substantiates that Ada-Instruct’s perfor-
mance significantly improves as the instruction size
increases.

5 Conclusion

We unveil novel insights into the capabilities of
instruction generation, demonstrating that the con-
ventional ICL-based Self-Instruct fails to generate
long and complex instructions. In contrast, we re-
veal the proficiency of fine-tuning in generating
task-aligned instructions, even with a limited num-
ber of initial samples. We introduced Ada-Instruct,
a novel few-shot instruction generation methodol-
ogy that leverages the fine-tuning of open-source
LLMs, diverging significantly from the prevalent
self-instruct strategies based on in-context learning
with closed-source LLMs. Ada-Instruct ensures
the generation of coherent, high-quality, and di-

verse instructions that align well with the target
task distribution, presenting a groundbreaking solu-
tion to the challenges of data sparsity and diversity
in instruction generation.

6 Limitations

There are a few limitations worth noting:

* Reliance on closed-source LLMs for labeling:
In the current implementation of Ada-Instruct,
the labeling step relies on a closed-source
LLM (e.g. ChatGPT). The performance and
reliability of the labeling step are subject to
the capabilities and limitations of the chosen
closed-source LLM.

* Limited evaluation on more tasks: The ex-
periments in this paper primarily focus on
code completion, mathematical reasoning,
and commonsense reasoning tasks. Further
evaluation on a wider range of tasks is helpful
to comprehensively assess the generalizability
and effectiveness of Ada-Instruct.

References

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Anas Awadalla, Mitchell Wortsman, Gabriel Ilharco, Se-
won Min, Ian Magnusson, Hannaneh Hajishirzi, and
Ludwig Schmidt. 2022. Exploring the landscape of
distributional robustness for question answering mod-
els. In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 5971-5987.

Jiaao Chen, Derek Tam, Colin Raffel, Mohit Bansal,
and Diyi Yang. 2023. An empirical survey of data
augmentation for limited data learning in nlp. Trans-

actions of the Association for Computational Linguis-
tics, 11:191-211.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

6975

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Fabrizio Gilardi, Meysam Alizadeh, and Maél Kubli.
2023. Chatgpt outperforms crowd-workers for text-
annotation tasks. arXiv preprint arXiv:2303.15056.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. 2022. Unnatural instructions: Tuning lan-
guage models with (almost) no human labor. arXiv
preprint arXiv:2212.09689.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023a. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-
wei Lin, and Daxin Jiang. 2023b. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han.
2022. Generating training data with language mod-
els: Towards zero-shot language understanding. Ad-
vances in Neural Information Processing Systems,
35:462-4717.

Yu Meng, Martin Michalski, Jiaxin Huang, Yu Zhang,
Tarek Abdelzaher, and Jiawei Han. 2023. Tun-
ing language models as training data generators for
augmentation-enhanced few-shot learning. In Inter-
national Conference on Machine Learning, pages
24457-24477. PMLR.

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Di-
etrich Klakow, and Yanai Elazar. 2023. Few-shot
fine-tuning vs. in-context learning: A fair comparison
and evaluation. arXiv preprint arXiv:2305.16938.

OpenAl. 2023. Gpt-4 technical report. arXiv, pages
2303-08774.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqging Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Timo Schick and Hinrich Schiitze. 2021. Generating
datasets with pretrained language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6943—
6951.

Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang
Wang, Jianfeng Wang, Jordan Lee Boyd-Graber, and
Lijuan Wang. 2022. Prompting gpt-3 to be reliable.
In The Eleventh International Conference on Learn-
ing Representations.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2020. Mpnet: Masked and permuted pre-
training for language understanding. Advances in
Neural Information Processing Systems, 33:16857—
16867.

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin
Zhang, Zhenfang Chen, David Cox, Yiming Yang,
and Chuang Gan. 2023. Principle-driven self-
alignment of language models from scratch with
minimal human supervision. arXiv preprint
arXiv:2305.03047.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149-4158.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-1lab/stanford_alpaca.

6976

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Prasetya Utama, Nafise Sadat Moosavi, Victor Sanh,
and Iryna Gurevych. 2021. Avoiding inference
heuristics in few-shot prompt-based finetuning. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
9063-9074.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-
badur, David Rosenberg, and Gideon Mann. 2023.
Bloomberggpt: A large language model for finance.
arXiv preprint arXiv:2303.17564.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V Le, Denny Zhou, and Xinyun Chen. 2023.
Large language models as optimizers. arXiv preprint
arXiv:2309.03409.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao
Feng, Zhiyong Wu, Tao Yu, and Lingpeng Kong.
2022. Zerogen: Efficient zero-shot learning via
dataset generation. arXiv preprint arXiv:2202.07922.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. In NeurlPS 2022 Foundation Mod-
els for Decision Making Workshop.

A Quality Analysis

To assess the quality of the generated instructions,
we evaluated whether the generated instructions are
coherent and logically sound. For this evaluation,
we used ChatGPT as an annotator. We randomly
sampled 200 generated instructions for MBPP and
CommonsenseQA. We first tell ChatGPT the task
description of MBPP and CommonsenseQA, and
then ask ChatGPT, “Do you think this instruction
is coherent and logically sound? Yes or No.” As a
baseline, we also evaluated the quality of the real
samples from the corresponding data sets as the
upper quality limit.

As can be seen in Table 6, the quality of the
generated instructions is comparable to that of the
real samples, suggesting that the generated samples
possess sufficient accuracy. Although a small frac-
tion of incorrect samples still exist, we investigated
the impact of such errors in Section 4.5.

MBPP CommonsenseQA
Generated Real Samples Ratio |Generated Real Samples Ratio

80.5% 93.0% 86.6% ‘ 62.0% 65.0% 95.4%

Table 6: Quality of generated instructions, evaluated
by ChatGPT. We compare with the real instructions,
showing that their quality are close.

B Impact of Length on Performance

Ada-Instruct’s ability to generate longer instruc-
tions that align well with the target distribution
contributes to its performance improvement. To
directly validate the benefits of longer instructions
experimentally, we selected HumanEval as the tar-
get task. We randomly sampled two sets of 5k
instructions:

1. From all instructions generated by Ada-
Instruct.

2. Only from instructions with lengths less than
90 (based on Figure 1, self-instruct rarely gen-
erates instructions longer than 90 tokens).

Length ‘ HumanEval
Length < 90 57.9
Full Length 61.0

Table 7: Comparison of pass@1 (%) results on Hu-
manEval using two distinct sets of 5k instructions.

6977

As shown in Table 7, instructions sampled from
the set that includes longer examples yield a higher
pass@1 score.

C Training Details

When fine-tuning in Step 1, we train the models for
40 epochs with 10% warm-up steps for all tasks.
We use a batch size of 10, a learning rate of le-
6, a weight decay of le-2, a cosine learning rate
scheduler, and bf16 precision for all tasks except
for MATH. We find MATH much harder than other
tasks, so we apply a lower learning rate of 8e-7 to
better adapt to the task. For all tasks under consid-
eration, we adopt the first checkpoint at which the
loss value resides within the range of 0.2 to 0.4 to
avoid overfitting. This checkpoint is selected from
the 25th, 30th, 35th, and 40th training epochs.

In Step 1 of the generation process, the tempera-
ture is set to 1 for all tasks. To enhance diversity,
we utilized top-k sampling. Specifically, for sim-
pler MBPP and CSQA, we set £ = 100, while for
more complex HumanEval, GSM8K, and MATH,
we set k = 80.

When fine-tuning in Step 3, for all tasks except
HumanEval and CommonsenseQA, we train the
LLMs for 3 epochs with a batch size of 256, a
learning rate of 2e-5, a weight decay of 1e-2 and
bf16 precision. We use a cosine scheduler with 10%
warm-up steps. For HumanEval, we adopt a lower
learning rate of 1e-5. For CommonsenseQA, we
adopt 2 training epochs and a lower learning rate
of le-5, given that the data points in this task are
much shorter than those in other tasks. Similarly to
(Roziere et al., 2023), we adopt a cosine scheduler
with 15% warm-up steps and set the final learning
rate to be 25% of the peak learning rate. We do
not apply loss masking to the instruction for all
tasks except for CommonsenseQA, as the output
for CommonsenseQA consists of only a few tokens.

D Case Study

In Table 8, we present the instructions generated by
Ada-Instruct on HumanEval. We observe that the
instructions generated by Self-Instruct are predom-
inantly short. Although Evol-Instruct can generate
longer instructions by iteratively adding constraints,
these instructions tend to be unnatural and do not
align well with the distribution of the downstream
tasks. In contrast, Ada-Instruct is capable of pro-
ducing longer instructions that align well with the
target task.

E Licenses for Artifacts

We list the artifacts used in this paper and their
licenses below:

* (Touvron et al., 2023), llama2

e (Xuetal.,, 2023; Luo et al., 2023a,b), llama2
* (Wang et al., 2022), Apache-2.0 license
This work is consistent with their intended use.

F Evaluation Strategies

F.1 Prompts for Downstream Tasks

HumanEval:

[INST] You are an expert Python
programmer, complete the function
below based on its docstring and
the given test cases:

{Question}

Your code should start with a
[PYTHON] tag and end with a
[/PYTHON] tag. [/INST]

\

MBPP:

r

[INST] You are an expert Python
programmer, and here is your task:
{Question}

Your code should pass these tests:

{Test Cases}

Your code should start with a
[PYTHON] tag and end with a
[/PYTHON] tag. [/INST]

GSMS8k and MATH:

7

[INST] You are expert at solving
math problems that require
multi-step reasoning, and here is
your task:

{Question} [/INST] Let’s think
step by step.

\.

CommonsenseQA:

[INST] You are expert at
commonsense reasoning, and here is
your task: {Question}

6978

Model Instruction

Self-Instruct ~ Given a list of words, create a dictionary to count the number of occurrences of each

word.

Evol-Instruct Create a program that can filter out words of a string that contain a specific character
and have a length greater than 3. Additionally, if the character is a vowel, the program
should replace it with the next vowel in the vowel sequence. The program should then
output the modified string, while maintaining the original word order.

Additionally, you need to handle cases where the string contains special characters or
numbers. If a word contains any special characters or numbers, it should be excluded

from the output.

Ada-Instruct You are given an array of meeting time ranges in any order. Each meeting time
ranges[i] = [start_i, end_i] means that you need attend a meeting during the time range

[start_i, end_i). Return the minimum number of conference rooms required.

Table 8: Comparison of Generated Instructions for HumanEval: Instructions from Self-Instruct are overly simplistic.
Instructions from Evol-Instruct, while longer, exhibit unnaturalness and lack alignment with the target distribution.
In contrast, Ada-Instruct successfully generates longer instructions that are consistent with the target distribution
(algorithmic problems).

A. {Text of Label A} [INST] You are an expert Python
B. {Text of Label B} programmer, complete the function
C. {Text of Label C} below based on its docstring and
D. {Text of Label D} the given test cases:

E. {Text of Label E} [/INST] The {Question}

answer is: Your code should start with a

[PYTHON] tag and end with a

F.2 Decoding Strategies [/PYTHON] tag. [/INST] [PYTHON]

For code completion tasks, to ensure comparable 1; /E?('T':ON]
evaluations, we follow (Rozicre et al., 2023) and |
report the pass@1 scores of our models within the

MBPP:

settings of greedy decoding and zero-shot.
For math tasks, to ensure comparable evalua-

r

tions, we follow (Luo et al., 2023a) and report the
pass@1 scores of our models within the settings of
greedy decoding, zero-shot, and chain-of-thought.

For CommonsenseQA, the absence of an avail-
able test set necessitates the evaluation of our
model on the development set. This evaluation
is carried out within a framework adapted from
(Hendrycks et al., 2020), and is executed in a zero-
shot and answer-only manner. To ensure an equi-

[INST] You are an expert Python
programmer, and here is your task:
{Question}

Your code should pass these tests:

{Test Cases}

Your code should start with a
[PYTHON] tag and end with a
[/PYTHON] tag. [/INST] [PYTHON]

table comparison, we also evaluate other LLAMA # pass
2 base models in this setting. [/PYTHON]
G Fine-Tuning Data Formats for
g GSMS8k and MATH:
Ada-Instruct
G.1 Step1 [INST] You are expert at solving
HumanEval: math problems that require

6979

multi-step reasoning, and here is
your task:

{Question} [/INST] Let’s think
step by step.

CommonsenseQA:

7

[INST] You are expert at
commonsense reasoning, and here is
your task: {Question}

A. {Text of Label A}

multi-step reasoning, and here is
your task:

{Question} [/INST] Let’s think
step by step.

{Output}

CommonsenseQA:

,

[INST] You are expert at
commonsense reasoning, and here is
your task: {Question}

A. {Text of Label A}

B. {Text of Label B}

C. {Text of Label C}

D. {Text of Label D}

B. {Text of Label B}

C. {Text of Label C}

D. {Text of Label D}

E. {Text of Label E} [/INST]
G.2 Step3
HumanEval:

E. {Text of Label E} [/INST] The
answer is: {Output}

\

H Prompts for Self-Instruct

[INST] You are an expert Python
programmer, complete the function
below based on its docstring and
the given test cases:

{Question}

Your code should start with a
[PYTHON] tag and end with a
[/PYTHON] tag. [/INST] [PYTHON]
{Output}

[/PYTHON]

\.

To encourage the generation of high quality and
diverse instruction, we use the following prompts
in the Self-Instruct baseline.

H.1 Prompts For gpt-3.5-turbo-instruct

HumanEval:

You are asked to come up with a
set of 20 diverse instructions on
code completion task. These

MBPP:

instructions will be given to a
Codex model and we will evaluate
the Codex model for generating

[INST] You are an expert Python
programmer, and here is your task:
{Question}

Your code should pass these tests:

{Test Cases}

Your code should start with a
[PYTHON] tag and end with a
[/PYTHON] tag. [/INST] [PYTHON]
{Output}

[/PYTHON]

\

codes that follow the
instructions.

Here are the requirements:

1. The instructions are designed
for testing the Python programming
capability to solve Python
problems. Each instruction should
describe a Python problem with
function definition, docstring,
and test cases.

2. The instructions should

GSMS8k and MATH:

[INST] You are expert at solving
math problems that require

incorporate as many Python
concepts as possible, as well as
being diverse and comprehensive.
3. The instructions should not be
too easy. Each Python problem

6980

should be solved using built-in
libraries or data structures with
algorithm of intermediate level.
4. The instructions should at
least 1 to 2 sentences long.
Either an imperative sentence or a
question is permitted.

5. The output should be an
appropriate response to the
instruction, and should take full
account of requirements and test
cases in the instruction.

6. The instructions must not
appear in mainstream evaluation
datasets for code generation, e.g.
HumanEval, MBPP, DS1000 and so on.

List of 20 tasks:
it

1. {Example 1}
H#HH#

2. {Example 2}
H#H#

3. {Example 3}
H#H#

4.

MBPP:

You are asked to come up with a
set of 20 diverse instructions on
code completion task. These
instructions will be given to a
Codex model and we will evaluate
the Codex model for generating
codes that follow the
instructions.

Here are the requirements:

1. The instructions are designed
for testing the Python programming
capability to solve basic Python
problems. Each instruction should
have a clear and distinct
solution.

2. The instructions should
incorporate as many Python
concepts as possible, as well as
being diverse and comprehensive.

3. The instructions should not be
too complicated or too easy. Each
Python problem should be solved
using built-in libraries or data
structures with algorithm of
intermediate level.

4. The instructions should at
least 1 to 2 sentences long.
Either an imperative sentence or a
question is permitted.

5. The output should be an
appropriate response to the
instruction, and should take full
account of requirements and test
cases in the instruction.

6. The instructions must not
appear in mainstream evaluation
datasets for code generation, e.g.
HumanEval, MBPP, DS1000 and so on.

List of 20 tasks:
HHH#

1. {Example 1}
#iHt

2. {Example 2}
i

3. {Example 3}
i

4.

GSMS8Kk:

You are asked to come up with a
set of 20 diverse instructions on
math problem solving task. These
instructions will be given to a
math model and we will evaluate
the math model for generating
solutions that follow the
instructions.

Here are the requirements:

1. The instructions are designed
for testing the math capability to
solve math problems that require
multi-step reasoning. Each
instruction should be accompanied
by a detailed reasoning path and a
final answer.

6981

2. The instructions should include
diverse types of grade school math
problems, as well as being diverse
and comprehensive.

3. The instructions should not be
too complicated or too easy. Each
math problem should take between 2
and 8 steps to solve, and
solutions primarily involve
performing calculations using
basic arithmetic operations (+ - /
*) to reach the final answer.

4. The instructions should at
least 1 to 2 sentences long.
Either an imperative sentence or a
question is permitted.

5. The output should be an
appropriate response to the
instruction that is in the form of
reasoning followed by the final
answer .

6. The instructions must not
appear in mainstream evaluation
datasets for math, e.g. GSM8K,
MATH and so on.

List of 20 tasks:

solve math problems that require
multi-step reasoning. Each
instruction should be accompanied
by a detailed reasoning path and a
final answer.

2. The instructions should
describe math problems in LaTex
that require knowledge such as
calculus, algebra, number theory,
counting and probability, etc.

3. The instructions should be
challenging, diverse and
comprehensive. Each math problem
should take multiple steps of
complex reasoning maybe with some
advanced mathematical knowledge
and tools to solve.

4. The instructions should at
least 1 to 2 sentences long.
Either an imperative sentence or a
question is permitted.

5. The output should be an
appropriate response to the
instruction that is in the form of
reasoning followed by the final
answer. Both the reasoning and
answer should be in the form of

H#it# LaTex. The final answer should be
1. {Example 1} placed in "$\boxed{}$".
it 6. The instructions must not
2. {Example 2} appear in mainstream evaluation
it datasets for math, e.g. GSM8K,
3. {Example 3} MATH and so on.
H#H#
4. List of 20 tasks:
. g i
MATH: 1. {Example 1}
i
f A 2. {Example 2}
You are asked to come up with a s
set of 20 diverse instructions on 3. {Example 3}
math problem solving task. These it
instructions will be given to a 4.

math model and we will evaluate
the math model for generating
solutions that follow the
instructions.

Here are the requirements:
1. The instructions are designed
for testing the math capability to

.

H.2 Prompts For gpt-4o

HumanEval:

user: You are asked to come up
with a set of 10 diverse
instructions on code completion

6982

\.

task. These instructions will be
given to a Codex model and we will
evaluate the Codex model for
generating codes that follow the
instructions.

Here are the requirements:

1. The instructions are designed
for testing the Python programming
capability to solve Python
problems. Each instruction should
describe a Python problem with
function definition, docstring,
and test cases.

2. The instructions should
incorporate as many Python
concepts as possible, as well as
being diverse and comprehensive.
3. The instructions should not be
too easy. Each Python problem
should be solved using built-in
libraries or data structures with
algorithm of intermediate level.
4. The instructions should at
least 1 to 2 sentences long.
Either an imperative sentence or a
question is permitted.

5. The output should be an
appropriate response to the
instruction, and should take full
account of requirements and test
cases in the instruction.

6. The instructions must not
appear in mainstream evaluation
datasets for code generation, e.g.
HumanEval, MBPP, DS1000 and so on.

assistant: #it#
1. {Example 1}
HHHE
2. {Example 2}
H#Hi#
3. {Example 3}
H#Hi#

user: Continue to generate the
remaining 7 instructions. The
order number of each instruction
must be preceded by "#i#".

user: You are asked to come up
with a set of 10 diverse
instructions on math problem
solving task. These instructions
will be given to a math model and
we will evaluate the math model
for generating solutions that
follow the instructions.

Here are the requirements:

1. The instructions are designed
for testing the math capability to
solve math problems that require
multi-step reasoning. Each
instruction should be accompanied
by a detailed reasoning path and a
final answer.

2. The instructions should include
diverse types of grade school math
problems, as well as being diverse
and comprehensive.

3. The instructions should not be
too complicated or too easy. Each
math problem should take between 2
and 8 steps to solve, and
solutions primarily involve
performing calculations using
basic arithmetic operations (+ - /
*) to reach the final answer.

4. The instructions should at
least 1 to 2 sentences long.
Either an imperative sentence or a
question is permitted.

5. The output should be an
appropriate response to the
instruction that is in the form of
reasoning followed by the final
answer.

6. The instructions must not
appear in mainstream evaluation
datasets for math, e.g. GSM8K,
MATH and so on.

assistant: ###
1. {Example 1}
HHH#
2. {Example 2}
H#i##
3. {Example 3}

GSMS8k:

6983

Hit#

user: Continue to generate the
remaining 7 instructions. The
order number of each instruction
must be preceded by "#i##".

6984

