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Abstract

Although Large Language Models (LLMs) are
becoming increasingly powerful, they still ex-
hibit significant but subtle weaknesses, such
as mistakes in instruction-following or coding
tasks. As these unexpected errors could lead to
severe consequences in practical deployments,
it is crucial to investigate the limitations within
LLMs systematically. Traditional benchmark-
ing approaches cannot thoroughly pinpoint spe-
cific model deficiencies, while manual inspec-
tions are costly and not scalable. In this paper,
we introduce a unified framework, AUTODE-
TECT, to automatically expose weaknesses in
LLMs across various tasks. Inspired by the
educational assessment process that measures
students’ learning outcomes, AUTODETECT
consists of three LLM-powered agents: Exam-
iner, Questioner, and Assessor. The collabo-
ration among these three agents is designed
to realize comprehensive and in-depth weak-
ness identification. Our framework demon-
strates significant success in uncovering flaws,
with an identification success rate exceeding
30% in prominent models such as ChatGPT
and Claude. More importantly, these identified
weaknesses can guide specific model improve-
ments, proving more effective than untargeted
data augmentation methods like Self-Instruct.
Our approach has led to substantial enhance-
ments in popular LLMs, including the Llama
series and Mistral-7b, boosting their perfor-
mance by over 10% across several benchmarks.
Code and data are publicly available at https:
//github.com/thu-coai/AutoDetect.

1 Introduction

The developments in Large Language Models
(LLMs) are phenomenal: such models have demon-
strated excellent performance in diverse tasks

* Equal contributions.
† Corresponding author.
2Work done when JC and YL interned at Zhipu AI.

(A). Weakness Detection (B). Model Enhancement

Figure 1: Effective weakness discovery can well guide
model enhancement. AUTODETECT can achieve high
identification success rates in the instruction-following,
mathematics, and coding tasks (A). Moreover, leverag-
ing this data can further improve LLMs (B).

(Brown et al., 2020; Zeng et al., 2022; Chowd-
hery et al., 2023; Touvron et al., 2023a; GLM
et al., 2024). After elaborate alignment (Ouyang
et al., 2022; Cheng et al., 2023; Ji et al., 2024a),
LLMs can achieve human-level performance in
real-world applications (OpenAI, 2022; Anthropic,
2023). Nevertheless, these models are prone to
making unexpected mistakes (Ouyang et al., 2022;
Bubeck et al., 2023). For instance, while LLMs are
skilled at complex algorithm problems, they may
struggle with basic coding concepts (§5.1). These
unexpected mistakes can result in unforeseen conse-
quences like system failures and significant safety
issues (Ruan et al., 2023). Consequently, systemat-
ically identifying and addressing these weaknesses
is essential to enhancing the performance and trust-
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worthiness of LLMs.
However, the journey to reveal these weaknesses

is challenging. Manual examinations rely on hu-
man experts, which are too labor-intensive and
costly to scale. Automated methods, meanwhile,
typically employ either static (Cobbe et al., 2021;
Srivastava et al., 2022; Liu et al., 2023; Gui et al.,
2024) and dynamic (Bai et al., 2024; Wang et al.,
2024) benchmarks. Unfortunately, benchmarks are
intentionally structured to assess and rank a series
of models, not to identify weaknesses inherent to
individual models. More specifically, benchmarks
are designed to be model-agnostic without counting
on specific model responses and thus inept at identi-
fying individualized weaknesses. Moreover, bench-
marks suffer from infrequent updates, data leakage
(Yang et al., 2023b; Wei et al., 2023), and leader-
board swamping (Guo et al., 2023), which further
limit their utility for thorough model-specific weak-
ness assessment.

In this paper, we introduce a pioneering unified
framework, AUTODETECT, aiming to systemat-
ically and automatically expose potential weak-
nesses within LLMs across a variety of tasks. In
our framework, illustrated in Figure 2, we adopt
a methodology analogous to educational assess-
ment systems, comprising creating comprehensive
questions to evaluate students and reviewing their
responses to identify individualized weaknesses.
AUTODETECT involves the development of a holis-
tic testing system to assess and challenge student
abilities. Moreover, this system is not static but
constantly optimized and adapted to specific model
performance, providing a tailored and effective
weakness discovery. Specifically, our framework
integrates three specialized roles implemented by
LLM-based agents:

• Examiner is tasked with building a comprehen-
sive taxonomy featuring diverse test points and
dynamically optimizing the framework based
on the target model’s performance in order to
provide a refined and tailored framework for
identifying potential weaknesses.

• Questioner is responsible for creating chal-
lenging questions according to each test point.
Through iterative explorations, this agent con-
tinually hypothesizes about the model’s weak-
nesses, effectively adapting the generation of
questions as new deficiencies emerge.

• Assessor needs to analyze the target model’s
responses and speculate on potential issues to

be incorporated into the testing system, which
is crucial to tailored assessments.

The collaboration among the Examiner, Questioner,
and Assessor fosters an extensive and effective as-
sessment process. By learning from these weak-
nesses, AUTODETECT further facilitates model im-
provements (Figure 1).

Through extensive experiments, we demonstrate
that AUTODETECT is able to perform effective
weakness exposure across a diverse range of tasks,
including instruction-following, mathematical rea-
soning, and coding, achieving an impressive identi-
fication success rate of over 50% in multiple strong
LLMs and even more than 30% in GPT-3.5-turbo
and Claude-3-sonnet. Furthermore, our weakness
identification process can effectively guide model
enhancement. Notably, by integrating about 1,000
samples derived from AUTODETECT to fine-tune
popular open-source models like Mistral and Llama
series, we have achieved over 10% improvements
across several benchmarks, showing the benefits of
learning from targeted weakness detection.

Our contribution can be summarized as follows:
• To the best of our knowledge, we are the first to

systematically explore weakness identification
in LLMs on multiple generic tasks, including
instruction-following, mathematical reasoning,
and coding, offering a unified framework for
automatic weakness detection.

• AUTODETECT has demonstrated exceptional
adaptability and effectiveness, with a success
rate of over 50% in uncovering deficiencies
across multiple models and tasks.

• AUTODETECT facilitates significant model im-
provements. Leveraging the data derived from
the weakness detection process, we can effec-
tively enhance model performance, yielding
over 10% improvements on several tasks.

2 Related Work

2.1 Evaluation Benchmarks
Numerous benchmarks (Hendrycks et al., 2020;
Cobbe et al., 2021; Chen et al., 2021; Zhou et al.,
2023; Liu et al., 2023; Gui et al., 2024) are de-
signed to evaluate various capabilities of LLMs,
as well as some dynamic benchmarks (Zhu et al.,
2023; Bai et al., 2024; Wang et al., 2024). However,
the fundamental purpose of benchmarks is to com-
pare a range of models and accurately rank them
instead of identifying specific model defects. As a
result, they are designed to be model-agnostic and
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Figure 2: Our framework comprises two cycles, with the circulation consisting of the Examiner, Questioner, and
Assessor, providing a comprehensive and tailored testing framework. Meanwhile, iterative search enables the
adjustment of question difficulty for the target model, effectively identifying weaknesses.

cannot provide a thorough discovery of particular
model flaws. Additionally, static benchmarks often
suffer from issues like data leakage (Yang et al.,
2023b; Wei et al., 2023) and leaderboard swamp-
ing (Guo et al., 2023), while dynamic benchmarks
often have trouble in coverage, and the methods
used to construct these dynamic benchmarks usu-
ally lack universality. These limitations suggest
that relying solely on benchmarks makes it chal-
lenging to thoroughly uncover model flaws, thus
failing to offer practical guidance for further im-
provements.

2.2 Red Teaming
Due to the limitations of automated methods men-
tioned above, an essential way to effectively ex-
pose weaknesses within LLMs is manual checkup,
which is similar to red teaming, an important strat-
egy in the safety domain (Deng et al., 2023; Ji
et al., 2023; Sun et al., 2023; Ji et al., 2024b) to
identify safety issues of AI systems. Early stud-
ies largely counted on manual efforts to create
red teaming queries (Dinan et al., 2019; Xu et al.,
2020). However, manual red teaming is hampered
by its high costs and inherent lack of diversity, lim-
iting its scalability. Recently, the use of language
models for automated red team attacks has been
proposed (Perez et al., 2022) and widely adopted
(Ganguli et al., 2022; Zhang et al., 2022; Chao
et al., 2023). Nevertheless, the application of auto-
mated weakness detection to general-purpose tasks
remains underexplored. In this work, we introduce
a unified framework for identifying model flaws
beyond safety issues. We have successfully imple-

mented this framework in various tasks, including
instruction-following, mathematical reasoning, and
coding, demonstrating its impressive effectiveness
and broad applicability.

3 Method

3.1 Problem Definition
Our primary objective is to develop a unified
framework, aiming to automatically and systemati-
cally identify potential weaknesses in LLMs across
generic tasks. For a given task with its description,
denoted as (T,D), the weakness identification pro-
cess can be represented as follows:

W = AUTODETECT(T,D) (1)

where W stands for the set of problems that the
target model fails to address accurately. We con-
sider these failures as model weaknesses, which
are evaluated by a strong LLM judge.

3.2 AUTODETECT Framework
The overall framework of our method is shown
in Figure 2. AUTODETECT is designed to com-
prehensively assess language model capabilities
through a specialized circular search strategy, en-
compassing three distinct roles: Examiner, Ques-
tioner, and Assessor. Each role is critical, lever-
aging the strengths of LLM-powered agents in a
collaborative manner to explore and expose weak-
nesses in target models.

As shown in Algorithm 1, the process begins
with the Examiner, who is tasked with developing
a detailed taxonomy C based on the given task and
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its description (T,D). This taxonomy is crucial as
it organizes the task into manageable, focused cate-
gories (c1, · · · , cn), each including several knowl-
edge points (k1, · · · , km), which guide the subse-
quent assessments. The structured decomposition
is essential for thorough evaluation and is repre-
sented as:

C = Examiner(T,D) (2)

Following taxonomy creation, the Questioner takes
over, generating a seed set of questions S and initi-
ating an iterative search process to craft questions
Q that probe weaknesses at each knowledge point.
The iterative process allows for adaptive question-
ing strategies that progressively increase in com-
plexity, ensuring a depth of testing tailored to each
model’s capabilities. This can be formalized as:

Q = Questioner(H) (3)

Here, H denotes the search history, starting from S,
facilitating a dynamic exploration of model weak-
nesses. Importantly, the role of the Assessor is
integral to refining the evaluation process to be-
come thorough and model-specific. As the assess-
ment progresses, the Assessor critically analyzes
instances where the target model underperforms
(indicated by low scores), identifying new potential
weaknesses, knew, expressed as:

knew = Assessor(Hlow) (4)

This insight leads to the Examiner’s dynamic re-
finement of the taxonomy, ensuring that our frame-
work stays relevant and effective at discovering
new deficiencies. The cyclical interaction among
the Examiner, Questioner, and Assessor realizes
a continuous improvement loop, making our test-
ing framework not only comprehensive but also
sensitive to the evolving capabilities of different
LLMs. Detailed descriptions of tasks and prompts
in our framework are provided in Appendix B and
Appendix C.

3.3 Iterative Search
As the collaboration among the three roles guar-
antees the coverage and model-specificity of our
framework, another crucial problem is how to ef-
fectively identify questions where the target model
underperforms. Therefore, we leverage the strong
exploration and evaluation capabilities of LLMs
(Yang et al., 2023a; Ke et al., 2023; Zheng et al.,

2024) to develop an iterative search process. Specif-
ically, we first generate five questions for each
knowledge point to create a seed set. The perfor-
mance of the target model on this set is evaluated
using a reference-based scoring method for reli-
ability (Zheng et al., 2024), where the reference
responses are provided by GPT-4. Subsequently,
we rank historical samples by scores, with lower
scores indicating poorer performance, to generate
new questions that may expose model flaws. We
then have the target model generate responses to the
proposed question and score it, adding the result to
our history collection. Through this iterative search
process, we can effectively identify low-scoring
questions, pinpointing specific weaknesses in the
target model at particular knowledge points.

3.4 Model Enhancement

The ultimate goal of weakness discovery is to help
models improve. To validate that the identified
weaknesses are non-trivial and can contribute to
model enhancement, we further fine-tune the target
model using the questions and reference answers
obtained from the weakness detection process. For-
mally, the loss function is expressed as follows:

L = − 1

N

N∑

t=1

logP (Rt|Q,R<t) (5)

Here, Q denotes the questions derived from the
search, R signifies the reference answers generated
by GPT-4, and N represents the length of R.

4 Experiments

To comprehensively demonstrate the superior per-
formance of AUTODETECT, we have conducted
extensive experiments on diverse tasks: instruction-
following, mathematics, and coding, including
weakness detection (§4.1), model enhancement
(§4.2), comparisons with baseline methods (§4.3),
and iterative weakness recovery (§4.4). Implemen-
tation details can be found in Appendix D.

4.1 Weakness Detection

We investigate three distinct tasks—instruction-
following, mathematics, and coding—to demon-
strate the generalization capabilities of AUTODE-
TECT. The instruction-following task concentrates
on providing the model with specific constraints,
like formats and content. The mathematics task
focuses on questions at a high school level, while
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Model Instruction following ISR (%) ↓ Mathematics ISR (%) ↓ Coding ISR (%) ↓ Average ISR (%) ↓Format General Overall Geometry Analysis Overall DS. MA. Overall

Open-source Large Language Models

Llama2-7b-Chat 55.3 37.8 43.3 89.8 93.3 88.8 83.3 81.1 74.8 69.0
Llama2-13b-Chat 52.4 35.0 39.7 88.6 88.9 86.1 78.9 73.3 67.5 64.4
Llama2-70b-Chat 51.3 34.9 37.3 74.1 81.1 76.9 72.2 72.2 59.8 58.0
Mistral-7b-Instruct 52.9 32.5 38.2 77.8 71.1 74.1 66.7 56.7 52.1 54.8
Llama3-8b-Instruct 42.1 19.4 27.6 61.1 68.9 60.9 45.6 50.0 41.9 43.5
Llama3-70b-Instruct 18.5 4.3 10.2 41.9 30.0 38.7 15.6 16.7 15.7 21.5

Closed-source Large Language Models

GPT-3.5-turbo 35.1 21.7 25.5 56.3 35.6 50.2 40.0 30.0 32.5 36.1
Claude-3-sonnet 29.3 12.8 19.2 45.6 42.2 43.8 37.3 32.0 29.9 31.0
Mistral Large 32.1 13.9 20.3 41.5 30.0 33.9 38.9 33.3 26.4 26.8
GLM-4-Air 32.0 9.2 17.8 33.7 26.7 33.4 32.2 45.6 28.7 26.7

Table 1: ISR on multiple LLMs across the Instruction-following, Mathematics, and Coding tasks. We showcase the
overall result and select two subtasks with the highest ISR. In each column, the highest ISR is highlighted in red
and the lowest in green. DS. denotes Data Structure and MA. refers to Mathematics and Algorithms.

Metric Accuracy (%) Fleiss Kappa

Reasonableness 98.0 0.493

Agreement 88.7 0.472

Correctness 87.3 0.439

Table 2: Human evaluation results for the AUTODE-
TECT process. We evaluate for question reasonableness,
agreement with GPT-4 evaluation, and the correctness
of generated reference. Each Fleiss Kappa is greater
than 0.4, indicating moderate agreement between anno-
tators.

the coding task focuses on Python in order to guar-
antee the correctness of the problems produced by
GPT-4.

Evaluation Metrics In the iterative search pro-
cess, we employ the scoring prompt from MT-
bench (Zheng et al., 2024), which achieves an
85% agreement rate with human annotators. In
our methodology, a score of three or below on a
scale of ten indicates an error in the target model’s
response, as we additionally ask LLM not to score
higher than three if the answer is wrong. We find
an agreement rate over 88% with humans when
judging the correctness of model responses (Table
2). Leveraging this, we define the identification
success rate (ISR) as:

ISR =
Num<4

Numtotal
(6)

where Num<4 denotes the count of responses
rated below four, and Numtotal represents the total
number of evaluations conducted.

Human Evaluation To further validate the effec-
tiveness of AUTODETECT, we conduct a manual
evaluation. We sample 150 pieces, with 50 from

each task, across all LLMs. We hire three annota-
tors to assess the following aspects:

• Reasonableness: Judging the logical coher-
ence of the generated questions.

• Agreement: Determining if agree with the la-
bels obtained using GPT-4 scoring, where a
score no more than three represents an error.

• Correctness: Assessing the correctness of the
reference answers.

The results (Table 2) show that almost all questions
generated by AUTODETECT are considered reason-
able, with over 87% of the reference answers being
correct. Moreover, there is high agreement (88.7%)
with the labels obtained based on GPT-4 scoring.
The annotation document for the evaluation process
can be found in Appendix G.

Figure 3: The change in the average score during the
iterative search process for the three tasks.

Results As shown in Table 1, we conduct flaw
exploration across multiple models and achieve
impressive ISR in various tasks, demonstrating the
effectiveness of AUTODETECT. Interestingly, the
average score and ISR align well with the Chatbot
Arena’s model rankings (Chiang et al., 2024), with
a Spearman correlation of 0.95 between the two
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Model
Instruction following Mathematics Coding

IFEval-p IFEval-i GSM8k MATH HumanEval

ori. ours ori. ours ori. ours ori. ours ori. ours

Llama2-7b-Chat 32.3 42.5 (+10.2) 46.2 54.7 (+8.5) 18.9 25.9 (+7.0) 2.5 4.7 (+2.2) 13.4 18.7 (+5.3)

Llama2-13b-Chat 34.3 43.3 (+9.0) 45.8 54.3 (+8.5) 26.9 33.7 (+6.8) 3.9 6.0 (+2.1) 17.7 24.4 (+6.7)

Llama2-70b-Chat 44.2 51.8 (+7.6) 54.3 63.5 (+9.2) 51.9 65.0 (+13.1) 6.5 12.6 (+6.1) 31.7 36.6 (+4.9)

Mistral-7b-Instruct 51.2 54.3 (+3.1) 61.6 64.7 (+3.1) 42.9 54.8 (+11.9) 4.5 12.6 (+8.1) 32.9 40.9 (+8.0)

Llama3-8b-Instruct 70.1 72.6 (+2.5) 78.3 79.7 (+1.4) 75.4 79.9 (+4.5) 23.9 27.1 (+3.2) 55.5 61.0 (+5.5)

Llama3-70b-Instruct 76.9 79.1 (+2.2) 84.1 85.5 (+1.4) 92.2 92.4 (+0.2) 42.3 46.9 (+4.6) 79.3 81.1 (+1.8)

Table 3: LLMs’ performance on different benchmarks of three fundamental tasks before and after training with data
derived from the identification process. We use prompt-level and instruction-level metrics with strict accuracy for
the evaluation of the IFEval benchmark (denoted as IFEval-p and IFEval-i, respectively).

rankings, showing the potential of our approach
as a dynamic benchmark. As illustrated in Figure
3, we present the average scores throughout the
iterative search process. The evident downward
trend in scores highlights the significant role of the
iterative method in uncovering model weaknesses.

4.2 Model Enhancement
To validate the identified flaws are meaningful and
facilitate model enhancement, we fine-tune the
models using data obtained during the AUTODE-
TECT process and evaluate them on popular bench-
marks. Importantly, we do not use any data from
the test sets.

Backbone Models The Llama series of models
(Touvron et al., 2023b; MetaAI, 2024), including
the Llama2-chat with 7b, 13b, and 70b parameters,
and Llama3-Instruct ranks the most popular. The
Mistral-7b-Instruct (Jiang et al., 2023) stands out
as one of the best-performing models of its size.

Evaluation Benchmarks In our work, we evalu-
ate the capability of instruction-following using the
IFEval dataset (Zhou et al., 2023), which consists
of 541 verifiable instructions. For mathematics,
we choose the most popular benchmarks, GSM8k
(Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021). In the coding task, we employ the widely-
used HumanEval (Chen et al., 2021) for evaluation,
which includes 164 carefully designed test cases
created by human experts.

Results As shown in Table 3, data from AU-
TODETECT process enable us to significantly im-
prove model performance. We achieve remarkable
improvements across multiple models and tasks.
Moreover, the similar performance improvements,
averaging over 6% across test sets, for various sizes

of Llama2 models confirm that our method remains
effective as the model scales. Furthermore, we
investigate the impact of using assessment data
from other models to boost the performance of the
llama2-chat-7b model. The results, as shown in
Figure 4, indicate that the effectiveness of using
targeted assessment data is obviously superior to
using gpt-3.5-turbo. We also identified a distri-
bution discrepancy in the identification data across
various target models, which is detailed in Ap-
pendix H. These findings highlight that targeted
assessment can expose specific weaknesses in mod-
els, and addressing them leads to more significant
improvements in model performance.

Figure 4: Improvement of Llama2-7b-Chat when train-
ing with identification data from GPT-3.5-turbo and
itself.

4.3 Comparison with Baselines

Baselines Self-Instruct (Wang et al., 2023) is a
widely-used method for data augmentation; OPRO
(Yang et al., 2023a) applies iterative search opti-
mization with LLMs; PAIR (Chao et al., 2023) is
a popular method in the safety field for automatic
jailbreak attacks and we transfer it to our tasks. We
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Method

Instruction Following Mathematics Coding

ISR (%) ↑ Improvement ↑ BLEU-4 ↓ ISR (%) ↑ Improvement ↑ BLEU-4 ↓ ISR (%) ↑ Improvement ↑ BLEU-4 ↓
IFEval-p IFEval-i GSM8k MATH HumanEval

Self-instruct 20.4 35.7 47.4 0.40 71.5 21.5 3.9 0.66 38.7 14.6 0.87
OPRO 72.9 34.8 47.1 0.41 93.2 21.3 4.0 0.48 95.1 14.0 0.38
PAIR 62.3 37.2 50.5 0.45 95.2 24.6 3.0 0.62 83.3 15.2 0.69
Ours 56.8 42.5 54.7 0.25 96.1 25.9 4.7 0.42 92.4 18.7 0.46

Table 4: Results of comparison with baselines. The ISR of our method is the success rate of the iterative process.
Bold indicates the best results and underline means the second best.

Iteration IFEval-p IFEval-i

Iter 0 (ori.) 34.3 45.8
Iter 1 43.3 (+9.0) 54.3 (+8.5)
Iter 2 45.4 (+2.1) 57.0 (+2.7)
Iter 3 47.1 (+1.7) 58.2 (+1.2)

Table 5: Iterative improvement of Llama2-13b-Chat on
IFEval benchmark.

implement these baselines with their standard set-
tings and maintain the same setting of training as
AUTODETECT to ensure a fair comparison.

Results As shown in Table 4 and Appendix
E, when compared to baselines, AUTODETECT

demonstrates superior performance in both identifi-
cation success rate and diversity. Self-Instruct ex-
hibits a low ISR and limited diversity. Meanwhile,
OPRO and PAIR focus on exploiting specific weak-
nesses repeatedly, resulting in unbalanced problem
distributions. While they can achieve high ISRs,
they fail to provide a meaningful assessment across
varied categories, limiting the utility for compre-
hensive weakness detection. In addition, PAIR
is three times more costly than the other meth-
ods. Moreover, considering the improvements, AU-
TODETECT outperforms others significantly, indi-
cating that AUTODETECT can comprehensively
discover various weaknesses and provide more
guidance in model enhancement.

4.4 Iterative Weakness Recovery

Since our framework can identify and help ad-
dress the weaknesses of LLMs, a natural question
arises: Can we iteratively improve the model’s per-
formance through AUTODETECT? We thus con-
duct the experiment on llama2-13b-chat in the
instruction-following task. As shown in Table 5,
we observe that AUTODETECT could consistently
improve the model with three rounds of assess-
ments. Furthermore, each iteration yields a non-
trivial improvement, demonstrating the remarkable
scalability of our approach. The improvements
on categories during iterations are detailed in Ap-
pendix I.

5 Discussion

With AUTODETECT, we systematically identify
potential weaknesses across various models. Our
comprehensive analysis reveals several notable
findings, including the limitations within LLMs
(§5.1, shown in Figure 5) and strengths of AU-
TODETECT (§5.2, shown in Figure 6), which may
facilitate further research.

5.1 Limitations within LLMs

LLMs exhibit varying performance across task
subcategories. In the mathematics task, mod-
els like gpt-3.5-turbo, mistral-large and
claude-3-sonnet exhibit remarkable abilities,
achieving over 90% accuracy in benchmarks such
as GSM8k. However, despite their strong perfor-
mance on math word problems, we find these mod-
els struggle with simple geometric-related ques-
tions. For example, angle computation problems of-
ten lead to errors. This discrepancy in performance
within the same domain demonstrates critical lim-
itations in the comprehensiveness of benchmark-
based weakness discovery.

LLMs can excel in tough tasks but may falter in
simpler ones. Our findings indicate that LLMs
can handle some difficult and complex challenges,
like coding problems involving algorithms and data
structures. However, these models show great mis-
understandings and errors in simpler and even fun-
damental tasks. For instance, an unexpected error
occurs when a model is instructed to import all
functions from a specific module, and it merely
imports the module itself. Similarly, when asked to
write a function operating a set, it adds duplicate
elements during the initialization of a set. These
issues suggest a critical flaw: LLMs’ ability in com-
plex tasks does not guarantee proficiency in simpler
operations, highlighting the necessity for further
examinations into the boundaries of LLMs’ capa-
bilities to avoid potential risks.

LLMs struggle with complex instructions and
multi-step reasoning. LLMs continue to exhibit
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Instruction: Solve the equation tan inverse 
of x equals pi/4 for x.

GPT-3.5: We know that the tangent function 
is periodic with a period of π, and its 
inverse function returns …… Therefore, the 
solutions to the equation are x = 1 and x = 
-1.

Trigonometric Function

Instruction: In triangle ABC, side a is 7, 
side b is 24, and side c is 25. Find the 
measure of angle C using trigonometric 
laws. Show all steps.

Mistral-Large: To find the measure of angle 
C in triangle ABC, …… So the measure of 
angle C is approximately 82.82 degrees. 

Trigonometric Function
Instruction: A rectangle measuring 20 cm 
in length and 10 cm in width is adjacent to a 
semicircle with a diameter equal to the 
width of the rectangle. What is the total 
perimeter of the resultant shape?

Claude-3-Sonnet: To solve this problem, 
…… Total perimeter = 60 cm + 25.71 cm = 
85.71 cm

Plane Geometry

(A). LLMs exhibit varying performance across different subcategories.

Instruction: Write a function that imports all 
functions from the 'os' module and returns 
the current working directory.

Mistral-7b: Here's a Python function that 
imports all functions from the `os` module 
…… ```python\nimport os
def get_cwd_with_os_functions(): ……

Modules
Instruction: Provide a Python function 
'swap_nested_keys' that takes a nested 
dictionary with two-level deep keys, and 
swaps the keys at the first and second 
level.
Llama2-70b: def swap_nested_keys(dct):    
first_level_keys = list(dct.keys())  
second_level_keys = [key for key in 
dct.keys() if isinstance(key, str)] ……

Data Container
Instruction: Write a Python function called 
`set_to_list` that accepts a set as input. The 
function should convert the set into a list 
maintaining the original order of elements in 
the set.

Claude-3-Sonnet: ……my_set = {3, 1, 4, 1, 
5, 9, 2, 6, 5}\nmy_list = set_to_list(my_set)
\n # Output: [3, 1, 4, 5, 9, 2, 6]……

Data Container

(B). LLMs can excel in tough tasks but may falter in simpler ones.

Instruction: Explain the importance of 
biodiversity in ecosystems. Do not use the 
words 'species', 'habitat', 'genes', 
'ecology', or 'variety'

Llama2-13b: Biodiversity is the variety of 
…… while pollinators like bees and 
butterflies are essential for the reproduction 
of many plant species ……

Word Constraint
Instruction: Return a list of five instructions 
on how to cook pasta, where the first ends 
with a period (.), the second with a question 
mark (?), the third with an exclamation mark 
(!), the fourth with a colon (:), and the fifth 
with a semicolon (;)

Mistral-7b: …… 4. Cook pasta …… then 
drain and toss with sauce. 5. ……

Punctuation Constraint

Instruction: The following is a sequence in 
which each term is created based on a 
special rule: 1, 1, 2, 3, 5, 8, 13. What will be 
the 10th term of this sequence?

GPT-3.5: To find the 10th term in this 
sequence, …… So, the 10th term in the 
sequence is 21.

Sequence of Number

(C). LLMs struggle with complex instructions and multi-step reasoning.

Figure 5: Some weaknesses within LLMs revealed by AUTODETECT. We flag the wrong parts of the responses in
red, and some responses are omitted due to space restrictions.

Instruction: In json format, present the 
story of 'The Tortoise and the Hare'. Follow 
this pattern: character, description, event 
sequence.

JSON Format

Instruction: WhO wAS tHe FIrST 
pREsIdenT oF tHE UniTed sTAtE? RansDoM 
cAse foremaT IS neEDEd.

Character Format

Instruction: …… Formulate a technical 
inquiry regarding the implications of these 
phenomena on classical theories without 
employing the words 'what', 'why', 'how', 
'where', 'when', or 'which'.

Word Constraint

(A). AutoDetect can generate creative challenges.

Instruction: Craft a palindrome that 
comprises exactly 21 characters.

Format & Length Constraint

Instruction: Create a sonnet using the 
following esoteric words: 'susurrus', 
'ululate', 'zephyr', 'equipoise', and 
'plethora'. Ensure that each word is used at 
least once ……

Format & Word Constraint

Instruction: Provide a brief explanation 
about 'Black Holes' in space using three 
affirmative sentences. Each sentence 
should start with 'In fact...'

Length & Linguistic & 
Sentence Constraint

(B). AutoDetect is capable of generating compound instructions.

Figure 6: AUTODETECT demonstrates some superior capabilities, such as generating creative and compound
instructions. We omit some instructions due to space limits.

shortcomings when it comes to executing instruc-
tions with complete accuracy, especially those com-
prising several constraints or multi-step reasoning.
They often omit parts of the instructions or make
mistakes in later steps of multi-step tasks. This in-
dicates their limited ability to perform in complex
scenarios, which is essential for agent tasks.

5.2 Superiority of AUTODETECT

AUTODETECT can generate creative challenges.
When conducting automatic weakness identifica-

tion, we find that AUTODETECT could generate
complex and unique questions that surpass typi-
cal human-written ones, especially for non-expert
annotators. For example, telling a story in JSON
format is a creative exercise, and human annota-
tors are likely to be limited in their ability to think
of such instructions. This ability to generate di-
verse, challenging questions can be used to assess a
model’s advanced capabilities and further construct
high-quality training data, thereby enhancing the
model’s performance.
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AUTODETECT is capable of generating com-
pound instructions. Interestingly, we note the
emergence of compound tasks in generated prob-
lems. In the instruction-following task, although
we do not require the model to combine different
constraints, we observe a few spontaneous com-
binations, both inter-category and intra-category
types. For instance, while LLMs perform well
in translation tasks, their effectiveness diminishes
when asked to translate into multiple languages
simultaneously.

6 Conclusion

In this work, we introduce a unified frame-
work, AUTODETECT, for identifying weaknesses
across various models and diverse tasks, including
instruction-following, mathematical reasoning, and
coding. Leveraging our method, we not only suc-
cessfully uncover specific weaknesses but also ef-
fectively enhance the model performance using the
data from the assessment process. Our results high-
light the potential of using large language models to
automatically detect and address model weaknesses
on general tasks, helping us better understand the
boundaries of model capabilities and paving the
way for automatic LLM alignment.

Limitations

Despite the strong capabilities of AUTODETECT

in identifying and addressing LLMs’ weaknesses,
showing the potential of leveraging AI to align AI,
we want to discuss some known limitations, which
need to be resolved through future research.

Enhancing the robustness of AUTODETECT.
Even though the human evaluation results show
most generated problems are reasonable, a small
number of illogical questions, such as unsolvable
math problems, may still occur. In addition, while
our experiment shows that AUTODETECT can sta-
bly discover model weaknesses with high ISR in
repeated experiments (Appendix F), the problems
detected vary. This may need to be further vali-
dated with larger-scale weakness identifications.

Identifying weaknesses in more advanced mod-
els. Although AUTODETECT can identify weak-
nesses in strong LLMs such as GPT-3.5 and Claude-
3, the current framework—comprising three agents
tasked with pinpointing weaknesses and generating
data for model enhancement—heavily relies on the

efficacy of a strong LLM. Consequently, the effec-
tiveness of AUTODETECT in detecting weaknesses
is intrinsically limited by the agents’ capabilities.
When the target model’s performance is on par
with or surpasses that of the agents, uncovering its
vulnerabilities becomes markedly more challeng-
ing. This challenge is exacerbated in self-evolution
scenarios, where self-evaluation bias (Zheng et al.,
2024; Panickssery et al., 2024) can lead the model
to overrate the quality of its own outputs. Innova-
tive approaches are necessary to break these con-
straints and mitigate self-evaluation bias, which
remains an underexplored area of research. We
leave this for future work.

Ethical Considerations

In the weakness discovery process, AUTODETECT

generates test cases from scratch without using
any existing datasets, and there are no license is-
sues. Our work focuses on generic tasks and does
not involve security tasks, so there are no security
concerns. AUTODETECT is designed to discover
models’ weaknesses in general tasks, thus helping
figure out the potential issues of LLMs and improv-
ing their robustness. AUTODETECT is designed
to identify vulnerabilities in models across general
tasks, allowing for the detection of potential issues
within LLMs, ultimately aiding in their robustness
enhancement. In the human evaluation process, we
hired three Chinese annotators, made the payment
according to the regional standard, and informed
the purpose of the experiment.
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A AUTODETECT Algorithm

The overall process of AUTODETECT is shown in
Algorithm 1. AUTODETECT primarily consists of
two cycles and involves three roles: the Examiner,
the Questioner, and the Assessor. The interaction
among these LLM agents realizes a comprehensive
and targeted assessment framework. Moreover, the
iterative search conducted by the Questioner guar-
antees the effectiveness of weakness identification.

B Task Taxonomy and Description

For instruction-following, mathematics, and coding
tasks, we show the descriptions and taxonomies in
Figure 7 and Figure 8. The taxonomies are auto-
matically generated by the Examiner with minimal
human revision.

C Detailed Prompts

We show all detailed prompts for each role in Fig-
ure 9, and the prompt used in the iterative search is
shown in Figure 10.

D Implementation Details

We employ the gpt-4-1106-preview for identify-
ing weaknesses to ensure the performance of our

framework. We limit each subcategory to a maxi-
mum of six knowledge points to balance coverage
and cost. During the iterative search process, we
utilize 5 seed questions and conduct a search over
10 steps to balance effectiveness and cost. During
the training phase, we choose LoRA fine-tuning
(Hu et al., 2021), as full-parameter fine-tuning sig-
nificantly impacts performance due to limited data.
We utilize the AdamW (Loshchilov and Hutter,
2017) optimizer with β1 set at 0.9 and β2 at 0.999.
To accelerate training, we adopt the Deepspeed
Zero 2 strategy (Rasley et al., 2020). In addition,
we train all models for 5 epochs with a batch size
of 4. We use a learning rate of 2e-5, along with
0.1 warm-up steps and a linear decay schedule. In
the inference phase, we employ the vllm frame-
work (Kwon et al., 2023) to speed up output and
employ greedy decoding. All the experiments are
conducted on 8×80GB NVIDIA A100 GPUs.

E Baseline Category Classification

To further explore the diversity of generated cases
on three baselines mentioned in §4.3, we employ
GPT-3.5-turbo for classification and map all the
cases to our task taxonomy. We merge cases that
don’t belong to any category as well as categories
that contain less than 2.5% cases of the total into
the category “others”. The classification result is
shown in Figure 11, 12 and 13. As our results
exhibit, AUTODETECT maintains a balanced dis-
tribution and a high diversity on all three tasks
compared with these baselines.

F Robustness Experiment

To verify the robustness of our framework, we
conduct repeated experiments on llama2-7b-chat.
The result is shown in Table 6. The slight fluctua-
tion in the identification success rate across three
tasks demonstrates the remarkable stability of our
framework.

G Annotation Document

We provide the annotation document for the human
evaluation process in §4.1 in Figure 14.

H Distribution Discrepancy in
Identification Data

We have observed a notable distribution discrep-
ancy in the categories identified across different tar-
get models. For example, within the Scenario Sim-
ulation subcategory of the instruction-following
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Algorithm 1 AUTODETECT Weakness Identification

C← Examiner(T,D) ▷ Break down detailed taxonomy
W← ∅ ▷ The set of identified weaknesses
for each category c ∈ C do
K← get_knowledge_points(c) ▷ Initialize with knowledge points under this subcategory
while K ̸= ∅ do
S← gen_seed_questions(pop(K)) ▷ Generate some seed questions of each knowledge point
H← get_resp_score(S) ▷ Get response from target model and score from scorer
for Iterative search of N turns do
Q = Questioner(H) ▷ Generate a new challenging question
update(H,W) ▷ Generate responses and scores for new questions, then update H and W

end for
knew ← Assessor(Hlow) ▷ Analyze low-score cases to find new potential weaknesses
K← K ∪ knew

end while
end for
return W

Task description for instruction following tasks: 
Instruction following is an important topic in LLM research, where LLM should strictly 
follow the instructions from human to complete a certain task. The task types of 
instruction following include generation, openqa, rewrite, brainstorming and so on.

Task description for math tasks:
Mathematic capability is an important topic in LLM research, where LLM needs to use 
several skills to complete a math problem. If possible, please generate test cases mainly 
on MATH WORD PROBLEMS in the current context, which represents real scenario 
combined with a math problem.

Task description for code tasks:
Generating python code is an important capability of LLMs, where LLM should generate 
executable code to conduct a certain task. Here you need to ask the LLM to be tested to 
provide a correct python function to finish your task.

  Task Description

Figure 7: Description for the Instruction-following, Mathematics, and Coding tasks.

Llama2-7b-Chat Instruction Following ISR (%) Mathematics ISR (%) Coding ISR (%)

Repeat 1 43.3 88.8 74.8
Repeat 2 47.7 87.8 75.1
Repeat 3 45.5 87.7 79.2

Table 6: Repeated experiment for Llama2-7b-Chat on Instruction-Following, Mathematics and Coding task.

task, the Assessor identified new categories based
on each model’s specific weaknesses:

• Llama2-7B-Chat: Business Scenarios, Humor-
ous Scenario Generation, Financial Scenario
Simulation.

• Llama3-8B-Instruct: Emotive Scenarios, Per-
spective Scenarios, Multilingual Scenarios.

• GPT-3.5-turbo: Historical Scenarios, Poetic
Scenarios, Satirical Scenarios.

The distinct distribution of categories across these
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Figure 8: Detailed taxonomy used in our framework for the Instruction-following, Mathematics, and Coding tasks.

Categories Before After

Scenario Simulation (%) 64.4 32.2
Multi Lingual (%) 78.9 58.9
Word Constraint (%) 44.4 25.6
Specific Sentence (%) 35.6 25.6
Text Format (%) 65.6 57.8
Overall (%) 50.2 43.4

Table 7: Top 5 categories and overall ISR changes on Llama2-13b-Chat before and after iterative improvement.

models highlights AUTODETECT’s ability to pin-
point model-specific weaknesses effectively.

I Iterative Improvement on Categories

In Table 7, we present the top five ISR categories
and the overall changes in ISR before and after
iterative training on llama2-13b-chat. The ISR
changes demonstrate a noticeable reduction in the
frequency of similar types of errors, highlighting
the effectiveness of the iterative training process.
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Prompt for Examiner: 
{task_description}
Here is a subtask's taxonomy on the task "{main_task}":
{taxonomy}
Based on the given taxonomy, please judge whether the new test point "{new_point}" is 
suitable as a subtask on the task "{main_task}". The judge criteria are as following:
1. The new test point should precisely cover an important and meaningful part of the 
main task.
2. The new test point should be sufficiently different from the existing test points.
3. The new test point should be text-only (no multimodal).
If the new test point "{new_point}" is suitable as a subtask on the task "{main_task}", 
please ONLY output [[Yes]]. If not, please first output [[No]], and then provide the 
reason why it's not suitable as a subtask on the task "{main_task}".

Prompt for Questioner:
{task_description}
Here is a taxonomy for instruction-following task:
{categories}
Based on this, please generate 5 test case of "{task_name}" category to test if language 
models can follow prompts with "{task_name}" constraint. Key point is a short sentence 
summarizing the key point you want to test the language model. The constraints on 
"{task_name}" should be explicitly expressed. Besides, your test cases should cover 
different task types mentioned before to increase prompt diversity. Please be as diverse as 
you can but focus on "{task_name}" and ensure the prompt is text-only (no multimodal). 
The answer of these test cases are expected not to be too long.
You should ONLY output the test cases in json format, {"test_case1": {"key_point": ..., 
"prompt": ...}, ...}

Prompt for Assessor:
{task_description}
Here is a subtask's taxonomy as well as the averaged score on these tasks (lower means 
worse performance):
{taxonomy}
And here are some bad cases:
{bad_cases}
Based on the given information, please judge if the taxonomy is comprehensive, if so 
please just output [[Stop]]. 
If not, please give me a new possible issue you inferred from present taxonomy and bad 
cases. Please focus on {main_task}. Ensure the new task is text-only (no multimodal). 
Also give a brief explanation of how you find the issue. Please output in json format, 
{"task_name": ..., "explanation":...}

Prompts for Three Roles

Figure 9: Prompts for the three roles: Examiner, Questioner, and Assessor in our framework. Words in the braces
will be replaced with correlative content in real practice.
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{task_description}
Previous Prompts:
Prompt: {prompt_1}
Key Point: {key_point_1}
Score: {score_1}
…
Prompt: {prompt_5}
Key Point: {key_point_5}
Score: {score_5}
The objective is to create new prompts that are challenging for the language model, with 
a focus on diverse types of instructions about "{task_name}". Each prompt should be 
solvable by a language model, complete, and aimed at achieving a lower score 
(indicating be difficult and complex).
Guidelines for Creating New Prompts:
1. Each prompt should be solvable by a language model (no visual task) and should 
contain all necessary information.
2. Aim for prompts that would result in a low score (less than 3.0), indicating a high level 
of complexity and difficulty.
3. Do not repeat verbs across different instructions to maximize diversity.
4. The point should be no more than 15 words and summarizes the key points of prompt.
5. Please focus on "{task_name}" constraints. And express the constraints explicitly in 
prompts.
Please generate a new test case. Output in json format, {"key_point": ..., "prompt": ...}

Prompts for Iteration Search

Figure 10: Prompt for the iteration search process in our framework.

Instruction Following

Figure 11: Classification of generated cases on three baselines and our method on Instruction Following task.
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Mathematics

Figure 12: Classification of generated cases on three baselines and our method on Mathematics task.

Coding

Figure 13: Classification of generated cases on three baselines and our method on Coding task.
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## Data

There are 150 pieces of data to be annotated. Each data is in the following format:

```json
{
    "question": <generated question>,
    "target_res": <response of target model>,
    "reference_res": <reference answer>,
    "comparison": <judgment for response of target model>,
    "label": "wrong" if score <= 3 else null,
    "task": <task type>
}
```

## Task Description

1. Reasonability of question. If there is no contradiction in the question and the question can be reasonably solved  
by human and model, then annotate it as 1, else 0.
2. Accuracy of label. If the response of target model is consistent with the label, then annotate it as 1, else 0. You 
can consider the analysis in "comparison" as reference.
3. Reasonability of reference. If the reference accurately respond to the question or fulfill the constraint in the 
question, then annotate it as 1, else 0.

## Annotation Requirement

1. Each piece of data requires three workers to annotate independently.

## 数据

待标注数据共 150 条。每条数据的格式如下所⽰：

```json
{
    "question": <⽣成的问题>,
    "target_res": <被测模型⽣成的回复>,
    "reference_res": <参考答案>,
    "comparison": <对被测模型⽣成回复的评价>,
    "label": score <= 3 为 "wrong", 否则为 null,
    "task": <任务类型>
}
```

## 任务描述

1. 问题合理性。如果⽣成的问题⾃⾝不存在⽭盾，且可以被⼈和模型合理地解决，则该数据标注为 1，反
之为 0。
2. 标签准确性。如果被测模型⽣成的回复与标签给出的结果⼀致，则该数据标注为 1，反之为 0。可以参
考 "comparison" 的分析。
3. 参考答案合理性。如果参考答案准确地回答了⽣成的问题，或是满⾜了问题中的约束条件，则该数据标
注为 1，反之为 0。

## 标注要求

1. 每条数据需要三名标注⼈员独⽴完成标注。

Annotation Document

Figure 14: Annotation document for the human evaluation process in §4.1
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